summaryrefslogtreecommitdiff
path: root/lib/comparedf2.c
diff options
context:
space:
mode:
authorStephen Canon <scanon@apple.com>2010-07-01 15:52:42 +0000
committerStephen Canon <scanon@apple.com>2010-07-01 15:52:42 +0000
commite5086322295e5a345af02d09abfcf8ddca2d0897 (patch)
tree0b45ef6ae008ced53cad21ea62d1b8fb9ecff5bb /lib/comparedf2.c
parent06dfcbe20aff576643a0ecb2925f5f8e16df0a54 (diff)
downloadcompiler-rt-e5086322295e5a345af02d09abfcf8ddca2d0897.tar.gz
compiler-rt-e5086322295e5a345af02d09abfcf8ddca2d0897.tar.bz2
compiler-rt-e5086322295e5a345af02d09abfcf8ddca2d0897.tar.xz
Adding soft-float comparisons, addition, subtraction, multiplication and negation
git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@107400 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/comparedf2.c')
-rw-r--r--lib/comparedf2.c127
1 files changed, 127 insertions, 0 deletions
diff --git a/lib/comparedf2.c b/lib/comparedf2.c
new file mode 100644
index 00000000..de700808
--- /dev/null
+++ b/lib/comparedf2.c
@@ -0,0 +1,127 @@
+/*
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ */
+
+#define DOUBLE_PRECISION
+#include "fp_lib.h"
+
+// This file implements the following soft-float comparison routines:
+//
+// __eqdf2 __gedf2 __nedf2
+// __ledf2 __gtdf2
+// __ltdf2
+// __nedf2
+//
+// The semantics of the routines grouped in each column are identical, so there
+// is a single implementation for each, and wrappers to provide the other names.
+//
+// The main routines behave as follows:
+//
+// __ledf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// 1 if either a or b is NaN
+//
+// __gedf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// -1 if either a or b is NaN
+//
+// __unorddf2(a,b) returns 0 if both a and b are numbers
+// 1 if either a or b is NaN
+//
+// Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
+// NaN values.
+
+enum LE_RESULT {
+ LE_LESS = -1,
+ LE_EQUAL = 0,
+ LE_GREATER = 1,
+ LE_UNORDERED = 1
+};
+
+enum LE_RESULT __ledf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ // If either a or b is NaN, they are unordered.
+ if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
+
+ // If a and b are both zeros, they are equal.
+ if ((aAbs | bAbs) == 0) return LE_EQUAL;
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a floating-point compare.
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt) return LE_LESS;
+ else if (aInt == bInt) return LE_EQUAL;
+ else return LE_GREATER;
+ }
+
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ else {
+ if (aInt > bInt) return LE_LESS;
+ else if (aInt == bInt) return LE_EQUAL;
+ else return LE_GREATER;
+ }
+}
+
+
+enum GE_RESULT {
+ GE_LESS = -1,
+ GE_EQUAL = 0,
+ GE_GREATER = 1,
+ GE_UNORDERED = -1 // Note: different from LE_UNORDERED
+};
+
+enum GE_RESULT __gedf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
+ if ((aAbs | bAbs) == 0) return GE_EQUAL;
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt) return GE_LESS;
+ else if (aInt == bInt) return GE_EQUAL;
+ else return GE_GREATER;
+ } else {
+ if (aInt > bInt) return GE_LESS;
+ else if (aInt == bInt) return GE_EQUAL;
+ else return GE_GREATER;
+ }
+}
+
+int __unorddf2(fp_t a, fp_t b) {
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+ return aAbs > infRep || bAbs > infRep;
+}
+
+enum LE_RESULT __eqdf2(fp_t a, fp_t b) {
+ return __ledf2(a, b);
+}
+
+enum LE_RESULT __ltdf2(fp_t a, fp_t b) {
+ return __ledf2(a, b);
+}
+
+enum LE_RESULT __nedf2(fp_t a, fp_t b) {
+ return __ledf2(a, b);
+}
+
+enum GE_RESULT __gtdf2(fp_t a, fp_t b) {
+ return __gedf2(a, b);
+}
+