summaryrefslogtreecommitdiff
path: root/lib/asan/tests/asan_noinst_test.cc
blob: 70b59f029f72e7e080c6fa14cb8644682e527ab8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
//===-- asan_noinst_test.cc ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// This test file should be compiled w/o asan instrumentation.
//===----------------------------------------------------------------------===//

#include "asan_allocator.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_stack.h"
#include "asan_test_utils.h"
#include "asan_test_config.h"
#include "sanitizer/asan_interface.h"

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>  // for memset()
#include <algorithm>
#include <vector>
#include "gtest/gtest.h"

// Simple stand-alone pseudorandom number generator.
// Current algorithm is ANSI C linear congruential PRNG.
static inline u32 my_rand(u32* state) {
  return (*state = *state * 1103515245 + 12345) >> 16;
}

static u32 global_seed = 0;


TEST(AddressSanitizer, InternalSimpleDeathTest) {
  EXPECT_DEATH(exit(1), "");
}

static void MallocStress(size_t n) {
  u32 seed = my_rand(&global_seed);
  __asan::StackTrace stack1;
  stack1.trace[0] = 0xa123;
  stack1.trace[1] = 0xa456;
  stack1.size = 2;

  __asan::StackTrace stack2;
  stack2.trace[0] = 0xb123;
  stack2.trace[1] = 0xb456;
  stack2.size = 2;

  __asan::StackTrace stack3;
  stack3.trace[0] = 0xc123;
  stack3.trace[1] = 0xc456;
  stack3.size = 2;

  std::vector<void *> vec;
  for (size_t i = 0; i < n; i++) {
    if ((i % 3) == 0) {
      if (vec.empty()) continue;
      size_t idx = my_rand(&seed) % vec.size();
      void *ptr = vec[idx];
      vec[idx] = vec.back();
      vec.pop_back();
      __asan::asan_free(ptr, &stack1);
    } else {
      size_t size = my_rand(&seed) % 1000 + 1;
      switch ((my_rand(&seed) % 128)) {
        case 0: size += 1024; break;
        case 1: size += 2048; break;
        case 2: size += 4096; break;
      }
      size_t alignment = 1 << (my_rand(&seed) % 10 + 1);
      char *ptr = (char*)__asan::asan_memalign(alignment, size, &stack2);
      vec.push_back(ptr);
      ptr[0] = 0;
      ptr[size-1] = 0;
      ptr[size/2] = 0;
    }
  }
  for (size_t i = 0; i < vec.size(); i++)
    __asan::asan_free(vec[i], &stack3);
}


TEST(AddressSanitizer, NoInstMallocTest) {
#ifdef __arm__
  MallocStress(300000);
#else
  MallocStress(1000000);
#endif
}

static void PrintShadow(const char *tag, uptr ptr, size_t size) {
  fprintf(stderr, "%s shadow: %lx size % 3ld: ", tag, (long)ptr, (long)size);
  uptr prev_shadow = 0;
  for (sptr i = -32; i < (sptr)size + 32; i++) {
    uptr shadow = __asan::MemToShadow(ptr + i);
    if (i == 0 || i == (sptr)size)
      fprintf(stderr, ".");
    if (shadow != prev_shadow) {
      prev_shadow = shadow;
      fprintf(stderr, "%02x", (int)*(u8*)shadow);
    }
  }
  fprintf(stderr, "\n");
}

TEST(AddressSanitizer, DISABLED_InternalPrintShadow) {
  for (size_t size = 1; size <= 513; size++) {
    char *ptr = new char[size];
    PrintShadow("m", (uptr)ptr, size);
    delete [] ptr;
    PrintShadow("f", (uptr)ptr, size);
  }
}

static uptr pc_array[] = {
#if __WORDSIZE == 64
  0x7effbf756068ULL,
  0x7effbf75e5abULL,
  0x7effc0625b7cULL,
  0x7effc05b8997ULL,
  0x7effbf990577ULL,
  0x7effbf990c56ULL,
  0x7effbf992f3cULL,
  0x7effbf950c22ULL,
  0x7effc036dba0ULL,
  0x7effc03638a3ULL,
  0x7effc035be4aULL,
  0x7effc0539c45ULL,
  0x7effc0539a65ULL,
  0x7effc03db9b3ULL,
  0x7effc03db100ULL,
  0x7effc037c7b8ULL,
  0x7effc037bfffULL,
  0x7effc038b777ULL,
  0x7effc038021cULL,
  0x7effc037c7d1ULL,
  0x7effc037bfffULL,
  0x7effc038b777ULL,
  0x7effc038021cULL,
  0x7effc037c7d1ULL,
  0x7effc037bfffULL,
  0x7effc038b777ULL,
  0x7effc038021cULL,
  0x7effc037c7d1ULL,
  0x7effc037bfffULL,
  0x7effc0520d26ULL,
  0x7effc009ddffULL,
  0x7effbf90bb50ULL,
  0x7effbdddfa69ULL,
  0x7effbdde1fe2ULL,
  0x7effbdde2424ULL,
  0x7effbdde27b3ULL,
  0x7effbddee53bULL,
  0x7effbdde1988ULL,
  0x7effbdde0904ULL,
  0x7effc106ce0dULL,
  0x7effbcc3fa04ULL,
  0x7effbcc3f6a4ULL,
  0x7effbcc3e726ULL,
  0x7effbcc40852ULL,
  0x7effb681ec4dULL,
#endif  // __WORDSIZE
  0xB0B5E768,
  0x7B682EC1,
  0x367F9918,
  0xAE34E13,
  0xBA0C6C6,
  0x13250F46,
  0xA0D6A8AB,
  0x2B07C1A8,
  0x6C844F4A,
  0x2321B53,
  0x1F3D4F8F,
  0x3FE2924B,
  0xB7A2F568,
  0xBD23950A,
  0x61020930,
  0x33E7970C,
  0x405998A1,
  0x59F3551D,
  0x350E3028,
  0xBC55A28D,
  0x361F3AED,
  0xBEAD0F73,
  0xAEF28479,
  0x757E971F,
  0xAEBA450,
  0x43AD22F5,
  0x8C2C50C4,
  0x7AD8A2E1,
  0x69EE4EE8,
  0xC08DFF,
  0x4BA6538,
  0x3708AB2,
  0xC24B6475,
  0x7C8890D7,
  0x6662495F,
  0x9B641689,
  0xD3596B,
  0xA1049569,
  0x44CBC16,
  0x4D39C39F
};

void CompressStackTraceTest(size_t n_iter) {
  u32 seed = my_rand(&global_seed);
  const size_t kNumPcs = ARRAY_SIZE(pc_array);
  u32 compressed[2 * kNumPcs];

  for (size_t iter = 0; iter < n_iter; iter++) {
    std::random_shuffle(pc_array, pc_array + kNumPcs);
    __asan::StackTrace stack0, stack1;
    stack0.CopyFrom(pc_array, kNumPcs);
    stack0.size = std::max((size_t)1, (size_t)(my_rand(&seed) % stack0.size));
    size_t compress_size =
      std::max((size_t)2, (size_t)my_rand(&seed) % (2 * kNumPcs));
    size_t n_frames =
      __asan::StackTrace::CompressStack(&stack0, compressed, compress_size);
    Ident(n_frames);
    assert(n_frames <= stack0.size);
    __asan::StackTrace::UncompressStack(&stack1, compressed, compress_size);
    assert(stack1.size == n_frames);
    for (size_t i = 0; i < stack1.size; i++) {
      assert(stack0.trace[i] == stack1.trace[i]);
    }
  }
}

TEST(AddressSanitizer, CompressStackTraceTest) {
  CompressStackTraceTest(10000);
}

void CompressStackTraceBenchmark(size_t n_iter) {
  const size_t kNumPcs = ARRAY_SIZE(pc_array);
  u32 compressed[2 * kNumPcs];
  std::random_shuffle(pc_array, pc_array + kNumPcs);

  __asan::StackTrace stack0;
  stack0.CopyFrom(pc_array, kNumPcs);
  stack0.size = kNumPcs;
  for (size_t iter = 0; iter < n_iter; iter++) {
    size_t compress_size = kNumPcs;
    size_t n_frames =
      __asan::StackTrace::CompressStack(&stack0, compressed, compress_size);
    Ident(n_frames);
  }
}

TEST(AddressSanitizer, CompressStackTraceBenchmark) {
  CompressStackTraceBenchmark(1 << 24);
}

TEST(AddressSanitizer, QuarantineTest) {
  __asan::StackTrace stack;
  stack.trace[0] = 0x890;
  stack.size = 1;

  const int size = 32;
  void *p = __asan::asan_malloc(size, &stack);
  __asan::asan_free(p, &stack);
  size_t i;
  size_t max_i = 1 << 30;
  for (i = 0; i < max_i; i++) {
    void *p1 = __asan::asan_malloc(size, &stack);
    __asan::asan_free(p1, &stack);
    if (p1 == p) break;
  }
  // fprintf(stderr, "i=%ld\n", i);
  EXPECT_GE(i, 100000U);
  EXPECT_LT(i, max_i);
}

void *ThreadedQuarantineTestWorker(void *unused) {
  (void)unused;
  u32 seed = my_rand(&global_seed);
  __asan::StackTrace stack;
  stack.trace[0] = 0x890;
  stack.size = 1;

  for (size_t i = 0; i < 1000; i++) {
    void *p = __asan::asan_malloc(1 + (my_rand(&seed) % 4000), &stack);
    __asan::asan_free(p, &stack);
  }
  return NULL;
}

// Check that the thread local allocators are flushed when threads are
// destroyed.
TEST(AddressSanitizer, ThreadedQuarantineTest) {
  const int n_threads = 3000;
  size_t mmaped1 = __asan_get_heap_size();
  for (int i = 0; i < n_threads; i++) {
    pthread_t t;
    pthread_create(&t, NULL, ThreadedQuarantineTestWorker, 0);
    pthread_join(t, 0);
    size_t mmaped2 = __asan_get_heap_size();
    EXPECT_LT(mmaped2 - mmaped1, 320U * (1 << 20));
  }
}

void *ThreadedOneSizeMallocStress(void *unused) {
  (void)unused;
  __asan::StackTrace stack;
  stack.trace[0] = 0x890;
  stack.size = 1;
  const size_t kNumMallocs = 1000;
  for (int iter = 0; iter < 1000; iter++) {
    void *p[kNumMallocs];
    for (size_t i = 0; i < kNumMallocs; i++) {
      p[i] = __asan::asan_malloc(32, &stack);
    }
    for (size_t i = 0; i < kNumMallocs; i++) {
      __asan::asan_free(p[i], &stack);
    }
  }
  return NULL;
}

TEST(AddressSanitizer, ThreadedOneSizeMallocStressTest) {
  const int kNumThreads = 4;
  pthread_t t[kNumThreads];
  for (int i = 0; i < kNumThreads; i++) {
    pthread_create(&t[i], 0, ThreadedOneSizeMallocStress, 0);
  }
  for (int i = 0; i < kNumThreads; i++) {
    pthread_join(t[i], 0);
  }
}

TEST(AddressSanitizer, MemsetWildAddressTest) {
  typedef void*(*memset_p)(void*, int, size_t);
  // Prevent inlining of memset().
  volatile memset_p libc_memset = (memset_p)memset;
  EXPECT_DEATH(libc_memset((void*)(kLowShadowBeg + kPageSize), 0, 100),
               "unknown-crash.*low shadow");
  EXPECT_DEATH(libc_memset((void*)(kShadowGapBeg + kPageSize), 0, 100),
               "unknown-crash.*shadow gap");
  EXPECT_DEATH(libc_memset((void*)(kHighShadowBeg + kPageSize), 0, 100),
               "unknown-crash.*high shadow");
}

TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
  EXPECT_EQ(1U, __asan_get_estimated_allocated_size(0));
  const size_t sizes[] = { 1, 30, 1<<30 };
  for (size_t i = 0; i < 3; i++) {
    EXPECT_EQ(sizes[i], __asan_get_estimated_allocated_size(sizes[i]));
  }
}

static const char* kGetAllocatedSizeErrorMsg =
  "attempting to call __asan_get_allocated_size()";

TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
  const size_t kArraySize = 100;
  char *array = Ident((char*)malloc(kArraySize));
  int *int_ptr = Ident(new int);

  // Allocated memory is owned by allocator. Allocated size should be
  // equal to requested size.
  EXPECT_EQ(true, __asan_get_ownership(array));
  EXPECT_EQ(kArraySize, __asan_get_allocated_size(array));
  EXPECT_EQ(true, __asan_get_ownership(int_ptr));
  EXPECT_EQ(sizeof(int), __asan_get_allocated_size(int_ptr));

  // We cannot call GetAllocatedSize from the memory we didn't map,
  // and from the interior pointers (not returned by previous malloc).
  void *wild_addr = (void*)0x1;
  EXPECT_EQ(false, __asan_get_ownership(wild_addr));
  EXPECT_DEATH(__asan_get_allocated_size(wild_addr), kGetAllocatedSizeErrorMsg);
  EXPECT_EQ(false, __asan_get_ownership(array + kArraySize / 2));
  EXPECT_DEATH(__asan_get_allocated_size(array + kArraySize / 2),
               kGetAllocatedSizeErrorMsg);

  // NULL is not owned, but is a valid argument for __asan_get_allocated_size().
  EXPECT_EQ(false, __asan_get_ownership(NULL));
  EXPECT_EQ(0U, __asan_get_allocated_size(NULL));

  // When memory is freed, it's not owned, and call to GetAllocatedSize
  // is forbidden.
  free(array);
  EXPECT_EQ(false, __asan_get_ownership(array));
  EXPECT_DEATH(__asan_get_allocated_size(array), kGetAllocatedSizeErrorMsg);

  delete int_ptr;
}

TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
  size_t before_malloc, after_malloc, after_free;
  char *array;
  const size_t kMallocSize = 100;
  before_malloc = __asan_get_current_allocated_bytes();

  array = Ident((char*)malloc(kMallocSize));
  after_malloc = __asan_get_current_allocated_bytes();
  EXPECT_EQ(before_malloc + kMallocSize, after_malloc);

  free(array);
  after_free = __asan_get_current_allocated_bytes();
  EXPECT_EQ(before_malloc, after_free);
}

static void DoDoubleFree() {
  int *x = Ident(new int);
  delete Ident(x);
  delete Ident(x);
}

// This test is run in a separate process, so that large malloced
// chunk won't remain in the free lists after the test.
// Note: use ASSERT_* instead of EXPECT_* here.
static void RunGetHeapSizeTestAndDie() {
  size_t old_heap_size, new_heap_size, heap_growth;
  // We unlikely have have chunk of this size in free list.
  static const size_t kLargeMallocSize = 1 << 29;  // 512M
  old_heap_size = __asan_get_heap_size();
  fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
  free(Ident(malloc(kLargeMallocSize)));
  new_heap_size = __asan_get_heap_size();
  heap_growth = new_heap_size - old_heap_size;
  fprintf(stderr, "heap growth after first malloc: %zu\n", heap_growth);
  ASSERT_GE(heap_growth, kLargeMallocSize);
  ASSERT_LE(heap_growth, 2 * kLargeMallocSize);

  // Now large chunk should fall into free list, and can be
  // allocated without increasing heap size.
  old_heap_size = new_heap_size;
  free(Ident(malloc(kLargeMallocSize)));
  heap_growth = __asan_get_heap_size() - old_heap_size;
  fprintf(stderr, "heap growth after second malloc: %zu\n", heap_growth);
  ASSERT_LT(heap_growth, kLargeMallocSize);

  // Test passed. Now die with expected double-free.
  DoDoubleFree();
}

TEST(AddressSanitizerInterface, GetHeapSizeTest) {
  EXPECT_DEATH(RunGetHeapSizeTestAndDie(), "double-free");
}

// Note: use ASSERT_* instead of EXPECT_* here.
static void DoLargeMallocForGetFreeBytesTestAndDie() {
  size_t old_free_bytes, new_free_bytes;
  static const size_t kLargeMallocSize = 1 << 29;  // 512M
  // If we malloc and free a large memory chunk, it will not fall
  // into quarantine and will be available for future requests.
  old_free_bytes = __asan_get_free_bytes();
  fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
  fprintf(stderr, "free bytes before malloc: %zu\n", old_free_bytes);
  free(Ident(malloc(kLargeMallocSize)));
  new_free_bytes = __asan_get_free_bytes();
  fprintf(stderr, "free bytes after malloc and free: %zu\n", new_free_bytes);
  ASSERT_GE(new_free_bytes, old_free_bytes + kLargeMallocSize);
  // Test passed.
  DoDoubleFree();
}

TEST(AddressSanitizerInterface, GetFreeBytesTest) {
  static const size_t kNumOfChunks = 100;
  static const size_t kChunkSize = 100;
  char *chunks[kNumOfChunks];
  size_t i;
  size_t old_free_bytes, new_free_bytes;
  // Allocate a small chunk. Now allocator probably has a lot of these
  // chunks to fulfill future requests. So, future requests will decrease
  // the number of free bytes.
  chunks[0] = Ident((char*)malloc(kChunkSize));
  old_free_bytes = __asan_get_free_bytes();
  for (i = 1; i < kNumOfChunks; i++) {
    chunks[i] = Ident((char*)malloc(kChunkSize));
    new_free_bytes = __asan_get_free_bytes();
    EXPECT_LT(new_free_bytes, old_free_bytes);
    old_free_bytes = new_free_bytes;
  }
  EXPECT_DEATH(DoLargeMallocForGetFreeBytesTestAndDie(), "double-free");
}

static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<20, 357};
static const size_t kManyThreadsIterations = 250;
static const size_t kManyThreadsNumThreads = (__WORDSIZE == 32) ? 40 : 200;

void *ManyThreadsWithStatsWorker(void *arg) {
  (void)arg;
  for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
    for (size_t size_index = 0; size_index < 4; size_index++) {
      free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
    }
  }
  return 0;
}

TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
  size_t before_test, after_test, i;
  pthread_t threads[kManyThreadsNumThreads];
  before_test = __asan_get_current_allocated_bytes();
  for (i = 0; i < kManyThreadsNumThreads; i++) {
    pthread_create(&threads[i], 0,
                   (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
  }
  for (i = 0; i < kManyThreadsNumThreads; i++) {
    pthread_join(threads[i], 0);
  }
  after_test = __asan_get_current_allocated_bytes();
  // ASan stats also reflect memory usage of internal ASan RTL structs,
  // so we can't check for equality here.
  EXPECT_LT(after_test, before_test + (1UL<<20));
}

TEST(AddressSanitizerInterface, ExitCode) {
  int original_exit_code = __asan_set_error_exit_code(7);
  EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(7), "");
  EXPECT_EQ(7, __asan_set_error_exit_code(8));
  EXPECT_EXIT(DoDoubleFree(), ::testing::ExitedWithCode(8), "");
  EXPECT_EQ(8, __asan_set_error_exit_code(original_exit_code));
  EXPECT_EXIT(DoDoubleFree(),
              ::testing::ExitedWithCode(original_exit_code), "");
}

static void MyDeathCallback() {
  fprintf(stderr, "MyDeathCallback\n");
}

TEST(AddressSanitizerInterface, DeathCallbackTest) {
  __asan_set_death_callback(MyDeathCallback);
  EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
  __asan_set_death_callback(NULL);
}

TEST(AddressSanitizerInterface, OnErrorCallbackTest) {
  __asan_set_on_error_callback(MyDeathCallback);
  EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback.*double-free");
  __asan_set_on_error_callback(NULL);
}

static const char* kUseAfterPoisonErrorMessage = "use-after-poison";

#define GOOD_ACCESS(ptr, offset)  \
    EXPECT_FALSE(__asan::AddressIsPoisoned((uptr)(ptr + offset)))

#define BAD_ACCESS(ptr, offset) \
    EXPECT_TRUE(__asan::AddressIsPoisoned((uptr)(ptr + offset)))

TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
  char *array = Ident((char*)malloc(120));
  // poison array[40..80)
  __asan_poison_memory_region(array + 40, 40);
  GOOD_ACCESS(array, 39);
  GOOD_ACCESS(array, 80);
  BAD_ACCESS(array, 40);
  BAD_ACCESS(array, 60);
  BAD_ACCESS(array, 79);
  EXPECT_DEATH(__asan_report_error(0, 0, 0, (uptr)(array + 40), true, 1),
               kUseAfterPoisonErrorMessage);
  __asan_unpoison_memory_region(array + 40, 40);
  // access previously poisoned memory.
  GOOD_ACCESS(array, 40);
  GOOD_ACCESS(array, 79);
  free(array);
}

TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
  char *array = Ident((char*)malloc(120));
  // Poison [0..40) and [80..120)
  __asan_poison_memory_region(array, 40);
  __asan_poison_memory_region(array + 80, 40);
  BAD_ACCESS(array, 20);
  GOOD_ACCESS(array, 60);
  BAD_ACCESS(array, 100);
  // Poison whole array - [0..120)
  __asan_poison_memory_region(array, 120);
  BAD_ACCESS(array, 60);
  // Unpoison [24..96)
  __asan_unpoison_memory_region(array + 24, 72);
  BAD_ACCESS(array, 23);
  GOOD_ACCESS(array, 24);
  GOOD_ACCESS(array, 60);
  GOOD_ACCESS(array, 95);
  BAD_ACCESS(array, 96);
  free(array);
}

TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
  // Vector of capacity 20
  char *vec = Ident((char*)malloc(20));
  __asan_poison_memory_region(vec, 20);
  for (size_t i = 0; i < 7; i++) {
    // Simulate push_back.
    __asan_unpoison_memory_region(vec + i, 1);
    GOOD_ACCESS(vec, i);
    BAD_ACCESS(vec, i + 1);
  }
  for (size_t i = 7; i > 0; i--) {
    // Simulate pop_back.
    __asan_poison_memory_region(vec + i - 1, 1);
    BAD_ACCESS(vec, i - 1);
    if (i > 1) GOOD_ACCESS(vec, i - 2);
  }
  free(vec);
}

// Make sure that each aligned block of size "2^granularity" doesn't have
// "true" value before "false" value.
static void MakeShadowValid(bool *shadow, int length, int granularity) {
  bool can_be_poisoned = true;
  for (int i = length - 1; i >= 0; i--) {
    if (!shadow[i])
      can_be_poisoned = false;
    if (!can_be_poisoned)
      shadow[i] = false;
    if (i % (1 << granularity) == 0) {
      can_be_poisoned = true;
    }
  }
}

TEST(AddressSanitizerInterface, PoisoningStressTest) {
  const size_t kSize = 24;
  bool expected[kSize];
  char *arr = Ident((char*)malloc(kSize));
  for (size_t l1 = 0; l1 < kSize; l1++) {
    for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
      for (size_t l2 = 0; l2 < kSize; l2++) {
        for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
          // Poison [l1, l1+s1), [l2, l2+s2) and check result.
          __asan_unpoison_memory_region(arr, kSize);
          __asan_poison_memory_region(arr + l1, s1);
          __asan_poison_memory_region(arr + l2, s2);
          memset(expected, false, kSize);
          memset(expected + l1, true, s1);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          memset(expected + l2, true, s2);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          for (size_t i = 0; i < kSize; i++) {
            ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
          }
          // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
          __asan_poison_memory_region(arr, kSize);
          __asan_unpoison_memory_region(arr + l1, s1);
          __asan_unpoison_memory_region(arr + l2, s2);
          memset(expected, true, kSize);
          memset(expected + l1, false, s1);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          memset(expected + l2, false, s2);
          MakeShadowValid(expected, kSize, /*granularity*/ 3);
          for (size_t i = 0; i < kSize; i++) {
            ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
          }
        }
      }
    }
  }
}

static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";

TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
  char *array = Ident((char*)malloc(120));
  __asan_unpoison_memory_region(array, 120);
  // Try to unpoison not owned memory
  EXPECT_DEATH(__asan_unpoison_memory_region(array, 121),
               kInvalidUnpoisonMessage);
  EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120),
               kInvalidUnpoisonMessage);

  __asan_poison_memory_region(array, 120);
  // Try to poison not owned memory.
  EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage);
  EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120),
               kInvalidPoisonMessage);
  free(array);
}

static void ErrorReportCallbackOneToZ(const char *report) {
  write(2, "ABCDEF", 6);
  write(2, report, strlen(report));
  write(2, "ABCDEF", 6);
  _exit(1);
}

TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) {
  __asan_set_error_report_callback(ErrorReportCallbackOneToZ);
  EXPECT_DEATH(__asan_report_error(0, 0, 0, 0, true, 1),
               ASAN_PCRE_DOTALL "ABCDEF.*AddressSanitizer.*WRITE.*ABCDEF");
  __asan_set_error_report_callback(NULL);
}

TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
  std::vector<char *> pointers;
  std::vector<size_t> sizes;
  const size_t kNumMallocs =
      (__WORDSIZE <= 32 || ASAN_LOW_MEMORY) ? 1 << 10 : 1 << 14;
  for (size_t i = 0; i < kNumMallocs; i++) {
    size_t size = i * 100 + 1;
    pointers.push_back((char*)malloc(size));
    sizes.push_back(size);
  }
  for (size_t i = 0; i < 4000000; i++) {
    EXPECT_FALSE(__asan_get_ownership(&pointers));
    EXPECT_FALSE(__asan_get_ownership((void*)0x1234));
    size_t idx = i % kNumMallocs;
    EXPECT_TRUE(__asan_get_ownership(pointers[idx]));
    EXPECT_EQ(sizes[idx], __asan_get_allocated_size(pointers[idx]));
  }
  for (size_t i = 0, n = pointers.size(); i < n; i++)
    free(pointers[i]);
}