summaryrefslogtreecommitdiff
path: root/Demo/Common/Minimal/recmutex.c
blob: f7c912fd59858cff798c4e61ba9e387392606b09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
	FreeRTOS.org V5.1.2 - Copyright (C) 2003-2009 Richard Barry.

	This file is part of the FreeRTOS.org distribution.

	FreeRTOS.org is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	FreeRTOS.org is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with FreeRTOS.org; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

	A special exception to the GPL can be applied should you wish to distribute
	a combined work that includes FreeRTOS.org, without being obliged to provide
	the source code for any proprietary components.  See the licensing section 
	of http://www.FreeRTOS.org for full details of how and when the exception
	can be applied.

    ***************************************************************************
    ***************************************************************************
    *                                                                         *
    * Get the FreeRTOS eBook!  See http://www.FreeRTOS.org/Documentation      *
	*                                                                         *
	* This is a concise, step by step, 'hands on' guide that describes both   *
	* general multitasking concepts and FreeRTOS specifics. It presents and   *
	* explains numerous examples that are written using the FreeRTOS API.     *
	* Full source code for all the examples is provided in an accompanying    *
	* .zip file.                                                              *
    *                                                                         *
    ***************************************************************************
    ***************************************************************************

	Please ensure to read the configuration and relevant port sections of the
	online documentation.

	http://www.FreeRTOS.org - Documentation, latest information, license and 
	contact details.

	http://www.SafeRTOS.com - A version that is certified for use in safety 
	critical systems.

	http://www.OpenRTOS.com - Commercial support, development, porting, 
	licensing and training services.
*/

/*
	The tasks defined on this page demonstrate the use of recursive mutexes.

	For recursive mutex functionality the created mutex should be created using
	xSemaphoreCreateRecursiveMutex(), then be manipulated
	using the xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() API
	functions.

	This demo creates three tasks all of which access the same recursive mutex:

	prvRecursiveMutexControllingTask() has the highest priority so executes 
	first and grabs the mutex.  It then performs some recursive accesses - 
	between each of which it sleeps for a short period to let the lower 
	priority tasks execute.  When it has completed its demo functionality
	it gives the mutex back before suspending itself.

	prvRecursiveMutexBlockingTask() attempts to access the mutex by performing
	a blocking 'take'.  The blocking task has a lower priority than the 
	controlling	task so by the time it executes the mutex has already been
	taken by the controlling task,  causing the blocking task to block.  It 
	does not unblock until the controlling task has given the mutex back, 
	and it does not actually run until the controlling task has suspended 
	itself (due to the relative priorities).  When it eventually does obtain
	the mutex all it does is give the mutex back prior to also suspending 
	itself.  At this point both the controlling task and the blocking task are 
	suspended.

	prvRecursiveMutexPollingTask() runs at the idle priority.  It spins round
	a tight loop attempting to obtain the mutex with a non-blocking call.  As
	the lowest priority task it will not successfully obtain the mutex until
	both the controlling and blocking tasks are suspended.  Once it eventually 
	does obtain the mutex it first unsuspends both the controlling task and
	blocking task prior to giving the mutex back - resulting in the polling
	task temporarily inheriting the controlling tasks priority.
*/

/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

/* Demo app include files. */
#include "recmutex.h"

/* Priorities assigned to the three tasks. */
#define recmuCONTROLLING_TASK_PRIORITY	( tskIDLE_PRIORITY + 2 )
#define recmuBLOCKING_TASK_PRIORITY		( tskIDLE_PRIORITY + 1 )
#define recmuPOLLING_TASK_PRIORITY		( tskIDLE_PRIORITY + 0 )

/* The recursive call depth. */
#define recmuMAX_COUNT					( 10 )

/* Misc. */
#define recmuSHORT_DELAY				( 20 / portTICK_RATE_MS )
#define recmuNO_DELAY					( ( portTickType ) 0 )
#define recmuTWO_TICK_DELAY				( ( portTickType ) 2 )

/* The three tasks as described at the top of this file. */
static void prvRecursiveMutexControllingTask( void *pvParameters );
static void prvRecursiveMutexBlockingTask( void *pvParameters );
static void prvRecursiveMutexPollingTask( void *pvParameters );

/* The mutex used by the demo. */
static xSemaphoreHandle xMutex;

/* Variables used to detect and latch errors. */
static volatile portBASE_TYPE xErrorOccurred = pdFALSE, xControllingIsSuspended = pdFALSE, xBlockingIsSuspended = pdFALSE;
static volatile unsigned portBASE_TYPE uxControllingCycles = 0, uxBlockingCycles, uxPollingCycles = 0;

/* Handles of the two higher priority tasks, required so they can be resumed 
(unsuspended). */
static xTaskHandle xControllingTaskHandle, xBlockingTaskHandle;

/*-----------------------------------------------------------*/

void vStartRecursiveMutexTasks( void )
{
	/* Just creates the mutex and the three tasks. */

	xMutex = xSemaphoreCreateRecursiveMutex();

	/* vQueueAddToRegistry() adds the mutex to the registry, if one is
	in use.  The registry is provided as a means for kernel aware 
	debuggers to locate mutex and has no purpose if a kernel aware debugger
	is not being used.  The call to vQueueAddToRegistry() will be removed
	by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is 
	defined to be less than 1. */
	vQueueAddToRegistry( ( xQueueHandle ) xMutex, ( signed portCHAR * ) "Recursive_Mutex" );


	if( xMutex != NULL )
	{
		xTaskCreate( prvRecursiveMutexControllingTask, ( signed portCHAR * ) "Rec1", configMINIMAL_STACK_SIZE, NULL, recmuCONTROLLING_TASK_PRIORITY, &xControllingTaskHandle );
        xTaskCreate( prvRecursiveMutexBlockingTask, ( signed portCHAR * ) "Rec2", configMINIMAL_STACK_SIZE, NULL, recmuBLOCKING_TASK_PRIORITY, &xBlockingTaskHandle );
        xTaskCreate( prvRecursiveMutexPollingTask, ( signed portCHAR * ) "Rec3", configMINIMAL_STACK_SIZE, NULL, recmuPOLLING_TASK_PRIORITY, NULL );
	}
}
/*-----------------------------------------------------------*/

static void prvRecursiveMutexControllingTask( void *pvParameters )
{
unsigned portBASE_TYPE ux;

	/* Just to remove compiler warning. */
	( void ) pvParameters;

	for( ;; )
	{
		/* Should not be able to 'give' the mutex, as we have not yet 'taken'
		it. */
		if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}

		for( ux = 0; ux < recmuMAX_COUNT; ux++ )
		{
			/* We should now be able to take the mutex as many times as
			we like.  A one tick delay is used so the polling task will
			inherit our priority on all but the first cycle of this task. 
			If we did not block attempting to receive the mutex then no
			priority inheritance would occur. */
			if( xSemaphoreTakeRecursive( xMutex, recmuTWO_TICK_DELAY ) != pdPASS )
			{
				xErrorOccurred = pdTRUE;
			}

			/* Ensure the other task attempting to access the mutex (and the
			other demo tasks) are able to execute. */
			vTaskDelay( recmuSHORT_DELAY );
		}

		/* For each time we took the mutex, give it back. */
		for( ux = 0; ux < recmuMAX_COUNT; ux++ )
		{
			/* Ensure the other task attempting to access the mutex (and the
			other demo tasks) are able to execute. */
			vTaskDelay( recmuSHORT_DELAY );

			/* We should now be able to give the mutex as many times as we
			took it. */
			if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
			{
				xErrorOccurred = pdTRUE;
			}
		}

		/* Having given it back the same number of times as it was taken, we
		should no longer be the mutex owner, so the next give sh ould fail. */
		if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}

		/* Keep count of the number of cycles this task has performed so a 
		stall can be detected. */
		uxControllingCycles++;

		/* Suspend ourselves to the blocking task can execute. */
		xControllingIsSuspended = pdTRUE;
		vTaskSuspend( NULL );
		xControllingIsSuspended = pdFALSE;
	}
}
/*-----------------------------------------------------------*/

static void prvRecursiveMutexBlockingTask( void *pvParameters )
{
	/* Just to remove compiler warning. */
	( void ) pvParameters;

	for( ;; )
	{
		/* Attempt to obtain the mutex.  We should block until the 
		controlling task has given up the mutex, and not actually execute
		past this call until the controlling task is suspended. */
		if( xSemaphoreTakeRecursive( xMutex, portMAX_DELAY ) == pdPASS )
		{
			if( xControllingIsSuspended != pdTRUE )
			{
				/* Did not expect to execute until the controlling task was
				suspended. */
				xErrorOccurred = pdTRUE;
			}
			else
			{
				/* Give the mutex back before suspending ourselves to allow
				the polling task to obtain the mutex. */
				if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
				{
					xErrorOccurred = pdTRUE;
				}

				xBlockingIsSuspended = pdTRUE;
				vTaskSuspend( NULL );
				xBlockingIsSuspended = pdFALSE;
			}
		}
		else
		{
			/* We should not leave the xSemaphoreTakeRecursive() function
			until the mutex was obtained. */
			xErrorOccurred = pdTRUE;
		}

		/* The controlling and blocking tasks should be in lock step. */
		if( uxControllingCycles != ( uxBlockingCycles + 1 ) )
		{
			xErrorOccurred = pdTRUE;
		}

		/* Keep count of the number of cycles this task has performed so a 
		stall can be detected. */
		uxBlockingCycles++;
	}
}
/*-----------------------------------------------------------*/

static void prvRecursiveMutexPollingTask( void *pvParameters )
{
	/* Just to remove compiler warning. */
	( void ) pvParameters;

	for( ;; )
	{
		/* Keep attempting to obtain the mutex.  We should only obtain it when
		the blocking task has suspended itself. */
		if( xSemaphoreTakeRecursive( xMutex, recmuNO_DELAY ) == pdPASS )
		{
			/* Is the blocking task suspended? */
			if( xBlockingIsSuspended != pdTRUE )
			{
				xErrorOccurred = pdTRUE;
			}
			else
			{
				/* Keep count of the number of cycles this task has performed so 
				a stall can be detected. */
				uxPollingCycles++;

				/* We can resume the other tasks here even though they have a
				higher priority than the polling task.  When they execute they
				will attempt to obtain the mutex but fail because the polling
				task is still the mutex holder.  The polling task (this task)
				will then inherit the higher priority. */				
				vTaskResume( xBlockingTaskHandle );
                vTaskResume( xControllingTaskHandle );
			
				/* Release the mutex, disinheriting the higher priority again. */
				if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
				{
					xErrorOccurred = pdTRUE;
				}
			}
		}

		#if configUSE_PREEMPTION == 0
		{
			taskYIELD();
		}
		#endif
	}
}
/*-----------------------------------------------------------*/

/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreRecursiveMutexTasksStillRunning( void )
{
portBASE_TYPE xReturn;
static unsigned portBASE_TYPE uxLastControllingCycles = 0, uxLastBlockingCycles = 0, uxLastPollingCycles = 0;

	/* Is the controlling task still cycling? */
	if( uxLastControllingCycles == uxControllingCycles )
	{
		xErrorOccurred = pdTRUE;
	}
	else
	{
		uxLastControllingCycles = uxControllingCycles;
	}

	/* Is the blocking task still cycling? */
	if( uxLastBlockingCycles == uxBlockingCycles )
	{
		xErrorOccurred = pdTRUE;
	}
	else
	{
		uxLastBlockingCycles = uxBlockingCycles;
	}

	/* Is the polling task still cycling? */
	if( uxLastPollingCycles == uxPollingCycles )
	{
		xErrorOccurred = pdTRUE;
	}
	else
	{
		uxLastPollingCycles = uxPollingCycles;
	}

	if( xErrorOccurred == pdTRUE )
	{
		xReturn = pdFAIL;
	}
	else
	{
		xReturn = pdTRUE;
	}

	return xReturn;
}