summaryrefslogtreecommitdiff
path: root/Demo/Common/ethernet/lwIP_130/contrib/port/FreeRTOS/ColdFire/MCF5225x_ethernetif.c
blob: d95690379c3d9d49528fd57619d144e93ee17e88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/*
 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
 * OF SUCH DAMAGE.
 *
 * This file is part of the lwIP TCP/IP stack.
 *
 * Author: Adam Dunkels <adam@sics.se>
 *
 */

/* Standard library includes. */
#include <stdio.h>
#include <string.h>

/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"

xTaskHandle xEthIntTask;

/* lwIP includes. */
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/sys.h"
#include "lwip/stats.h"
#include "lwip/snmp.h"
#include "netif/etharp.h"

/* Hardware includes. */
#include "fec.h"

/* Delay to wait for a DMA buffer to become available if one is not already
available. */
#define netifBUFFER_WAIT_ATTEMPTS					10
#define netifBUFFER_WAIT_DELAY						(10 / portTICK_RATE_MS)

/* Delay between polling the PHY to see if a link has been established. */
#define netifLINK_DELAY								( 500 / portTICK_RATE_MS )

/* Delay between looking for incoming packets.  In ideal world this would be
infinite. */
#define netifBLOCK_TIME_WAITING_FOR_INPUT			netifLINK_DELAY

/* Name for the netif. */
#define IFNAME0 'e'
#define IFNAME1 'n'

/* Hardware specific. */
#define netifFIRST_FEC_VECTOR						23

/*-----------------------------------------------------------*/

/* The DMA descriptors.  This is a char array to allow us to align it correctly. */
static unsigned portCHAR xFECTxDescriptors_unaligned[ ( configNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
static unsigned portCHAR xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
static FECBD *xFECTxDescriptors;
static FECBD *xFECRxDescriptors;

/* The DMA buffers.  These are char arrays to allow them to be alligned correctly. */
static unsigned portCHAR ucFECTxBuffers[ ( configNUM_FEC_TX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
static unsigned portCHAR ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxNextTxBuffer = 0;

/* Semaphore used by the FEC interrupt handler to wake the handler task. */
static xSemaphoreHandle xFecSemaphore;

#pragma options align= packed
struct ethernetif
{
  struct eth_addr *ethaddr;
  /* Add whatever per-interface state that is needed here. */
};

/*-----------------------------------------------------------*/

/* Standard lwIP netif handlers. */
static void prvInitialiseFECBuffers( void );
static void low_level_init( struct netif *netif );
static err_t low_level_output(struct netif *netif, struct pbuf *p);
static struct pbuf *low_level_input(struct netif *netif);
static void ethernetif_input( void *pParams );

/* Functions adapted from Freescale provided code. */
static int fec_mii_write( int phy_addr, int reg_addr, int data );
static int fec_mii_read( int phy_addr, int reg_addr, uint16* data );
static uint8 fec_hash_address( const uint8* addr );
static void fec_set_address( const uint8 *pa );
static void fec_irq_enable( void );

/*-----------------------------------------------------------*/

/********************************************************************/
/*
 * Write a value to a PHY's MII register.
 *
 * Parameters:
 *  ch          FEC channel
 *  phy_addr    Address of the PHY.
 *  reg_addr    Address of the register in the PHY.
 *  data        Data to be written to the PHY register.
 *
 * Return Values:
 *  0 on failure
 *  1 on success.
 *
 * Please refer to your PHY manual for registers and their meanings.
 * mii_write() polls for the FEC's MII interrupt event and clears it. 
 * If after a suitable amount of time the event isn't triggered, a 
 * value of 0 is returned.
 */
static int fec_mii_write( int phy_addr, int reg_addr, int data )
{
int timeout;
uint32 eimr;

	/* Clear the MII interrupt bit */
	MCF_FEC_EIR = MCF_FEC_EIR_MII;

	/* Mask the MII interrupt */
	eimr = MCF_FEC_EIMR;
	MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;

	/* Write to the MII Management Frame Register to kick-off the MII write */
	MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );

	/* Poll for the MII interrupt (interrupt should be masked) */
	for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
	{
		if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
		{
			break;
		}
	}

	if( timeout == MII_TIMEOUT )
	{
		return 0;
	}

	/* Clear the MII interrupt bit */
	MCF_FEC_EIR = MCF_FEC_EIR_MII;

	/* Restore the EIMR */
	MCF_FEC_EIMR = eimr;

	return 1;
}

/********************************************************************/
/*
 * Read a value from a PHY's MII register.
 *
 * Parameters:
 *  ch          FEC channel
 *  phy_addr    Address of the PHY.
 *  reg_addr    Address of the register in the PHY.
 *  data        Pointer to storage for the Data to be read
 *              from the PHY register (passed by reference)
 *
 * Return Values:
 *  0 on failure
 *  1 on success.
 *
 * Please refer to your PHY manual for registers and their meanings.
 * mii_read() polls for the FEC's MII interrupt event and clears it. 
 * If after a suitable amount of time the event isn't triggered, a 
 * value of 0 is returned.
 */
static int fec_mii_read( int phy_addr, int reg_addr, uint16* data )
{
int timeout;
uint32 eimr;

	/* Clear the MII interrupt bit */
	MCF_FEC_EIR = MCF_FEC_EIR_MII;

	/* Mask the MII interrupt */
	eimr = MCF_FEC_EIMR;
	MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;

	/* Write to the MII Management Frame Register to kick-off the MII read */
	MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;

	/* Poll for the MII interrupt (interrupt should be masked) */
	for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
	{
		if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
		{
			break;
		}
	}

	if(timeout == MII_TIMEOUT)
	{
		return 0;
	}

	/* Clear the MII interrupt bit */
	MCF_FEC_EIR = MCF_FEC_EIR_MII;

	/* Restore the EIMR */
	MCF_FEC_EIMR = eimr;

	*data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);

	return 1;
}


/********************************************************************/
/*
 * Generate the hash table settings for the given address
 *
 * Parameters:
 *  addr    48-bit (6 byte) Address to generate the hash for
 *
 * Return Value:
 *  The 6 most significant bits of the 32-bit CRC result
 */
static uint8 fec_hash_address( const uint8* addr )
{
uint32 crc;
uint8 byte;
int i, j;

	crc = 0xFFFFFFFF;
	for(i=0; i<6; ++i)
	{
		byte = addr[i];
		for(j=0; j<8; ++j)
		{
			if((byte & 0x01)^(crc & 0x01))
			{
				crc >>= 1;
				crc = crc ^ 0xEDB88320;
			}
			else
			{
				crc >>= 1;
			}

			byte >>= 1;
		}
	}

	return (uint8)(crc >> 26);
}

/********************************************************************/
/*
 * Set the Physical (Hardware) Address and the Individual Address
 * Hash in the selected FEC
 *
 * Parameters:
 *  ch  FEC channel
 *  pa  Physical (Hardware) Address for the selected FEC
 */
static void fec_set_address( const uint8 *pa )
{
	uint8 crc;

	/*
	* Set the Physical Address
	*/
	MCF_FEC_PALR = (uint32)((pa[0]<<24) | (pa[1]<<16) | (pa[2]<<8) | pa[3]);
	MCF_FEC_PAUR = (uint32)((pa[4]<<24) | (pa[5]<<16));

	/*
	* Calculate and set the hash for given Physical Address
	* in the  Individual Address Hash registers
	*/
	crc = fec_hash_address(pa);
	if(crc >= 32)
	{
		MCF_FEC_IAUR |= (uint32)(1 << (crc - 32));
	}
	else
	{
		MCF_FEC_IALR |= (uint32)(1 << crc);
	}
}


/********************************************************************/
/*
 * Enable interrupts on the selected FEC
 *
 */
static void fec_irq_enable( void )
{
int fec_vbase;

#if INTC_LVL_FEC > configMAX_SYSCALL_INTERRUPT_PRIORITY
	#error INTC_LVL_FEC must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
#endif

	fec_vbase = 64 + netifFIRST_FEC_VECTOR;
    
	/* Enable FEC interrupts to the ColdFire core 
	 * Setup each ICR with a unique interrupt level combination */
	fec_vbase -= 64;

	/* FEC Rx Frame */
	MCF_INTC0_ICR(fec_vbase+4)  = MCF_INTC_ICR_IL(INTC_LVL_FEC);

	/* FEC Rx Buffer */                              
	MCF_INTC0_ICR(fec_vbase+5)  = MCF_INTC_ICR_IL(INTC_LVL_FEC);

	/* FEC FIFO Underrun */                              
	MCF_INTC0_ICR(fec_vbase+2)  = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);

	/* FEC Collision Retry Limit */                              
	MCF_INTC0_ICR(fec_vbase+3)  = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);

	/* FEC Late Collision */                                 
	MCF_INTC0_ICR(fec_vbase+7)  = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);

	/* FEC Heartbeat Error */                                
	MCF_INTC0_ICR(fec_vbase+8)  = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);

	/* FEC Bus Error */                              
	MCF_INTC0_ICR(fec_vbase+10) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);

	/* FEC Babbling Transmit */                              
	MCF_INTC0_ICR(fec_vbase+11) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);

	/* FEC Babbling Receive */                               
	MCF_INTC0_ICR(fec_vbase+12) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
                                 
	/* Enable the FEC interrupts in the mask register */    
	MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
	MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27 | MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30 | MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_MASKALL );

    /* Clear any pending FEC interrupt events */
    MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;

    /* Unmask all FEC interrupts */
    MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
}

/**
 * In this function, the hardware should be initialized.
 * Called from ethernetif_init().
 *
 * @param netif the already initialized lwip network interface structure
 *        for this ethernetif
 */
static void low_level_init( struct netif *netif )
{
unsigned portSHORT usData;
const unsigned portCHAR ucMACAddress[6] = 
{
	configMAC_0, configMAC_1,configMAC_2,configMAC_3,configMAC_4,configMAC_5
};

	prvInitialiseFECBuffers();
	vSemaphoreCreateBinary( xFecSemaphore );
	
	for( usData = 0; usData < 6; usData++ )
	{
		netif->hwaddr[ usData ] = ucMACAddress[ usData ];
	}

	/* Set the Reset bit and clear the Enable bit */
	MCF_FEC_ECR = MCF_FEC_ECR_RESET;

	/* Wait at least 8 clock cycles */
	for( usData = 0; usData < 10; usData++ )
	{
		asm( "NOP" );
	}

	/* Set MII speed to 2.5MHz. */
	MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 );

	/*
	 * Make sure the external interface signals are enabled
	 */
	MCF_GPIO_PNQPAR = MCF_GPIO_PNQPAR_IRQ3_FEC_MDIO	| MCF_GPIO_PNQPAR_IRQ5_FEC_MDC;


    MCF_GPIO_PTIPAR = MCF_GPIO_PTIPAR_FEC_COL_FEC_COL			
					| MCF_GPIO_PTIPAR_FEC_CRS_FEC_CRS			
					| MCF_GPIO_PTIPAR_FEC_RXCLK_FEC_RXCLK		
					| MCF_GPIO_PTIPAR_FEC_RXD0_FEC_RXD0			
					| MCF_GPIO_PTIPAR_FEC_RXD1_FEC_RXD1			
					| MCF_GPIO_PTIPAR_FEC_RXD2_FEC_RXD2			
					| MCF_GPIO_PTIPAR_FEC_RXD3_FEC_RXD3			
					| MCF_GPIO_PTIPAR_FEC_RXDV_FEC_RXDV;		

	MCF_GPIO_PTJPAR = MCF_GPIO_PTJPAR_FEC_RXER_FEC_RXER			
					| MCF_GPIO_PTJPAR_FEC_TXCLK_FEC_TXCLK		
					| MCF_GPIO_PTJPAR_FEC_TXD0_FEC_TXD0			
					| MCF_GPIO_PTJPAR_FEC_TXD1_FEC_TXD1			
					| MCF_GPIO_PTJPAR_FEC_TXD2_FEC_TXD2			
					| MCF_GPIO_PTJPAR_FEC_TXD3_FEC_TXD3			
					| MCF_GPIO_PTJPAR_FEC_TXEN_FEC_TXEN			
					| MCF_GPIO_PTJPAR_FEC_TXER_FEC_TXER;		


	/* Can we talk to the PHY? */
	do
	{
		vTaskDelay( netifLINK_DELAY );
		usData = 0;
		fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );

	} while( ( usData == 0xffff ) || ( usData == 0 ) );

	/* Start auto negotiate. */
	fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );

	/* Wait for auto negotiate to complete. */
	do
	{
		vTaskDelay( netifLINK_DELAY );
		fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );

	} while( !( usData & PHY_BMSR_AN_COMPLETE ) );

	/* When we get here we have a link - find out what has been negotiated. */
	fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
	
	if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
	{
		/* Speed is 100. */
	}
	else
	{
		/* Speed is 10. */
	}

	if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
	{
		/* Full duplex. */
		MCF_FEC_RCR &= (uint32)~MCF_FEC_RCR_DRT;
		MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
	}
	else
	{
		MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
		MCF_FEC_TCR &= (uint32)~MCF_FEC_TCR_FDEN;
	}
	
	/* Clear the Individual and Group Address Hash registers */
	MCF_FEC_IALR = 0;
	MCF_FEC_IAUR = 0;
	MCF_FEC_GALR = 0;
	MCF_FEC_GAUR = 0;

	/* Set the Physical Address for the selected FEC */
	fec_set_address( ucMACAddress );

	/* Set Rx Buffer Size */
	MCF_FEC_EMRBR = (uint16)configFEC_BUFFER_SIZE;

	/* Point to the start of the circular Rx buffer descriptor queue */
	MCF_FEC_ERDSR = ( volatile unsigned portLONG ) &( xFECRxDescriptors[ 0 ] );

	/* Point to the start of the circular Tx buffer descriptor queue */
	MCF_FEC_ETSDR = ( volatile unsigned portLONG ) &( xFECTxDescriptors[ 0 ] );

	/* Mask all FEC interrupts */
	MCF_FEC_EIMR = MCF_FEC_EIMR_MASK_ALL;

	/* Clear all FEC interrupt events */
	MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;

	/* Initialize the Receive Control Register */
	MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;

	MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;

	#if( configUSE_PROMISCUOUS_MODE == 1 )
	{
		MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
	}
	#endif

	/* Create the task that handles the EMAC. */
	xTaskCreate( ethernetif_input, ( signed portCHAR * ) "ETH_INT", configETHERNET_INPUT_TASK_STACK_SIZE, (void *)netif, configETHERNET_INPUT_TASK_PRIORITY, &xEthIntTask );
	
	fec_irq_enable();
	MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
	MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;	
}

/**
 * This function should do the actual transmission of the packet. The packet is
 * contained in the pbuf that is passed to the function. This pbuf
 * might be chained.
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
 * @return ERR_OK if the packet could be sent
 *         an err_t value if the packet couldn't be sent
 *
 * @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
 *       strange results. You might consider waiting for space in the DMA queue
 *       to become availale since the stack doesn't retry to send a packet
 *       dropped because of memory failure (except for the TCP timers).
 */
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
u32_t l = 0;
unsigned portCHAR *pcTxData = NULL;
portBASE_TYPE i;

	( void ) netif;

	#if ETH_PAD_SIZE
	  pbuf_header(p, -ETH_PAD_SIZE);			/* drop the padding word */
	#endif

	/* Get a DMA buffer into which we can write the data to send. */
	for( i = 0; i < netifBUFFER_WAIT_ATTEMPTS; i++ )
	{
		if( xFECTxDescriptors[ uxNextTxBuffer ].status & TX_BD_R )
		{
			/* Wait for the buffer to become available. */
			vTaskDelay( netifBUFFER_WAIT_DELAY );
		}
		else
		{
			pcTxData = xFECTxDescriptors[ uxNextTxBuffer ].data;
			break;
		}
	}

	if( pcTxData == NULL ) 
	{
		/* For break point only. */
		portNOP();

		return ERR_BUF;
	}
	else 
	{
		for( q = p; q != NULL; q = q->next ) 
		{
			/* Send the data from the pbuf to the interface, one pbuf at a
			time. The size of the data in each pbuf is kept in the ->len
			variable. */
			memcpy( &pcTxData[l], (u8_t*)q->payload, q->len );
			l += q->len;
		}
	}

	/* Setup the buffer descriptor for transmission */
	xFECTxDescriptors[ uxNextTxBuffer ].length = l;//nbuf->length + ETH_HDR_LEN;
	xFECTxDescriptors[ uxNextTxBuffer ].status |= (TX_BD_R | TX_BD_L);

	/* Continue the Tx DMA task (in case it was waiting for a new TxBD) */
	MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;

	uxNextTxBuffer++;
	if( uxNextTxBuffer >= configNUM_FEC_TX_BUFFERS )
	{
		uxNextTxBuffer = 0;
	}

	#if ETH_PAD_SIZE
		pbuf_header(p, ETH_PAD_SIZE);			/* reclaim the padding word */
	#endif

	LINK_STATS_INC(link.xmit);

	return ERR_OK;
}

/**
 * Should allocate a pbuf and transfer the bytes of the incoming
 * packet from the interface into the pbuf.
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @return a pbuf filled with the received packet (including MAC header)
 *         NULL on memory error
 */
static struct pbuf *low_level_input(struct netif *netif)
{
struct pbuf *p, *q;
u16_t len, l;

	( void ) netif;

	l = 0;
	p = NULL;

	/* Obtain the size of the packet and put it into the "len" variable. */
	len = xFECRxDescriptors[ uxNextRxBuffer ].length;

	if( ( len != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
	{
		#if ETH_PAD_SIZE
			len += ETH_PAD_SIZE;						/* allow room for Ethernet padding */
		#endif

		/* We allocate a pbuf chain of pbufs from the pool. */
		p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);

		if (p != NULL) 
		{

			#if ETH_PAD_SIZE
					pbuf_header(p, -ETH_PAD_SIZE);			/* drop the padding word */
			#endif

			/* We iterate over the pbuf chain until we have read the entire
			 * packet into the pbuf. */
			for(q = p; q != NULL; q = q->next) 
			{
				/* Read enough bytes to fill this pbuf in the chain. The
				 * available data in the pbuf is given by the q->len
				 * variable. */
				memcpy((u8_t*)q->payload, &(xFECRxDescriptors[ uxNextRxBuffer ].data[l]), q->len);
				l = l + q->len;
			}


			#if ETH_PAD_SIZE
				pbuf_header(p, ETH_PAD_SIZE);			/* reclaim the padding word */
			#endif

			LINK_STATS_INC(link.recv);

		} 
		else 
		{

			LINK_STATS_INC(link.memerr);
			LINK_STATS_INC(link.drop);

		} /* End else */
		
		
		/* Free the descriptor. */
		xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
		MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
		
		uxNextRxBuffer++;
		if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
		{
			uxNextRxBuffer = 0;
		}		
		
	} /* End if */

	return p;
}

/**
 * This function should be called when a packet is ready to be read
 * from the interface. It uses the function low_level_input() that
 * should handle the actual reception of bytes from the network
 * interface.Then the type of the received packet is determined and
 * the appropriate input function is called.
 *
 * @param netif the lwip network interface structure for this ethernetif
 */

static void ethernetif_input( void *pParams )
{
struct netif *netif;
struct ethernetif *ethernetif;
struct eth_hdr *ethhdr;
struct pbuf *p;

	netif = (struct netif*) pParams;
	ethernetif = netif->state;

	for( ;; )
	{
		do
		{

			/* move received packet into a new pbuf */
			p = low_level_input( netif );

			if( p == NULL )
			{
				/* No packet could be read.  Wait a for an interrupt to tell us
				there is more data available. */
				xSemaphoreTake( xFecSemaphore, netifBLOCK_TIME_WAITING_FOR_INPUT );
			}

		} while( p == NULL );

		/* points to packet payload, which starts with an Ethernet header */
		ethhdr = p->payload;

		switch (htons(ethhdr->type)) {
			/* IP or ARP packet? */

		case ETHTYPE_IP:

			pbuf_header( p, (s16_t)-sizeof(struct eth_hdr) );

			/* full packet send to tcpip_thread to process */
			if (netif->input(p, netif) != ERR_OK)
			{
				LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n"));
				pbuf_free(p);
				p = NULL;
			}
			break;

		case ETHTYPE_ARP:

			#if ETHARP_TRUST_IP_MAC
				etharp_ip_input(netif, p);
			#endif

			etharp_arp_input(netif, ethernetif->ethaddr, p);
			break;

		default:
			pbuf_free(p);
			p = NULL;
			break;
		}
	}
}

/**
 * Should be called at the beginning of the program to set up the
 * network interface. It calls the function low_level_init() to do the
 * actual setup of the hardware.
 *
 * This function should be passed as a parameter to netif_add().
 *
 * @param netif the lwip network interface structure for this ethernetif
 * @return ERR_OK if the loopif is initialized
 *         ERR_MEM if private data couldn't be allocated
 *         any other err_t on error
 */
err_t ethernetif_init(struct netif *netif)
{
	struct ethernetif *ethernetif;

	LWIP_ASSERT("netif != NULL", (netif != NULL));

	ethernetif = mem_malloc(sizeof(struct ethernetif));

	if (ethernetif == NULL)
	{
		LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_init: out of memory\n"));
		return ERR_MEM;
	}

	#if LWIP_NETIF_HOSTNAME
	/* Initialize interface hostname */
	netif->hostname = "lwip";
	#endif /* LWIP_NETIF_HOSTNAME */

	/*
	* Initialize the snmp variables and counters inside the struct netif.
	* The last argument should be replaced with your link speed, in units
	* of bits per second.
	*/
	NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, 100);

	netif->state = ethernetif;
	netif->name[0] = IFNAME0;
	netif->name[1] = IFNAME1;

	/* We directly use etharp_output() here to save a function call.
	* You can instead declare your own function an call etharp_output()
	* from it if you have to do some checks before sending (e.g. if link
	* is available...)
	*/
	netif->output = etharp_output;
	netif->linkoutput = low_level_output;

	ethernetif->ethaddr = (struct eth_addr *)&(netif->hwaddr[0]);

	low_level_init(netif);

	return ERR_OK;
}
/*-----------------------------------------------------------*/

static void prvInitialiseFECBuffers( void )
{
unsigned portBASE_TYPE ux;
unsigned portCHAR *pcBufPointer;

	pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
	while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
	{
		pcBufPointer++;
	}
	
	xFECTxDescriptors = ( FECBD * ) pcBufPointer;
	
	pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
	while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
	{
		pcBufPointer++;
	}
	
	xFECRxDescriptors = ( FECBD * ) pcBufPointer;


	/* Setup the buffers and descriptors. */
	pcBufPointer = &( ucFECTxBuffers[ 0 ] );
	while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
	{
		pcBufPointer++;
	}

	for( ux = 0; ux < configNUM_FEC_TX_BUFFERS; ux++ )
	{
		xFECTxDescriptors[ ux ].status = TX_BD_TC;
		xFECTxDescriptors[ ux ].data = pcBufPointer;
		pcBufPointer += configFEC_BUFFER_SIZE;
		xFECTxDescriptors[ ux ].length = 0;
	}

	pcBufPointer = &( ucFECRxBuffers[ 0 ] );
	while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
	{
		pcBufPointer++;
	}
	
	for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
	{
	    xFECRxDescriptors[ ux ].status = RX_BD_E;
	    xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
	    xFECRxDescriptors[ ux ].data = pcBufPointer;
	    pcBufPointer += configFEC_BUFFER_SIZE;
	}

	/* Set the wrap bit in the last descriptors to form a ring. */
	xFECTxDescriptors[ configNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
	xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;

	uxNextRxBuffer = 0;
	uxNextTxBuffer = 0;
}
/*-----------------------------------------------------------*/

__declspec(interrupt:0) void vFECISRHandler( void )
{
unsigned portLONG ulEvent;
portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
   
	ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
	MCF_FEC_EIR = ulEvent;

	if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
	{
		/* A packet has been received.  Wake the handler task. */
		xSemaphoreGiveFromISR( xFecSemaphore, &xHighPriorityTaskWoken );
	}

	if (ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
	{
		/* Sledge hammer error handling. */
		prvInitialiseFECBuffers();
		MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
	}

	portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
}