summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEkaterina Romanova <katya_romanova@playstation.sony.com>2013-11-21 23:21:26 +0000
committerEkaterina Romanova <katya_romanova@playstation.sony.com>2013-11-21 23:21:26 +0000
commit46f7257ed1bbd2a169f6c930a805e702407d955b (patch)
tree35e063ff39eb0d44f13c7e126c9e964902fb49b4
parent934d1f83aecf8f01646f4b2a09167309a4c1bb8d (diff)
downloadllvm-46f7257ed1bbd2a169f6c930a805e702407d955b.tar.gz
llvm-46f7257ed1bbd2a169f6c930a805e702407d955b.tar.bz2
llvm-46f7257ed1bbd2a169f6c930a805e702407d955b.tar.xz
SHLD/SHRD are VectorPath (microcode) instructions known to have poor latency on certain architectures. While generating SHLD/SHRD instructions is acceptable when optimizing for size, optimizing for speed on these platforms should be implemented using alternative sequences of instructions composed of add, adc, shr, shl, or and lea which are directPath instructions. These alternative instructions not only have a lower latency but they also increase the decode bandwidth by allowing simultaneous decoding of a third directPath instruction.
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size. It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195383 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/X86/X86.td45
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp12
-rw-r--r--lib/Target/X86/X86Subtarget.cpp10
-rw-r--r--lib/Target/X86/X86Subtarget.h4
-rw-r--r--test/CodeGen/X86/x86-64-double-precision-shift-left.ll77
-rw-r--r--test/CodeGen/X86/x86-64-double-precision-shift-right.ll74
-rw-r--r--test/CodeGen/X86/x86-64-double-shifts-Oz-Os-O2.ll67
-rw-r--r--test/CodeGen/X86/x86-64-double-shifts-var.ll57
8 files changed, 328 insertions, 18 deletions
diff --git a/lib/Target/X86/X86.td b/lib/Target/X86/X86.td
index 65c5552de2..ebe1a82626 100644
--- a/lib/Target/X86/X86.td
+++ b/lib/Target/X86/X86.td
@@ -73,6 +73,8 @@ def FeatureCMPXCHG16B : SubtargetFeature<"cx16", "HasCmpxchg16b", "true",
[Feature64Bit]>;
def FeatureSlowBTMem : SubtargetFeature<"slow-bt-mem", "IsBTMemSlow", "true",
"Bit testing of memory is slow">;
+def FeatureSlowSHLD : SubtargetFeature<"slow-shld", "IsSHLDSlow", "true",
+ "SHLD instruction is slow">;
def FeatureFastUAMem : SubtargetFeature<"fast-unaligned-mem",
"IsUAMemFast", "true",
"Fast unaligned memory access">;
@@ -268,46 +270,53 @@ def : ProcessorModel<"knl", HaswellModel,
def : Proc<"k6", [FeatureMMX]>;
def : Proc<"k6-2", [Feature3DNow]>;
def : Proc<"k6-3", [Feature3DNow]>;
-def : Proc<"athlon", [Feature3DNowA, FeatureSlowBTMem]>;
-def : Proc<"athlon-tbird", [Feature3DNowA, FeatureSlowBTMem]>;
-def : Proc<"athlon-4", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem]>;
-def : Proc<"athlon-xp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem]>;
-def : Proc<"athlon-mp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem]>;
+def : Proc<"athlon", [Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-tbird", [Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-4", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-xp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
+def : Proc<"athlon-mp", [FeatureSSE1, Feature3DNowA, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
def : Proc<"k8", [FeatureSSE2, Feature3DNowA, Feature64Bit,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"opteron", [FeatureSSE2, Feature3DNowA, Feature64Bit,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"athlon64", [FeatureSSE2, Feature3DNowA, Feature64Bit,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"athlon-fx", [FeatureSSE2, Feature3DNowA, Feature64Bit,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"k8-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"opteron-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"athlon64-sse3", [FeatureSSE3, Feature3DNowA, FeatureCMPXCHG16B,
- FeatureSlowBTMem]>;
+ FeatureSlowBTMem, FeatureSlowSHLD]>;
def : Proc<"amdfam10", [FeatureSSE4A,
Feature3DNowA, FeatureCMPXCHG16B, FeatureLZCNT,
- FeaturePOPCNT, FeatureSlowBTMem]>;
+ FeaturePOPCNT, FeatureSlowBTMem,
+ FeatureSlowSHLD]>;
// Bobcat
def : Proc<"btver1", [FeatureSSSE3, FeatureSSE4A, FeatureCMPXCHG16B,
- FeaturePRFCHW, FeatureLZCNT, FeaturePOPCNT]>;
+ FeaturePRFCHW, FeatureLZCNT, FeaturePOPCNT,
+ FeatureSlowSHLD]>;
// Jaguar
def : Proc<"btver2", [FeatureAVX, FeatureSSE4A, FeatureCMPXCHG16B,
FeaturePRFCHW, FeatureAES, FeaturePCLMUL,
FeatureBMI, FeatureF16C, FeatureMOVBE,
- FeatureLZCNT, FeaturePOPCNT]>;
+ FeatureLZCNT, FeaturePOPCNT, FeatureSlowSHLD]>;
// Bulldozer
def : Proc<"bdver1", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
- FeatureLZCNT, FeaturePOPCNT]>;
+ FeatureLZCNT, FeaturePOPCNT, FeatureSlowSHLD]>;
// Piledriver
def : Proc<"bdver2", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
FeatureAES, FeaturePRFCHW, FeaturePCLMUL,
FeatureF16C, FeatureLZCNT,
- FeaturePOPCNT, FeatureBMI, FeatureTBM,
- FeatureFMA]>;
+ FeaturePOPCNT, FeatureBMI, FeatureTBM,
+ FeatureFMA, FeatureSlowSHLD]>;
// Steamroller
def : Proc<"bdver3", [FeatureXOP, FeatureFMA4, FeatureCMPXCHG16B,
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index ec5ae33ef5..23910a350e 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -17892,6 +17892,18 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
return SDValue();
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool OptForSize = MF.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
+
+ // SHLD/SHRD instructions have lower register pressure, but on some
+ // platforms they have higher latency than the equivalent
+ // series of shifts/or that would otherwise be generated.
+ // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
+ // have higer latencies and we are not optimizing for size.
+ if (!OptForSize && Subtarget->isSHLDSlow())
+ return SDValue();
+
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp
index 05db662b2c..fa04c38a85 100644
--- a/lib/Target/X86/X86Subtarget.cpp
+++ b/lib/Target/X86/X86Subtarget.cpp
@@ -263,6 +263,15 @@ void X86Subtarget::AutoDetectSubtargetFeatures() {
ToggleFeature(X86::FeatureSlowBTMem);
}
+ // Determine if SHLD/SHRD instructions have higher latency then the
+ // equivalent series of shifts/or instructions.
+ // FIXME: Add Intel's processors that have SHLD instructions with very
+ // poor latency.
+ if (IsAMD) {
+ IsSHLDSlow = true;
+ ToggleFeature(X86::FeatureSlowSHLD);
+ }
+
// If it's an Intel chip since Nehalem and not an Atom chip, unaligned
// memory access is fast. We hard code model numbers here because they
// aren't strictly increasing for Intel chips it seems.
@@ -514,6 +523,7 @@ void X86Subtarget::initializeEnvironment() {
HasPRFCHW = false;
HasRDSEED = false;
IsBTMemSlow = false;
+ IsSHLDSlow = false;
IsUAMemFast = false;
HasVectorUAMem = false;
HasCmpxchg16b = false;
diff --git a/lib/Target/X86/X86Subtarget.h b/lib/Target/X86/X86Subtarget.h
index dd8c0811ce..cddd9d898e 100644
--- a/lib/Target/X86/X86Subtarget.h
+++ b/lib/Target/X86/X86Subtarget.h
@@ -142,6 +142,9 @@ protected:
/// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
bool IsBTMemSlow;
+ /// IsSHLDSlow - True if SHLD instructions are slow.
+ bool IsSHLDSlow;
+
/// IsUAMemFast - True if unaligned memory access is fast.
bool IsUAMemFast;
@@ -292,6 +295,7 @@ public:
bool hasPRFCHW() const { return HasPRFCHW; }
bool hasRDSEED() const { return HasRDSEED; }
bool isBTMemSlow() const { return IsBTMemSlow; }
+ bool isSHLDSlow() const { return IsSHLDSlow; }
bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
bool hasVectorUAMem() const { return HasVectorUAMem; }
bool hasCmpxchg16b() const { return HasCmpxchg16b; }
diff --git a/test/CodeGen/X86/x86-64-double-precision-shift-left.ll b/test/CodeGen/X86/x86-64-double-precision-shift-left.ll
new file mode 100644
index 0000000000..f2380f23b8
--- /dev/null
+++ b/test/CodeGen/X86/x86-64-double-precision-shift-left.ll
@@ -0,0 +1,77 @@
+; RUN: llc < %s -march=x86-64 -mcpu=bdver1 | FileCheck %s
+; Verify that for the architectures that are known to have poor latency
+; double precision shift instructions we generate alternative sequence
+; of instructions with lower latencies instead of shld instruction.
+
+;uint64_t lshift1(uint64_t a, uint64_t b)
+;{
+; return (a << 1) | (b >> 63);
+;}
+
+; CHECK: lshift1:
+; CHECK: addq {{.*}},{{.*}}
+; CHECK-NEXT: shrq $63, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+
+define i64 @lshift1(i64 %a, i64 %b) nounwind readnone uwtable {
+entry:
+ %shl = shl i64 %a, 1
+ %shr = lshr i64 %b, 63
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+;uint64_t lshift2(uint64_t a, uint64_t b)
+;{
+; return (a << 2) | (b >> 62);
+;}
+
+; CHECK: lshift2:
+; CHECK: shlq $2, {{.*}}
+; CHECK-NEXT: shrq $62, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+define i64 @lshift2(i64 %a, i64 %b) nounwind readnone uwtable {
+entry:
+ %shl = shl i64 %a, 2
+ %shr = lshr i64 %b, 62
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+;uint64_t lshift7(uint64_t a, uint64_t b)
+;{
+; return (a << 7) | (b >> 57);
+;}
+
+; CHECK: lshift7:
+; CHECK: shlq $7, {{.*}}
+; CHECK-NEXT: shrq $57, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+define i64 @lshift7(i64 %a, i64 %b) nounwind readnone uwtable {
+entry:
+ %shl = shl i64 %a, 7
+ %shr = lshr i64 %b, 57
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+;uint64_t lshift63(uint64_t a, uint64_t b)
+;{
+; return (a << 63) | (b >> 1);
+;}
+
+; CHECK: lshift63:
+; CHECK: shlq $63, {{.*}}
+; CHECK-NEXT: shrq {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+define i64 @lshift63(i64 %a, i64 %b) nounwind readnone uwtable {
+entry:
+ %shl = shl i64 %a, 63
+ %shr = lshr i64 %b, 1
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
diff --git a/test/CodeGen/X86/x86-64-double-precision-shift-right.ll b/test/CodeGen/X86/x86-64-double-precision-shift-right.ll
new file mode 100644
index 0000000000..5edaad89df
--- /dev/null
+++ b/test/CodeGen/X86/x86-64-double-precision-shift-right.ll
@@ -0,0 +1,74 @@
+; RUN: llc < %s -march=x86-64 -mcpu=bdver1 | FileCheck %s
+; Verify that for the architectures that are known to have poor latency
+; double precision shift instructions we generate alternative sequence
+; of instructions with lower latencies instead of shrd instruction.
+
+;uint64_t rshift1(uint64_t a, uint64_t b)
+;{
+; return (a >> 1) | (b << 63);
+;}
+
+; CHECK: rshift1:
+; CHECK: shrq {{.*}}
+; CHECK-NEXT: shlq $63, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+define i64 @rshift1(i64 %a, i64 %b) nounwind readnone uwtable {
+ %1 = lshr i64 %a, 1
+ %2 = shl i64 %b, 63
+ %3 = or i64 %2, %1
+ ret i64 %3
+}
+
+;uint64_t rshift2(uint64_t a, uint64_t b)
+;{
+; return (a >> 2) | (b << 62);
+;}
+
+; CHECK: rshift2:
+; CHECK: shrq $2, {{.*}}
+; CHECK-NEXT: shlq $62, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+
+define i64 @rshift2(i64 %a, i64 %b) nounwind readnone uwtable {
+ %1 = lshr i64 %a, 2
+ %2 = shl i64 %b, 62
+ %3 = or i64 %2, %1
+ ret i64 %3
+}
+
+;uint64_t rshift7(uint64_t a, uint64_t b)
+;{
+; return (a >> 7) | (b << 57);
+;}
+
+; CHECK: rshift7:
+; CHECK: shrq $7, {{.*}}
+; CHECK-NEXT: shlq $57, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+
+
+define i64 @rshift7(i64 %a, i64 %b) nounwind readnone uwtable {
+ %1 = lshr i64 %a, 7
+ %2 = shl i64 %b, 57
+ %3 = or i64 %2, %1
+ ret i64 %3
+}
+
+;uint64_t rshift63(uint64_t a, uint64_t b)
+;{
+; return (a >> 63) | (b << 1);
+;}
+
+; CHECK: rshift63:
+; CHECK: shrq $63, {{.*}}
+; CHECK-NEXT: leaq ({{.*}},{{.*}}), {{.*}}
+; CHECK-NEXT: orq {{.*}}, {{.*}}
+
+define i64 @rshift63(i64 %a, i64 %b) nounwind readnone uwtable {
+ %1 = lshr i64 %a, 63
+ %2 = shl i64 %b, 1
+ %3 = or i64 %2, %1
+ ret i64 %3
+}
diff --git a/test/CodeGen/X86/x86-64-double-shifts-Oz-Os-O2.ll b/test/CodeGen/X86/x86-64-double-shifts-Oz-Os-O2.ll
new file mode 100644
index 0000000000..5d7a10b590
--- /dev/null
+++ b/test/CodeGen/X86/x86-64-double-shifts-Oz-Os-O2.ll
@@ -0,0 +1,67 @@
+; RUN: llc < %s -march=x86-64 -mcpu=bdver1 | FileCheck %s
+
+; clang -Oz -c test1.cpp -emit-llvm -S -o
+; Verify that we generate shld insruction when we are optimizing for size,
+; even for X86_64 processors that are known to have poor latency double
+; precision shift instuctions.
+; uint64_t lshift10(uint64_t a, uint64_t b)
+; {
+; return (a << 10) | (b >> 54);
+; }
+
+; Function Attrs: minsize nounwind optsize readnone uwtable
+define i64 @_Z8lshift10mm(i64 %a, i64 %b) #0 {
+entry:
+; CHECK: shldq $10
+ %shl = shl i64 %a, 10
+ %shr = lshr i64 %b, 54
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+attributes #0 = { minsize nounwind optsize readnone uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
+
+
+; clang -Os -c test2.cpp -emit-llvm -S
+; Verify that we generate shld insruction when we are optimizing for size,
+; even for X86_64 processors that are known to have poor latency double
+; precision shift instuctions.
+; uint64_t lshift11(uint64_t a, uint64_t b)
+; {
+; return (a << 11) | (b >> 53);
+; }
+
+; Function Attrs: nounwind optsize readnone uwtable
+define i64 @_Z8lshift11mm(i64 %a, i64 %b) #1 {
+entry:
+; CHECK: shldq $11
+ %shl = shl i64 %a, 11
+ %shr = lshr i64 %b, 53
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+attributes #1 = { nounwind optsize readnone uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
+
+; clang -O2 -c test2.cpp -emit-llvm -S
+; Verify that we do not generate shld insruction when we are not optimizing
+; for size for X86_64 processors that are known to have poor latency double
+; precision shift instuctions.
+; uint64_t lshift12(uint64_t a, uint64_t b)
+; {
+; return (a << 12) | (b >> 52);
+; }
+
+; Function Attrs: nounwind optsize readnone uwtable
+define i64 @_Z8lshift12mm(i64 %a, i64 %b) #2 {
+entry:
+; CHECK: shlq $12
+; CHECK-NEXT: shrq $52
+ %shl = shl i64 %a, 12
+ %shr = lshr i64 %b, 52
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+attributes #2= { nounwind readnone uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
+
diff --git a/test/CodeGen/X86/x86-64-double-shifts-var.ll b/test/CodeGen/X86/x86-64-double-shifts-var.ll
new file mode 100644
index 0000000000..5bab434ae6
--- /dev/null
+++ b/test/CodeGen/X86/x86-64-double-shifts-var.ll
@@ -0,0 +1,57 @@
+; RUN: llc < %s -march=x86-64 -mcpu=athlon | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon-tbird | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon-4 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon-xp | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon-mp | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=k8 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=opteron | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon64 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon-fx | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=k8-sse3 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=opteron-sse3 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=athlon64-sse3 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=amdfam10 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=btver1 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=btver2 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=bdver1 | FileCheck %s
+; RUN: llc < %s -march=x86-64 -mcpu=bdver2 | FileCheck %s
+
+; Verify that for the X86_64 processors that are known to have poor latency
+; double precision shift instructions we do not generate 'shld' or 'shrd'
+; instructions.
+
+;uint64_t lshift(uint64_t a, uint64_t b, int c)
+;{
+; return (a << c) | (b >> (64-c));
+;}
+
+define i64 @lshift(i64 %a, i64 %b, i32 %c) nounwind readnone {
+entry:
+; CHECK-NOT: shld
+ %sh_prom = zext i32 %c to i64
+ %shl = shl i64 %a, %sh_prom
+ %sub = sub nsw i32 64, %c
+ %sh_prom1 = zext i32 %sub to i64
+ %shr = lshr i64 %b, %sh_prom1
+ %or = or i64 %shr, %shl
+ ret i64 %or
+}
+
+;uint64_t rshift(uint64_t a, uint64_t b, int c)
+;{
+; return (a >> c) | (b << (64-c));
+;}
+
+define i64 @rshift(i64 %a, i64 %b, i32 %c) nounwind readnone {
+entry:
+; CHECK-NOT: shrd
+ %sh_prom = zext i32 %c to i64
+ %shr = lshr i64 %a, %sh_prom
+ %sub = sub nsw i32 64, %c
+ %sh_prom1 = zext i32 %sub to i64
+ %shl = shl i64 %b, %sh_prom1
+ %or = or i64 %shl, %shr
+ ret i64 %or
+}
+
+