summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDuncan Sands <baldrick@free.fr>2010-11-23 14:23:47 +0000
committerDuncan Sands <baldrick@free.fr>2010-11-23 14:23:47 +0000
commit5057f381418ddc8c96699c40479ead993cd62e7b (patch)
treee8737928b5fd38869ede79b36e7987bd51989a9e
parent0cc5b1f60e02716cac617959d88d4c412fdb3154 (diff)
downloadllvm-5057f381418ddc8c96699c40479ead993cd62e7b.tar.gz
llvm-5057f381418ddc8c96699c40479ead993cd62e7b.tar.bz2
llvm-5057f381418ddc8c96699c40479ead993cd62e7b.tar.xz
Exploit distributive laws (eg: And distributes over Or, Mul over Add, etc) in a
fairly systematic way in instcombine. Some of these cases were already dealt with, in which case I removed the existing code. The case of Add has a bunch of funky logic which covers some of this plus a few variants (considers shifts to be a form of multiplication), which I didn't touch. The simplification performed is: A*B+A*C -> A*(B+C). The improvement is to do this in cases that were not already handled [such as A*B-A*C -> A*(B-C), which was reported on the mailing list], and also to do it more often by not checking for "only one use" if "B+C" simplifies. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120024 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h6
-rw-r--r--lib/Transforms/InstCombine/InstCombineAddSub.cpp5
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp53
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp111
-rw-r--r--test/Transforms/InstCombine/2010-11-23-Distributed.ll11
5 files changed, 144 insertions, 42 deletions
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index 05846d0f9e..b492777a47 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -290,6 +290,12 @@ private:
/// operators which are associative or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
+ /// SimplifyDistributed - This tries to simplify binary operations which some
+ /// other binary operation distributes over (eg "A*B+A*C" -> "A*(B+C)" since
+ /// addition is distributed over by multiplication). Returns the result of
+ /// the simplification, or null if no simplification was performed.
+ Instruction *SimplifyDistributed(BinaryOperator &I);
+
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index c04a6b2a62..b2919d8833 100644
--- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -91,6 +91,8 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
I.hasNoUnsignedWrap(), TD))
return ReplaceInstUsesWith(I, V);
+ if (Instruction *NV = SimplifyDistributed(I)) // (A*B)+(A*C) -> A*(B+C)
+ return NV;
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
@@ -548,6 +550,9 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (Op0 == Op1) // sub X, X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ if (Instruction *NV = SimplifyDistributed(I)) // (A*B)-(A*C) -> A*(B-C)
+ return NV;
+
// If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
if (Value *V = dyn_castNegVal(Op1)) {
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index a2569be16b..e9d72a4153 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -984,6 +984,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyAndInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
+ if (Instruction *NV = SimplifyDistributed(I)) // (A|B)&(A|C) -> A|(B&C)
+ return NV;
+
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@@ -1692,6 +1695,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyOrInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
+ if (Instruction *NV = SimplifyDistributed(I)) // (A&B)|(A&C) -> A&(B|C)
+ return NV;
+
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@@ -1766,7 +1772,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *C = 0, *D = 0;
if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
match(Op1, m_And(m_Value(B), m_Value(D)))) {
- Value *V1 = 0, *V2 = 0, *V3 = 0;
+ Value *V1 = 0, *V2 = 0;
C1 = dyn_cast<ConstantInt>(C);
C2 = dyn_cast<ConstantInt>(D);
if (C1 && C2) { // (A & C1)|(B & C2)
@@ -1824,25 +1830,6 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
}
}
}
-
- // Check to see if we have any common things being and'ed. If so, find the
- // terms for V1 & (V2|V3).
- if (Op0->hasOneUse() || Op1->hasOneUse()) {
- V1 = 0;
- if (A == B) // (A & C)|(A & D) == A & (C|D)
- V1 = A, V2 = C, V3 = D;
- else if (A == D) // (A & C)|(B & A) == A & (B|C)
- V1 = A, V2 = B, V3 = C;
- else if (C == B) // (A & C)|(C & D) == C & (A|D)
- V1 = C, V2 = A, V3 = D;
- else if (C == D) // (A & C)|(B & C) == C & (A|B)
- V1 = C, V2 = A, V3 = B;
-
- if (V1) {
- Value *Or = Builder->CreateOr(V2, V3, "tmp");
- return BinaryOperator::CreateAnd(V1, Or);
- }
- }
// (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
// Don't do this for vector select idioms, the code generator doesn't handle
@@ -1979,6 +1966,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyXorInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
+ if (Instruction *NV = SimplifyDistributed(I)) // (A&B)^(A&C) -> A&(B^C)
+ return NV;
+
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@@ -2172,29 +2162,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
-
- // (A & B)^(C & D)
- if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
- match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- // (X & Y)^(X & Y) -> (Y^Z) & X
- Value *X = 0, *Y = 0, *Z = 0;
- if (A == C)
- X = A, Y = B, Z = D;
- else if (A == D)
- X = A, Y = B, Z = C;
- else if (B == C)
- X = B, Y = A, Z = D;
- else if (B == D)
- X = B, Y = A, Z = C;
-
- if (X) {
- Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
- return BinaryOperator::CreateAnd(NewOp, X);
- }
- }
}
-
+
// (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index cfc418256a..ef7430cd72 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -237,6 +237,117 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
} while (1);
}
+/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
+/// "(X LOp Y) ROp (Z LOp Z)".
+static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ switch (LOp) {
+ default:
+ return false;
+
+ case Instruction::And:
+ // And distributes over Or and Xor.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Or:
+ case Instruction::Xor:
+ return true;
+ }
+
+ case Instruction::Mul:
+ // Multiplication distributes over addition and subtraction.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Add:
+ case Instruction::Sub:
+ return true;
+ }
+
+ case Instruction::Or:
+ // Or distributes over And.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::And:
+ return true;
+ }
+ }
+}
+
+/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
+/// "(X ROp Z) LOp (Y ROp Z)".
+static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ if (Instruction::isCommutative(ROp))
+ return LeftDistributesOverRight(ROp, LOp);
+ // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
+ // but this requires knowing that the addition does not overflow and other
+ // such subtleties.
+ return false;
+}
+
+/// SimplifyDistributed - This tries to simplify binary operations which some
+/// other binary operation distributes over (eg "A*B+A*C" -> "A*(B+C)" since
+/// addition is distributed over by multiplication). Returns the result of
+/// the simplification, or null if no simplification was performed.
+Instruction *InstCombiner::SimplifyDistributed(BinaryOperator &I) {
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
+ if (!Op0 || !Op1 || Op0->getOpcode() != Op1->getOpcode())
+ return 0;
+
+ // The instruction has the form "(A op' B) op (C op' D)".
+ Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1);
+ Value *C = Op1->getOperand(0); Value *D = Op1->getOperand(1);
+ Instruction::BinaryOps OuterOpcode = I.getOpcode(); // op
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
+ bool LeftDistributes = LeftDistributesOverRight(InnerOpcode, OuterOpcode);
+ // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
+ bool RightDistributes = RightDistributesOverLeft(OuterOpcode, InnerOpcode);
+ // Does "X op' Y" always equal "Y op' X"?
+ bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
+
+ if (LeftDistributes)
+ // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
+ // commutative case, "(A op' B) op (C op' A)"?
+ if (A == C || (InnerCommutative && A == D)) {
+ if (A != C)
+ std::swap(C, D);
+ // Consider forming "A op' (B op D)".
+ // If "B op D" simplifies then it can be formed with no cost.
+ Value *RHS = SimplifyBinOp(OuterOpcode, B, D, TD);
+ // If "B op D" doesn't simplify then only proceed if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped since no longer used.
+ if (!RHS && Op0->hasOneUse() && Op1->hasOneUse())
+ RHS = Builder->CreateBinOp(OuterOpcode, B, D, Op1->getName());
+ if (RHS)
+ return BinaryOperator::Create(InnerOpcode, A, RHS);
+ }
+
+ if (RightDistributes)
+ // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
+ // commutative case, "(A op' B) op (B op' D)"?
+ if (B == D || (InnerCommutative && B == C)) {
+ if (B != D)
+ std::swap(C, D);
+ // Consider forming "(A op C) op' B".
+ // If "A op C" simplifies then it can be formed with no cost.
+ Value *LHS = SimplifyBinOp(OuterOpcode, A, C, TD);
+ // If "A op C" doesn't simplify then only proceed if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped since no longer used.
+ if (!LHS && Op0->hasOneUse() && Op1->hasOneUse())
+ LHS = Builder->CreateBinOp(OuterOpcode, A, C, Op0->getName());
+ if (LHS)
+ return BinaryOperator::Create(InnerOpcode, LHS, B);
+ }
+
+ return 0;
+}
+
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
diff --git a/test/Transforms/InstCombine/2010-11-23-Distributed.ll b/test/Transforms/InstCombine/2010-11-23-Distributed.ll
new file mode 100644
index 0000000000..13a5720dad
--- /dev/null
+++ b/test/Transforms/InstCombine/2010-11-23-Distributed.ll
@@ -0,0 +1,11 @@
+; RUN: opt < %s -instcombine -S | FileCheck %s
+define i32 @foo(i32 %x, i32 %y) {
+; CHECK: @foo
+ %add = add nsw i32 %y, %x
+ %mul = mul nsw i32 %add, %y
+ %square = mul nsw i32 %y, %y
+ %res = sub i32 %mul, %square
+; CHECK: %res = mul i32 %x, %y
+ ret i32 %res
+; CHECK: ret i32 %res
+}