summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJingyue Wu <jingyue@google.com>2014-06-05 22:07:33 +0000
committerJingyue Wu <jingyue@google.com>2014-06-05 22:07:33 +0000
commit6156e562ef42ed25274c2894aedb22b909184771 (patch)
tree037b8a91c77a8647d7a5d67d824397e58fadfe7c
parentd334d25a10f45fc996ba117f8c16495940127e39 (diff)
downloadllvm-6156e562ef42ed25274c2894aedb22b909184771.tar.gz
llvm-6156e562ef42ed25274c2894aedb22b909184771.tar.bz2
llvm-6156e562ef42ed25274c2894aedb22b909184771.tar.xz
Fixed several correctness issues in SeparateConstOffsetFromGEP
Most issues are on mishandling s/zext. Fixes: 1. When rebuilding new indices, s/zext should be distributed to sub-expressions. e.g., sext(a +nsw (b +nsw 5)) = sext(a) + sext(b) + 5 but not sext(a + b) + 5. This also affects the logic of recursively looking for a constant offset, we need to include s/zext into the context of the searching. 2. Function find should return the bitwidth of the constant offset instead of always sign-extending it to i64. 3. Stop shortcutting zext'ed GEP indices. LLVM conceptually sign-extends GEP indices to pointer-size before computing the address. Therefore, gep base, zext(a + b) != gep base, a + b Improvements: 1. Add an optimization for splitting sext(a + b): if a + b is proven non-negative (e.g., used as an index of an inbound GEP) and one of a, b is non-negative, sext(a + b) = sext(a) + sext(b) 2. Function Distributable checks whether both sext and zext can be distributed to operands of a binary operator. This helps us split zext(sext(a + b)) to zext(sext(a) + zext(sext(b)) when a + b does not signed or unsigned overflow. Refactoring: Merge some common logic of handling add/sub/or in find. Testing: Add many tests in split-gep.ll and split-gep-and-gvn.ll to verify the changes we made. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210291 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp542
-rw-r--r--test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep-and-gvn.ll55
-rw-r--r--test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep.ll193
3 files changed, 531 insertions, 259 deletions
diff --git a/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp b/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
index b8529e174c..1cb3fe28fb 100644
--- a/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
+++ b/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
@@ -121,41 +121,75 @@ class ConstantOffsetExtractor {
/// numeric value of the extracted constant offset (0 if failed), and a
/// new index representing the remainder (equal to the original index minus
/// the constant offset).
- /// \p Idx The given GEP index
- /// \p NewIdx The new index to replace
- /// \p DL The datalayout of the module
- /// \p IP Calculating the new index requires new instructions. IP indicates
- /// where to insert them (typically right before the GEP).
+ /// \p Idx The given GEP index
+ /// \p NewIdx The new index to replace (output)
+ /// \p DL The datalayout of the module
+ /// \p GEP The given GEP
static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
- Instruction *IP);
+ GetElementPtrInst *GEP);
/// Looks for a constant offset without extracting it. The meaning of the
/// arguments and the return value are the same as Extract.
- static int64_t Find(Value *Idx, const DataLayout *DL);
+ static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
private:
ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
: DL(Layout), IP(InsertionPt) {}
- /// Searches the expression that computes V for a constant offset. If the
- /// searching is successful, update UserChain as a path from V to the constant
- /// offset.
- int64_t find(Value *V);
- /// A helper function to look into both operands of a binary operator U.
- /// \p IsSub Whether U is a sub operator. If so, we need to negate the
- /// constant offset at some point.
- int64_t findInEitherOperand(User *U, bool IsSub);
- /// After finding the constant offset and how it is reached from the GEP
- /// index, we build a new index which is a clone of the old one except the
- /// constant offset is removed. For example, given (a + (b + 5)) and knowning
- /// the constant offset is 5, this function returns (a + b).
+ /// Searches the expression that computes V for a non-zero constant C s.t.
+ /// V can be reassociated into the form V' + C. If the searching is
+ /// successful, returns C and update UserChain as a def-use chain from C to V;
+ /// otherwise, UserChain is empty.
///
- /// We cannot simply change the constant to zero because the expression that
- /// computes the index or its intermediate result may be used by others.
- Value *rebuildWithoutConstantOffset();
- // A helper function for rebuildWithoutConstantOffset that rebuilds the direct
- // user (U) of the constant offset (C).
- Value *rebuildLeafWithoutConstantOffset(User *U, Value *C);
- /// Returns a clone of U except the first occurrence of From with To.
- Value *cloneAndReplace(User *U, Value *From, Value *To);
+ /// \p V The given expression
+ /// \p SignExtended Whether V will be sign-extended in the computation of the
+ /// GEP index
+ /// \p ZeroExtended Whether V will be zero-extended in the computation of the
+ /// GEP index
+ /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
+ /// an index of an inbounds GEP is guaranteed to be
+ /// non-negative. Levaraging this, we can better split
+ /// inbounds GEPs.
+ APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
+ /// A helper function to look into both operands of a binary operator.
+ APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
+ bool ZeroExtended);
+ /// After finding the constant offset C from the GEP index I, we build a new
+ /// index I' s.t. I' + C = I. This function builds and returns the new
+ /// index I' according to UserChain produced by function "find".
+ ///
+ /// The building conceptually takes two steps:
+ /// 1) iteratively distribute s/zext towards the leaves of the expression tree
+ /// that computes I
+ /// 2) reassociate the expression tree to the form I' + C.
+ ///
+ /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
+ /// sext to a, b and 5 so that we have
+ /// sext(a) + (sext(b) + 5).
+ /// Then, we reassociate it to
+ /// (sext(a) + sext(b)) + 5.
+ /// Given this form, we know I' is sext(a) + sext(b).
+ Value *rebuildWithoutConstOffset();
+ /// After the first step of rebuilding the GEP index without the constant
+ /// offset, distribute s/zext to the operands of all operators in UserChain.
+ /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
+ /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
+ ///
+ /// The function also updates UserChain to point to new subexpressions after
+ /// distributing s/zext. e.g., the old UserChain of the above example is
+ /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
+ /// and the new UserChain is
+ /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
+ /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
+ ///
+ /// \p ChainIndex The index to UserChain. ChainIndex is initially
+ /// UserChain.size() - 1, and is decremented during
+ /// the recursion.
+ Value *distributeExtsAndCloneChain(unsigned ChainIndex);
+ /// Reassociates the GEP index to the form I' + C and returns I'.
+ Value *removeConstOffset(unsigned ChainIndex);
+ /// A helper function to apply ExtInsts, a list of s/zext, to value V.
+ /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
+ /// returns "sext i32 (zext i16 V to i32) to i64".
+ Value *applyExts(Value *V);
/// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
bool NoCommonBits(Value *LHS, Value *RHS) const;
@@ -163,20 +197,26 @@ class ConstantOffsetExtractor {
/// \p KnownOne Mask of all bits that are known to be one.
/// \p KnownZero Mask of all bits that are known to be zero.
void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
- /// Finds the first use of Used in U. Returns -1 if not found.
- static unsigned FindFirstUse(User *U, Value *Used);
- /// Returns whether OPC (sext or zext) can be distributed to the operands of
- /// BO. e.g., sext can be distributed to the operands of an "add nsw" because
- /// sext (add nsw a, b) == add nsw (sext a), (sext b).
- static bool Distributable(unsigned OPC, BinaryOperator *BO);
+ /// A helper function that returns whether we can trace into the operands
+ /// of binary operator BO for a constant offset.
+ ///
+ /// \p SignExtended Whether BO is surrounded by sext
+ /// \p ZeroExtended Whether BO is surrounded by zext
+ /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
+ /// array index.
+ bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
+ bool NonNegative);
/// The path from the constant offset to the old GEP index. e.g., if the GEP
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
/// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
/// UserChain[2] will be the entire expression "a * b + (c + 5)".
///
- /// This path helps rebuildWithoutConstantOffset rebuild the new GEP index.
+ /// This path helps to rebuild the new GEP index.
SmallVector<User *, 8> UserChain;
+ /// A data structure used in rebuildWithoutConstOffset. Contains all
+ /// sext/zext instructions along UserChain.
+ SmallVector<CastInst *, 16> ExtInsts;
/// The data layout of the module. Used in ComputeKnownBits.
const DataLayout *DL;
Instruction *IP; /// Insertion position of cloned instructions.
@@ -227,181 +267,273 @@ FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
return new SeparateConstOffsetFromGEP();
}
-bool ConstantOffsetExtractor::Distributable(unsigned OPC, BinaryOperator *BO) {
- assert(OPC == Instruction::SExt || OPC == Instruction::ZExt);
+bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
+ bool ZeroExtended,
+ BinaryOperator *BO,
+ bool NonNegative) {
+ // We only consider ADD, SUB and OR, because a non-zero constant found in
+ // expressions composed of these operations can be easily hoisted as a
+ // constant offset by reassociation.
+ if (BO->getOpcode() != Instruction::Add &&
+ BO->getOpcode() != Instruction::Sub &&
+ BO->getOpcode() != Instruction::Or) {
+ return false;
+ }
+
+ Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
+ // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
+ // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
+ if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
+ return false;
+
+ // In addition, tracing into BO requires that its surrounding s/zext (if
+ // any) is distributable to both operands.
+ //
+ // Suppose BO = A op B.
+ // SignExtended | ZeroExtended | Distributable?
+ // --------------+--------------+----------------------------------
+ // 0 | 0 | true because no s/zext exists
+ // 0 | 1 | zext(BO) == zext(A) op zext(B)
+ // 1 | 0 | sext(BO) == sext(A) op sext(B)
+ // 1 | 1 | zext(sext(BO)) ==
+ // | | zext(sext(A)) op zext(sext(B))
+ if (BO->getOpcode() == Instruction::Add && NonNegative) {
+ // If a + b >= 0 and (a >= 0 or b >= 0), then
+ // s/zext(a + b) = s/zext(a) + s/zext(b)
+ // even if the addition is not marked nsw.
+ //
+ // Leveraging this invarient, we can trace into an sext'ed inbound GEP
+ // index if the constant offset is non-negative.
+ //
+ // Verified in @sext_add in split-gep.ll.
+ if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
+ if (!ConstLHS->isNegative())
+ return true;
+ }
+ if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
+ if (!ConstRHS->isNegative())
+ return true;
+ }
+ }
// sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
// zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
if (BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Sub) {
- return (OPC == Instruction::SExt && BO->hasNoSignedWrap()) ||
- (OPC == Instruction::ZExt && BO->hasNoUnsignedWrap());
+ if (SignExtended && !BO->hasNoSignedWrap())
+ return false;
+ if (ZeroExtended && !BO->hasNoUnsignedWrap())
+ return false;
}
- // sext/zext (and/or/xor A, B) == and/or/xor (sext/zext A), (sext/zext B)
- // -instcombine also leverages this invariant to do the reverse
- // transformation to reduce integer casts.
- return BO->getOpcode() == Instruction::And ||
- BO->getOpcode() == Instruction::Or ||
- BO->getOpcode() == Instruction::Xor;
+ return true;
}
-int64_t ConstantOffsetExtractor::findInEitherOperand(User *U, bool IsSub) {
- assert(U->getNumOperands() == 2);
- int64_t ConstantOffset = find(U->getOperand(0));
+APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
+ bool SignExtended,
+ bool ZeroExtended) {
+ // BO being non-negative does not shed light on whether its operands are
+ // non-negative. Clear the NonNegative flag here.
+ APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
+ /* NonNegative */ false);
// If we found a constant offset in the left operand, stop and return that.
// This shortcut might cause us to miss opportunities of combining the
// constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
// However, such cases are probably already handled by -instcombine,
// given this pass runs after the standard optimizations.
if (ConstantOffset != 0) return ConstantOffset;
- ConstantOffset = find(U->getOperand(1));
+ ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
+ /* NonNegative */ false);
// If U is a sub operator, negate the constant offset found in the right
// operand.
- return IsSub ? -ConstantOffset : ConstantOffset;
+ if (BO->getOpcode() == Instruction::Sub)
+ ConstantOffset = -ConstantOffset;
+ return ConstantOffset;
}
-int64_t ConstantOffsetExtractor::find(Value *V) {
- // TODO(jingyue): We can even trace into integer/pointer casts, such as
+APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
+ bool ZeroExtended, bool NonNegative) {
+ // TODO(jingyue): We could trace into integer/pointer casts, such as
// inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
// integers because it gives good enough results for our benchmarks.
- assert(V->getType()->isIntegerTy());
+ unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+ // We cannot do much with Values that are not a User, such as an Argument.
User *U = dyn_cast<User>(V);
- // We cannot do much with Values that are not a User, such as BasicBlock and
- // MDNode.
- if (U == nullptr) return 0;
+ if (U == nullptr) return APInt(BitWidth, 0);
- int64_t ConstantOffset = 0;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U)) {
+ APInt ConstantOffset(BitWidth, 0);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// Hooray, we found it!
- ConstantOffset = CI->getSExtValue();
- } else if (Operator *O = dyn_cast<Operator>(U)) {
- // The GEP index may be more complicated than a simple addition of a
- // varaible and a constant. Therefore, we trace into subexpressions for more
- // hoisting opportunities.
- switch (O->getOpcode()) {
- case Instruction::Add: {
- ConstantOffset = findInEitherOperand(U, false);
- break;
- }
- case Instruction::Sub: {
- ConstantOffset = findInEitherOperand(U, true);
- break;
- }
- case Instruction::Or: {
- // If LHS and RHS don't have common bits, (LHS | RHS) is equivalent to
- // (LHS + RHS).
- if (NoCommonBits(U->getOperand(0), U->getOperand(1)))
- ConstantOffset = findInEitherOperand(U, false);
- break;
- }
- case Instruction::SExt:
- case Instruction::ZExt: {
- // We trace into sext/zext if the operator can be distributed to its
- // operand. e.g., we can transform into "sext (add nsw a, 5)" and
- // extract constant 5, because
- // sext (add nsw a, 5) == add nsw (sext a), 5
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
- if (Distributable(O->getOpcode(), BO))
- ConstantOffset = find(U->getOperand(0));
- }
- break;
- }
+ ConstantOffset = CI->getValue();
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
+ // Trace into subexpressions for more hoisting opportunities.
+ if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
+ ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
}
+ } else if (isa<SExtInst>(V)) {
+ ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
+ ZeroExtended, NonNegative).sext(BitWidth);
+ } else if (isa<ZExtInst>(V)) {
+ // As an optimization, we can clear the SignExtended flag because
+ // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
+ //
+ // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
+ // TODO: if zext(a) < 2 ^ (bitwidth(a) - 1), we can prove a >= 0.
+ ConstantOffset =
+ find(U->getOperand(0), /* SignExtended */ false,
+ /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
}
- // If we found a non-zero constant offset, adds it to the path for future
- // transformation (rebuildWithoutConstantOffset). Zero is a valid constant
- // offset, but doesn't help this optimization.
+
+ // If we found a non-zero constant offset, add it to the path for
+ // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
+ // help this optimization.
if (ConstantOffset != 0)
UserChain.push_back(U);
return ConstantOffset;
}
-unsigned ConstantOffsetExtractor::FindFirstUse(User *U, Value *Used) {
- for (unsigned I = 0, E = U->getNumOperands(); I < E; ++I) {
- if (U->getOperand(I) == Used)
- return I;
+Value *ConstantOffsetExtractor::applyExts(Value *V) {
+ Value *Current = V;
+ // ExtInsts is built in the use-def order. Therefore, we apply them to V
+ // in the reversed order.
+ for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
+ if (Constant *C = dyn_cast<Constant>(Current)) {
+ // If Current is a constant, apply s/zext using ConstantExpr::getCast.
+ // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
+ Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
+ } else {
+ Instruction *Ext = (*I)->clone();
+ Ext->setOperand(0, Current);
+ Ext->insertBefore(IP);
+ Current = Ext;
+ }
}
- return -1;
+ return Current;
}
-Value *ConstantOffsetExtractor::cloneAndReplace(User *U, Value *From,
- Value *To) {
- // Finds in U the first use of From. It is safe to ignore future occurrences
- // of From, because findInEitherOperand similarly stops searching the right
- // operand when the first operand has a non-zero constant offset.
- unsigned OpNo = FindFirstUse(U, From);
- assert(OpNo != (unsigned)-1 && "UserChain wasn't built correctly");
-
- // ConstantOffsetExtractor::find only follows Operators (i.e., Instructions
- // and ConstantExprs). Therefore, U is either an Instruction or a
- // ConstantExpr.
- if (Instruction *I = dyn_cast<Instruction>(U)) {
- Instruction *Clone = I->clone();
- Clone->setOperand(OpNo, To);
- Clone->insertBefore(IP);
- return Clone;
+Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
+ distributeExtsAndCloneChain(UserChain.size() - 1);
+ // Remove all nullptrs (used to be s/zext) from UserChain.
+ unsigned NewSize = 0;
+ for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
+ if (*I != nullptr) {
+ UserChain[NewSize] = *I;
+ NewSize++;
+ }
}
- // cast<Constant>(To) is safe because a ConstantExpr only uses Constants.
- return cast<ConstantExpr>(U)
- ->getWithOperandReplaced(OpNo, cast<Constant>(To));
+ UserChain.resize(NewSize);
+ return removeConstOffset(UserChain.size() - 1);
}
-Value *ConstantOffsetExtractor::rebuildLeafWithoutConstantOffset(User *U,
- Value *C) {
- assert(U->getNumOperands() <= 2 &&
- "We didn't trace into any operator with more than 2 operands");
- // If U has only one operand which is the constant offset, removing the
- // constant offset leaves U as a null value.
- if (U->getNumOperands() == 1)
- return Constant::getNullValue(U->getType());
-
- // U->getNumOperands() == 2
- unsigned OpNo = FindFirstUse(U, C); // U->getOperand(OpNo) == C
- assert(OpNo < 2 && "UserChain wasn't built correctly");
- Value *TheOther = U->getOperand(1 - OpNo); // The other operand of U
- // If U = C - X, removing C makes U = -X; otherwise U will simply be X.
- if (!isa<SubOperator>(U) || OpNo == 1)
- return TheOther;
- if (isa<ConstantExpr>(U))
- return ConstantExpr::getNeg(cast<Constant>(TheOther));
- return BinaryOperator::CreateNeg(TheOther, "", IP);
+Value *
+ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
+ User *U = UserChain[ChainIndex];
+ if (ChainIndex == 0) {
+ assert(isa<ConstantInt>(U));
+ // If U is a ConstantInt, applyExts will return a ConstantInt as well.
+ return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
+ }
+
+ if (CastInst *Cast = dyn_cast<CastInst>(U)) {
+ assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
+ "We only traced into two types of CastInst: sext and zext");
+ ExtInsts.push_back(Cast);
+ UserChain[ChainIndex] = nullptr;
+ return distributeExtsAndCloneChain(ChainIndex - 1);
+ }
+
+ // Function find only trace into BinaryOperator and CastInst.
+ BinaryOperator *BO = cast<BinaryOperator>(U);
+ // OpNo = which operand of BO is UserChain[ChainIndex - 1]
+ unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
+ Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
+ Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
+
+ BinaryOperator *NewBO = nullptr;
+ if (OpNo == 0) {
+ NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
+ BO->getName(), IP);
+ } else {
+ NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
+ BO->getName(), IP);
+ }
+ return UserChain[ChainIndex] = NewBO;
}
-Value *ConstantOffsetExtractor::rebuildWithoutConstantOffset() {
- assert(UserChain.size() > 0 && "you at least found a constant, right?");
- // Start with the constant and go up through UserChain, each time building a
- // clone of the subexpression but with the constant removed.
- // e.g., to build a clone of (a + (b + (c + 5)) but with the 5 removed, we
- // first c, then (b + c), and finally (a + (b + c)).
- //
- // Fast path: if the GEP index is a constant, simply returns 0.
- if (UserChain.size() == 1)
- return ConstantInt::get(UserChain[0]->getType(), 0);
-
- Value *Remainder =
- rebuildLeafWithoutConstantOffset(UserChain[1], UserChain[0]);
- for (size_t I = 2; I < UserChain.size(); ++I)
- Remainder = cloneAndReplace(UserChain[I], UserChain[I - 1], Remainder);
- return Remainder;
+Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
+ if (ChainIndex == 0) {
+ assert(isa<ConstantInt>(UserChain[ChainIndex]));
+ return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
+ }
+
+ BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
+ unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
+ assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
+ Value *NextInChain = removeConstOffset(ChainIndex - 1);
+ Value *TheOther = BO->getOperand(1 - OpNo);
+
+ // If NextInChain is 0 and not the LHS of a sub, we can simplify the
+ // sub-expression to be just TheOther.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
+ if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
+ return TheOther;
+ }
+
+ if (BO->getOpcode() == Instruction::Or) {
+ // Rebuild "or" as "add", because "or" may be invalid for the new
+ // epxression.
+ //
+ // For instance, given
+ // a | (b + 5) where a and b + 5 have no common bits,
+ // we can extract 5 as the constant offset.
+ //
+ // However, reusing the "or" in the new index would give us
+ // (a | b) + 5
+ // which does not equal a | (b + 5).
+ //
+ // Replacing the "or" with "add" is fine, because
+ // a | (b + 5) = a + (b + 5) = (a + b) + 5
+ return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
+ BO->getName(), IP);
+ }
+
+ // We can reuse BO in this case, because the new expression shares the same
+ // instruction type and BO is used at most once.
+ assert(BO->getNumUses() <= 1 &&
+ "distributeExtsAndCloneChain clones each BinaryOperator in "
+ "UserChain, so no one should be used more than "
+ "once");
+ BO->setOperand(OpNo, NextInChain);
+ BO->setHasNoSignedWrap(false);
+ BO->setHasNoUnsignedWrap(false);
+ // Make sure it appears after all instructions we've inserted so far.
+ BO->moveBefore(IP);
+ return BO;
}
int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
const DataLayout *DL,
- Instruction *IP) {
- ConstantOffsetExtractor Extractor(DL, IP);
+ GetElementPtrInst *GEP) {
+ ConstantOffsetExtractor Extractor(DL, GEP);
// Find a non-zero constant offset first.
- int64_t ConstantOffset = Extractor.find(Idx);
- if (ConstantOffset == 0)
- return 0;
- // Then rebuild a new index with the constant removed.
- NewIdx = Extractor.rebuildWithoutConstantOffset();
- return ConstantOffset;
+ APInt ConstantOffset =
+ Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
+ GEP->isInBounds());
+ if (ConstantOffset != 0) {
+ // Separates the constant offset from the GEP index.
+ NewIdx = Extractor.rebuildWithoutConstOffset();
+ }
+ return ConstantOffset.getSExtValue();
}
-int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL) {
- return ConstantOffsetExtractor(DL, nullptr).find(Idx);
+int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
+ GetElementPtrInst *GEP) {
+ // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
+ return ConstantOffsetExtractor(DL, GEP)
+ .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
+ GEP->isInBounds())
+ .getSExtValue();
}
void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
@@ -430,7 +562,7 @@ int64_t SeparateConstOffsetFromGEP::accumulateByteOffset(
if (isa<SequentialType>(*GTI)) {
// Tries to extract a constant offset from this GEP index.
int64_t ConstantOffset =
- ConstantOffsetExtractor::Find(GEP->getOperand(I), DL);
+ ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
if (ConstantOffset != 0) {
NeedsExtraction = true;
// A GEP may have multiple indices. We accumulate the extracted
@@ -455,28 +587,32 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
return false;
bool Changed = false;
-
- // Shortcuts integer casts. Eliminating these explicit casts can make
- // subsequent optimizations more obvious: ConstantOffsetExtractor needn't
- // trace into these casts.
- if (GEP->isInBounds()) {
- // Doing this to inbounds GEPs is safe because their indices are guaranteed
- // to be non-negative and in bounds.
- gep_type_iterator GTI = gep_type_begin(*GEP);
- for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
- if (isa<SequentialType>(*GTI)) {
- if (Operator *O = dyn_cast<Operator>(GEP->getOperand(I))) {
- if (O->getOpcode() == Instruction::SExt ||
- O->getOpcode() == Instruction::ZExt) {
- GEP->setOperand(I, O->getOperand(0));
- Changed = true;
- }
- }
+ // Canonicalize array indices to pointer-size integers. This helps to simplify
+ // the logic of splitting a GEP. For example, if a + b is a pointer-size
+ // integer, we have
+ // gep base, a + b = gep (gep base, a), b
+ // However, this equality may not hold if the size of a + b is smaller than
+ // the pointer size, because LLVM conceptually sign-extends GEP indices to
+ // pointer size before computing the address
+ // (http://llvm.org/docs/LangRef.html#id181).
+ //
+ // This canonicalization is very likely already done in clang and instcombine.
+ // Therefore, the program will probably remain the same.
+ //
+ // Verified in @i32_add in split-gep.ll
+ const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
+ Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+ gep_type_iterator GTI = gep_type_begin(*GEP);
+ for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
+ I != E; ++I, ++GTI) {
+ if (isa<SequentialType>(*GTI)) {
+ if ((*I)->getType() != IntPtrTy) {
+ *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
+ Changed = true;
}
}
}
- const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout();
bool NeedsExtraction;
int64_t AccumulativeByteOffset =
accumulateByteOffset(GEP, DL, NeedsExtraction);
@@ -495,7 +631,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
// Remove the constant offset in each GEP index. The resultant GEP computes
// the variadic base.
- gep_type_iterator GTI = gep_type_begin(*GEP);
+ GTI = gep_type_begin(*GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
Value *NewIdx = nullptr;
@@ -506,30 +642,29 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
assert(NewIdx != nullptr &&
"ConstantOffset != 0 implies NewIdx is set");
GEP->setOperand(I, NewIdx);
- // Clear the inbounds attribute because the new index may be off-bound.
- // e.g.,
- //
- // b = add i64 a, 5
- // addr = gep inbounds float* p, i64 b
- //
- // is transformed to:
- //
- // addr2 = gep float* p, i64 a
- // addr = gep float* addr2, i64 5
- //
- // If a is -4, although the old index b is in bounds, the new index a is
- // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
- // inbounds keyword is not present, the offsets are added to the base
- // address with silently-wrapping two's complement arithmetic".
- // Therefore, the final code will be a semantically equivalent.
- //
- // TODO(jingyue): do some range analysis to keep as many inbounds as
- // possible. GEPs with inbounds are more friendly to alias analysis.
- GEP->setIsInBounds(false);
- Changed = true;
}
}
}
+ // Clear the inbounds attribute because the new index may be off-bound.
+ // e.g.,
+ //
+ // b = add i64 a, 5
+ // addr = gep inbounds float* p, i64 b
+ //
+ // is transformed to:
+ //
+ // addr2 = gep float* p, i64 a
+ // addr = gep float* addr2, i64 5
+ //
+ // If a is -4, although the old index b is in bounds, the new index a is
+ // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
+ // inbounds keyword is not present, the offsets are added to the base
+ // address with silently-wrapping two's complement arithmetic".
+ // Therefore, the final code will be a semantically equivalent.
+ //
+ // TODO(jingyue): do some range analysis to keep as many inbounds as
+ // possible. GEPs with inbounds are more friendly to alias analysis.
+ GEP->setIsInBounds(false);
// Offsets the base with the accumulative byte offset.
//
@@ -562,7 +697,6 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
Instruction *NewGEP = GEP->clone();
NewGEP->insertBefore(GEP);
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
uint64_t ElementTypeSizeOfGEP =
DL->getTypeAllocSize(GEP->getType()->getElementType());
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
diff --git a/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep-and-gvn.ll b/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep-and-gvn.ll
index 850fc4cde8..6b72bcdc0e 100644
--- a/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep-and-gvn.ll
+++ b/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep-and-gvn.ll
@@ -1,4 +1,3 @@
-; RUN: llc < %s -march=nvptx -mcpu=sm_20 | FileCheck %s --check-prefix=PTX
; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s --check-prefix=PTX
; RUN: opt < %s -S -separate-const-offset-from-gep -gvn -dce | FileCheck %s --check-prefix=IR
@@ -20,20 +19,20 @@ target triple = "nvptx64-unknown-unknown"
define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
.preheader:
- %0 = zext i32 %y to i64
- %1 = zext i32 %x to i64
+ %0 = sext i32 %y to i64
+ %1 = sext i32 %x to i64
%2 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
%3 = addrspacecast float addrspace(3)* %2 to float*
%4 = load float* %3, align 4
%5 = fadd float %4, 0.000000e+00
%6 = add i32 %y, 1
- %7 = zext i32 %6 to i64
+ %7 = sext i32 %6 to i64
%8 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7
%9 = addrspacecast float addrspace(3)* %8 to float*
%10 = load float* %9, align 4
%11 = fadd float %5, %10
%12 = add i32 %x, 1
- %13 = zext i32 %12 to i64
+ %13 = sext i32 %12 to i64
%14 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0
%15 = addrspacecast float addrspace(3)* %14 to float*
%16 = load float* %15, align 4
@@ -45,7 +44,6 @@ define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
store float %21, float* %output, align 4
ret void
}
-
; PTX-LABEL: sum_of_array(
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rl|r)[0-9]+]]{{\]}}
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
@@ -53,7 +51,50 @@ define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
; IR-LABEL: @sum_of_array(
-; IR: [[BASE_PTR:%[0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i32 %x, i32 %y
+; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
+; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
+; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
+; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
+
+; @sum_of_array2 is very similar to @sum_of_array. The only difference is in
+; the order of "sext" and "add" when computing the array indices. @sum_of_array
+; computes add before sext, e.g., array[sext(x + 1)][sext(y + 1)], while
+; @sum_of_array2 computes sext before add,
+; e.g., array[sext(x) + 1][sext(y) + 1]. SeparateConstOffsetFromGEP should be
+; able to extract constant offsets from both forms.
+define void @sum_of_array2(i32 %x, i32 %y, float* nocapture %output) {
+.preheader:
+ %0 = sext i32 %y to i64
+ %1 = sext i32 %x to i64
+ %2 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
+ %3 = addrspacecast float addrspace(3)* %2 to float*
+ %4 = load float* %3, align 4
+ %5 = fadd float %4, 0.000000e+00
+ %6 = add i64 %0, 1
+ %7 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %6
+ %8 = addrspacecast float addrspace(3)* %7 to float*
+ %9 = load float* %8, align 4
+ %10 = fadd float %5, %9
+ %11 = add i64 %1, 1
+ %12 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %0
+ %13 = addrspacecast float addrspace(3)* %12 to float*
+ %14 = load float* %13, align 4
+ %15 = fadd float %10, %14
+ %16 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %6
+ %17 = addrspacecast float addrspace(3)* %16 to float*
+ %18 = load float* %17, align 4
+ %19 = fadd float %15, %18
+ store float %19, float* %output, align 4
+ ret void
+}
+; PTX-LABEL: sum_of_array2(
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rl|r)[0-9]+]]{{\]}}
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
+; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
+
+; IR-LABEL: @sum_of_array2(
+; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
diff --git a/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep.ll b/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep.ll
index 2e50f5fd0c..31989dd691 100644
--- a/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep.ll
+++ b/test/Transforms/SeparateConstOffsetFromGEP/NVPTX/split-gep.ll
@@ -23,71 +23,92 @@ entry:
%p = getelementptr inbounds [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1
ret double* %p
}
-; CHECK-LABEL: @struct
-; CHECK: getelementptr [1024 x %struct.S]* @struct_array, i64 0, i32 %i, i32 1
+; CHECK-LABEL: @struct(
+; CHECK: getelementptr [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1
-; We should be able to trace into sext/zext if it's directly used as a GEP
-; index.
-define float* @sext_zext(i32 %i, i32 %j) {
+; We should be able to trace into s/zext(a + b) if a + b is non-negative
+; (e.g., used as an index of an inbounds GEP) and one of a and b is
+; non-negative.
+define float* @sext_add(i32 %i, i32 %j) {
entry:
- %i1 = add i32 %i, 1
- %j2 = add i32 %j, 2
- %i1.ext = sext i32 %i1 to i64
- %j2.ext = zext i32 %j2 to i64
- %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i1.ext, i64 %j2.ext
+ %0 = add i32 %i, 1
+ %1 = sext i32 %0 to i64 ; inbound sext(i + 1) = sext(i) + 1
+ %2 = sub i32 %j, 2
+ ; However, inbound sext(j - 2) != sext(j) - 2, e.g., j = INT_MIN
+ %3 = sext i32 %2 to i64
+ %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
ret float* %p
}
-; CHECK-LABEL: @sext_zext
-; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i32 %i, i32 %j
-; CHECK: getelementptr float* %{{[0-9]+}}, i64 34
+; CHECK-LABEL: @sext_add(
+; CHECK-NOT: = add
+; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
+; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 32
; We should be able to trace into sext/zext if it can be distributed to both
; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b)
+;
+; This test verifies we can transform
+; gep base, a + sext(b +nsw 1), c + zext(d +nuw 1)
+; to
+; gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1
define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
%b1 = add nsw i32 %b, 1
%b2 = sext i32 %b1 to i64
- %i = add i64 %a, %b2
+ %i = add i64 %a, %b2 ; i = a + sext(b +nsw 1)
%d1 = add nuw i32 %d, 1
%d2 = zext i32 %d1 to i64
- %j = add i64 %c, %d2
+ %j = add i64 %c, %d2 ; j = c + zext(d +nuw 1)
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
ret float* %p
}
-; CHECK-LABEL: @ext_add_no_overflow
-; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}}
+; CHECK-LABEL: @ext_add_no_overflow(
+; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
; CHECK: getelementptr float* [[BASE_PTR]], i64 33
-; Similar to @ext_add_no_overflow, we should be able to trace into sext/zext if
-; its operand is an "or" instruction.
-define float* @ext_or(i64 %a, i32 %b) {
+; Verifies we handle nested sext/zext correctly.
+define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) {
+entry:
+ %0 = add nsw nuw i32 %a, 1
+ %1 = sext i32 %0 to i48
+ %2 = zext i48 %1 to i64 ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1
+ %3 = add nsw i32 %b, 2
+ %4 = sext i32 %3 to i48
+ %5 = zext i48 %4 to i64 ; zext(sext(a +nsw 2)) != zext(sext(a)) + 2
+ %p1 = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5
+ store float* %p1, float** %out1
+ %6 = add nuw i32 %a, 3
+ %7 = zext i32 %6 to i48
+ %8 = sext i48 %7 to i64 ; sext(zext(b +nuw 3)) = zext(b +nuw 3) = zext(b) + 3
+ %9 = add nsw i32 %b, 4
+ %10 = zext i32 %9 to i48
+ %11 = sext i48 %10 to i64 ; sext(zext(b +nsw 4)) != zext(b) + 4
+ %p2 = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11
+ store float* %p2, float** %out2
+ ret void
+}
+; CHECK-LABEL: @sext_zext(
+; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
+; CHECK: getelementptr float* [[BASE_PTR_1]], i64 32
+; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
+; CHECK: getelementptr float* [[BASE_PTR_2]], i64 96
+
+; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if
+; its operand is an OR and the two operands of the OR have no common bits.
+define float* @sext_or(i64 %a, i32 %b) {
entry:
%b1 = shl i32 %b, 2
- %b2 = or i32 %b1, 1
- %b3 = or i32 %b1, 2
- %b2.ext = sext i32 %b2 to i64
+ %b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits
+ %b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits
+ %b2.ext = zext i32 %b2 to i64
%b3.ext = sext i32 %b3 to i64
%i = add i64 %a, %b2.ext
%j = add i64 %a, %b3.ext
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
ret float* %p
}
-; CHECK-LABEL: @ext_or
-; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}}
-; CHECK: getelementptr float* [[BASE_PTR]], i64 34
-
-; We should treat "or" with no common bits (%k) as "add", and leave "or" with
-; potentially common bits (%l) as is.
-define float* @or(i64 %i) {
-entry:
- %j = shl i64 %i, 2
- %k = or i64 %j, 3 ; no common bits
- %l = or i64 %j, 4 ; potentially common bits
- %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %k, i64 %l
- ret float* %p
-}
-; CHECK-LABEL: @or
-; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %j, i64 %l
-; CHECK: getelementptr float* [[BASE_PTR]], i64 96
+; CHECK-LABEL: @sext_or(
+; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
+; CHECK: getelementptr float* [[BASE_PTR]], i64 32
; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b +
; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't
@@ -100,11 +121,28 @@ entry:
store i64 %b5, i64* %out
ret float* %p
}
-; CHECK-LABEL: @expr
-; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %0, i64 0
+; CHECK-LABEL: @expr(
+; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0
; CHECK: getelementptr float* [[BASE_PTR]], i64 160
; CHECK: store i64 %b5, i64* %out
+; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8
+define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) {
+entry:
+ %0 = add nsw i32 %c, 8
+ %1 = add nsw i32 %b, %0
+ %2 = add nsw i32 %a, %1
+ %3 = sext i32 %2 to i64
+ %i = add i64 %d, %3
+ %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
+ ret float* %p
+}
+; CHECK-LABEL: @sext_expr(
+; CHECK: sext i32
+; CHECK: sext i32
+; CHECK: sext i32
+; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 8
+
; Verifies we handle "sub" correctly.
define float* @sub(i64 %i, i64 %j) {
%i2 = sub i64 %i, 5 ; i - 5
@@ -112,9 +150,9 @@ define float* @sub(i64 %i, i64 %j) {
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2
ret float* %p
}
-; CHECK-LABEL: @sub
-; CHECK: %[[j2:[0-9]+]] = sub i64 0, %j
-; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
+; CHECK-LABEL: @sub(
+; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j
+; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
; CHECK: getelementptr float* [[BASE_PTR]], i64 -155
%struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed
@@ -130,8 +168,67 @@ entry:
%arrayidx3 = getelementptr inbounds [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom
ret i64* %arrayidx3
}
-; CHECK-LABEL: @packed_struct
-; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [1024 x %struct.Packed]* %s, i64 0, i32 %i, i32 1, i32 %j
-; CHECK: [[CASTED_PTR:%[0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
+; CHECK-LABEL: @packed_struct(
+; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}}
+; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
; CHECK: %uglygep = getelementptr i8* [[CASTED_PTR]], i64 100
; CHECK: bitcast i8* %uglygep to i64*
+
+; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))",
+; because "zext(b + 8) != zext(b) + 8"
+define float* @zext_expr(i32 %a, i32 %b) {
+entry:
+ %0 = add i32 %b, 8
+ %1 = add nuw i32 %a, %0
+ %i = zext i32 %1 to i64
+ %p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
+ ret float* %p
+}
+; CHECK-LABEL: zext_expr(
+; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
+
+; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep
+; should be considered sign-extended to the pointer size. Therefore,
+; gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b
+; because
+; sext(a + b) != sext(a) + sext(b)
+;
+; This test verifies we do not illegitimately extract the 8 from
+; gep base, (i32 a + 8)
+define float* @i32_add(i32 %a) {
+entry:
+ %i = add i32 %a, 8
+ %p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i
+ ret float* %p
+}
+; CHECK-LABEL: @i32_add(
+; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
+; CHECK-NOT: getelementptr
+
+; Verifies that we compute the correct constant offset when the index is
+; sign-extended and then zero-extended. The old version of our code failed to
+; handle this case because it simply computed the constant offset as the
+; sign-extended value of the constant part of the GEP index.
+define float* @apint(i1 %a) {
+entry:
+ %0 = add nsw nuw i1 %a, 1
+ %1 = sext i1 %0 to i4
+ %2 = zext i4 %1 to i64 ; zext (sext i1 1 to i4) to i64 = 15
+ %p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2
+ ret float* %p
+}
+; CHECK-LABEL: @apint(
+; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
+; CHECK: getelementptr float* [[BASE_PTR]], i64 15
+
+; Do not trace into binary operators other than ADD, SUB, and OR.
+define float* @and(i64 %a) {
+entry:
+ %0 = shl i64 %a, 2
+ %1 = and i64 %0, 1
+ %p = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1
+ ret float* %p
+}
+; CHECK-LABEL: @and(
+; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array
+; CHECK-NOT: getelementptr