summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDuncan P. N. Exon Smith <dexonsmith@apple.com>2014-06-20 21:47:47 +0000
committerDuncan P. N. Exon Smith <dexonsmith@apple.com>2014-06-20 21:47:47 +0000
commit67291098a60fbd8dd81be78385b1c88279a3dbc8 (patch)
tree62284a9a5aff563c6ce56d9883f2dc5a74f21023
parent97eb7882031bbfbef6e78af4d64a66494ff6750b (diff)
downloadllvm-67291098a60fbd8dd81be78385b1c88279a3dbc8.tar.gz
llvm-67291098a60fbd8dd81be78385b1c88279a3dbc8.tar.bz2
llvm-67291098a60fbd8dd81be78385b1c88279a3dbc8.tar.xz
Support: Write ScaledNumber::getQuotient() and getProduct()
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211409 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/Analysis/BlockFrequencyInfoImpl.h51
-rw-r--r--include/llvm/Support/ScaledNumber.h76
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp91
-rw-r--r--lib/Support/CMakeLists.txt1
-rw-r--r--lib/Support/ScaledNumber.cpp119
-rw-r--r--unittests/Support/ScaledNumberTest.cpp112
6 files changed, 314 insertions, 136 deletions
diff --git a/include/llvm/Analysis/BlockFrequencyInfoImpl.h b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
index 264aff3725..df4ebcad33 100644
--- a/include/llvm/Analysis/BlockFrequencyInfoImpl.h
+++ b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
@@ -77,9 +77,6 @@ public:
return Lg.first + (Lg.second < 0);
}
- static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
- static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);
-
static int compare(uint64_t L, uint64_t R, int Shift) {
assert(Shift >= 0);
assert(Shift < 64);
@@ -315,8 +312,12 @@ public:
UnsignedFloat inverse() const { return UnsignedFloat(*this).invert(); }
private:
- static UnsignedFloat getProduct(DigitsType L, DigitsType R);
- static UnsignedFloat getQuotient(DigitsType Dividend, DigitsType Divisor);
+ static UnsignedFloat getProduct(DigitsType LHS, DigitsType RHS) {
+ return ScaledNumbers::getProduct(LHS, RHS);
+ }
+ static UnsignedFloat getQuotient(DigitsType Dividend, DigitsType Divisor) {
+ return ScaledNumbers::getQuotient(Dividend, Divisor);
+ }
std::pair<int32_t, int> lgImpl() const;
static int countLeadingZerosWidth(DigitsType Digits) {
@@ -400,46 +401,6 @@ uint64_t UnsignedFloat<DigitsT>::scale(uint64_t N) const {
}
template <class DigitsT>
-UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::getProduct(DigitsType L,
- DigitsType R) {
- // Check for zero.
- if (!L || !R)
- return getZero();
-
- // Check for numbers that we can compute with 64-bit math.
- if (Width <= 32 || (L <= UINT32_MAX && R <= UINT32_MAX))
- return adjustToWidth(uint64_t(L) * uint64_t(R), 0);
-
- // Do the full thing.
- return UnsignedFloat(multiply64(L, R));
-}
-template <class DigitsT>
-UnsignedFloat<DigitsT> UnsignedFloat<DigitsT>::getQuotient(DigitsType Dividend,
- DigitsType Divisor) {
- // Check for zero.
- if (!Dividend)
- return getZero();
- if (!Divisor)
- return getLargest();
-
- if (Width == 64)
- return UnsignedFloat(divide64(Dividend, Divisor));
-
- // We can compute this with 64-bit math.
- int Shift = countLeadingZeros64(Dividend);
- uint64_t Shifted = uint64_t(Dividend) << Shift;
- uint64_t Quotient = Shifted / Divisor;
-
- // If Quotient needs to be shifted, then adjustToWidth will round.
- if (Quotient > DigitsLimits::max())
- return adjustToWidth(Quotient, -Shift);
-
- // Round based on the value of the next bit.
- return getRounded(UnsignedFloat(Quotient, -Shift),
- Shifted % Divisor >= getHalf(Divisor));
-}
-
-template <class DigitsT>
template <class IntT>
IntT UnsignedFloat<DigitsT>::toInt() const {
typedef std::numeric_limits<IntT> Limits;
diff --git a/include/llvm/Support/ScaledNumber.h b/include/llvm/Support/ScaledNumber.h
index 8b7c5d0c4a..6789b89f7e 100644
--- a/include/llvm/Support/ScaledNumber.h
+++ b/include/llvm/Support/ScaledNumber.h
@@ -95,6 +95,82 @@ inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
return getAdjusted<uint64_t>(Digits, Scale);
}
+/// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
+///
+/// Implemented with four 64-bit integer multiplies.
+std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
+
+/// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
+///
+/// Implemented with one 64-bit integer multiply.
+template <class DigitsT>
+inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
+ static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
+
+ if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
+ return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
+
+ return multiply64(LHS, RHS);
+}
+
+/// \brief Convenience helper for 32-bit product.
+inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
+ return getProduct(LHS, RHS);
+}
+
+/// \brief Convenience helper for 64-bit product.
+inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
+ return getProduct(LHS, RHS);
+}
+
+/// \brief Divide two 64-bit integers to create a 64-bit scaled number.
+///
+/// Implemented with long division.
+///
+/// \pre \c Dividend and \c Divisor are non-zero.
+std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
+
+/// \brief Divide two 32-bit integers to create a 32-bit scaled number.
+///
+/// Implemented with one 64-bit integer divide/remainder pair.
+///
+/// \pre \c Dividend and \c Divisor are non-zero.
+std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
+
+/// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
+///
+/// Implemented with one 64-bit integer divide/remainder pair.
+///
+/// Returns \c (DigitsT_MAX, INT16_MAX) for divide-by-zero (0 for 0/0).
+template <class DigitsT>
+std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
+ static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
+ static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
+ "expected 32-bit or 64-bit digits");
+
+ // Check for zero.
+ if (!Dividend)
+ return std::make_pair(0, 0);
+ if (!Divisor)
+ return std::make_pair(std::numeric_limits<DigitsT>::max(), INT16_MAX);
+
+ if (getWidth<DigitsT>() == 64)
+ return divide64(Dividend, Divisor);
+ return divide32(Dividend, Divisor);
+}
+
+/// \brief Convenience helper for 32-bit quotient.
+inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
+ uint32_t Divisor) {
+ return getQuotient(Dividend, Divisor);
+}
+
+/// \brief Convenience helper for 64-bit quotient.
+inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
+ uint64_t Divisor) {
+ return getQuotient(Dividend, Divisor);
+}
+
} // end namespace ScaledNumbers
} // end namespace llvm
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
index 87d93a4bd5..edf1eca45c 100644
--- a/lib/Analysis/BlockFrequencyInfoImpl.cpp
+++ b/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -216,97 +216,6 @@ void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
<< "]";
}
-static std::pair<uint64_t, int16_t>
-getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
- if (ShouldRound)
- if (!++N)
- // Rounding caused an overflow.
- return std::make_pair(UINT64_C(1), Shift + 64);
- return std::make_pair(N, Shift);
-}
-
-std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
- uint64_t Divisor) {
- // Input should be sanitized.
- assert(Divisor);
- assert(Dividend);
-
- // Minimize size of divisor.
- int16_t Shift = 0;
- if (int Zeros = countTrailingZeros(Divisor)) {
- Shift -= Zeros;
- Divisor >>= Zeros;
- }
-
- // Check for powers of two.
- if (Divisor == 1)
- return std::make_pair(Dividend, Shift);
-
- // Maximize size of dividend.
- if (int Zeros = countLeadingZeros64(Dividend)) {
- Shift -= Zeros;
- Dividend <<= Zeros;
- }
-
- // Start with the result of a divide.
- uint64_t Quotient = Dividend / Divisor;
- Dividend %= Divisor;
-
- // Continue building the quotient with long division.
- //
- // TODO: continue with largers digits.
- while (!(Quotient >> 63) && Dividend) {
- // Shift Dividend, and check for overflow.
- bool IsOverflow = Dividend >> 63;
- Dividend <<= 1;
- --Shift;
-
- // Divide.
- bool DoesDivide = IsOverflow || Divisor <= Dividend;
- Quotient = (Quotient << 1) | uint64_t(DoesDivide);
- Dividend -= DoesDivide ? Divisor : 0;
- }
-
- // Round.
- if (Dividend >= getHalf(Divisor))
- if (!++Quotient)
- // Rounding caused an overflow in Quotient.
- return std::make_pair(UINT64_C(1), Shift + 64);
-
- return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
-}
-
-std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
- uint64_t R) {
- // Separate into two 32-bit digits (U.L).
- uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
-
- // Compute cross products.
- uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
-
- // Sum into two 64-bit digits.
- uint64_t Upper = P1, Lower = P4;
- auto addWithCarry = [&](uint64_t N) {
- uint64_t NewLower = Lower + (N << 32);
- Upper += (N >> 32) + (NewLower < Lower);
- Lower = NewLower;
- };
- addWithCarry(P2);
- addWithCarry(P3);
-
- // Check whether the upper digit is empty.
- if (!Upper)
- return std::make_pair(Lower, 0);
-
- // Shift as little as possible to maximize precision.
- unsigned LeadingZeros = countLeadingZeros64(Upper);
- int16_t Shift = 64 - LeadingZeros;
- if (LeadingZeros)
- Upper = Upper << LeadingZeros | Lower >> Shift;
- bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
- return getRoundedFloat(Upper, ShouldRound, Shift);
-}
-
//===----------------------------------------------------------------------===//
//
// BlockMass implementation.
diff --git a/lib/Support/CMakeLists.txt b/lib/Support/CMakeLists.txt
index 2438d729d8..354e2003b5 100644
--- a/lib/Support/CMakeLists.txt
+++ b/lib/Support/CMakeLists.txt
@@ -42,6 +42,7 @@ add_llvm_library(LLVMSupport
PluginLoader.cpp
PrettyStackTrace.cpp
Regex.cpp
+ ScaledNumber.cpp
SmallPtrSet.cpp
SmallVector.cpp
SourceMgr.cpp
diff --git a/lib/Support/ScaledNumber.cpp b/lib/Support/ScaledNumber.cpp
new file mode 100644
index 0000000000..e7531744b6
--- /dev/null
+++ b/lib/Support/ScaledNumber.cpp
@@ -0,0 +1,119 @@
+//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of some scaled number algorithms.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/ScaledNumber.h"
+
+using namespace llvm;
+using namespace llvm::ScaledNumbers;
+
+std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
+ uint64_t RHS) {
+ // Separate into two 32-bit digits (U.L).
+ auto getU = [](uint64_t N) { return N >> 32; };
+ auto getL = [](uint64_t N) { return N & UINT32_MAX; };
+ uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
+
+ // Compute cross products.
+ uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
+
+ // Sum into two 64-bit digits.
+ uint64_t Upper = P1, Lower = P4;
+ auto addWithCarry = [&](uint64_t N) {
+ uint64_t NewLower = Lower + (getL(N) << 32);
+ Upper += getU(N) + (NewLower < Lower);
+ Lower = NewLower;
+ };
+ addWithCarry(P2);
+ addWithCarry(P3);
+
+ // Check whether the upper digit is empty.
+ if (!Upper)
+ return std::make_pair(Lower, 0);
+
+ // Shift as little as possible to maximize precision.
+ unsigned LeadingZeros = countLeadingZeros(Upper);
+ int Shift = 64 - LeadingZeros;
+ if (LeadingZeros)
+ Upper = Upper << LeadingZeros | Lower >> Shift;
+ return getRounded(Upper, Shift,
+ Shift && (Lower & UINT64_C(1) << (Shift - 1)));
+}
+
+static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
+
+std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
+ uint32_t Divisor) {
+ assert(Dividend && "expected non-zero dividend");
+ assert(Divisor && "expected non-zero divisor");
+
+ // Use 64-bit math and canonicalize the dividend to gain precision.
+ uint64_t Dividend64 = Dividend;
+ int Shift = 0;
+ if (int Zeros = countLeadingZeros(Dividend64)) {
+ Shift -= Zeros;
+ Dividend64 <<= Zeros;
+ }
+ uint64_t Quotient = Dividend64 / Divisor;
+ uint64_t Remainder = Dividend64 % Divisor;
+
+ // If Quotient needs to be shifted, leave the rounding to getAdjusted().
+ if (Quotient > UINT32_MAX)
+ return getAdjusted<uint32_t>(Quotient, Shift);
+
+ // Round based on the value of the next bit.
+ return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
+}
+
+std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
+ uint64_t Divisor) {
+ assert(Dividend && "expected non-zero dividend");
+ assert(Divisor && "expected non-zero divisor");
+
+ // Minimize size of divisor.
+ int Shift = 0;
+ if (int Zeros = countTrailingZeros(Divisor)) {
+ Shift -= Zeros;
+ Divisor >>= Zeros;
+ }
+
+ // Check for powers of two.
+ if (Divisor == 1)
+ return std::make_pair(Dividend, Shift);
+
+ // Maximize size of dividend.
+ if (int Zeros = countLeadingZeros(Dividend)) {
+ Shift -= Zeros;
+ Dividend <<= Zeros;
+ }
+
+ // Start with the result of a divide.
+ uint64_t Quotient = Dividend / Divisor;
+ Dividend %= Divisor;
+
+ // Continue building the quotient with long division.
+ while (!(Quotient >> 63) && Dividend) {
+ // Shift Dividend and check for overflow.
+ bool IsOverflow = Dividend >> 63;
+ Dividend <<= 1;
+ --Shift;
+
+ // Get the next bit of Quotient.
+ Quotient <<= 1;
+ if (IsOverflow || Divisor <= Dividend) {
+ Quotient |= 1;
+ Dividend -= Divisor;
+ }
+ }
+
+ return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
+}
diff --git a/unittests/Support/ScaledNumberTest.cpp b/unittests/Support/ScaledNumberTest.cpp
index e6d24d4512..6f7cc2a14b 100644
--- a/unittests/Support/ScaledNumberTest.cpp
+++ b/unittests/Support/ScaledNumberTest.cpp
@@ -79,4 +79,116 @@ TEST(FloatsTest, getAdjusted) {
EXPECT_EQ(getAdjusted64(UINT64_MAX), SP64(UINT64_MAX, 0));
}
+TEST(PositiveFloatTest, getProduct) {
+ // Zero.
+ EXPECT_EQ(SP32(0, 0), getProduct32(0, 0));
+ EXPECT_EQ(SP32(0, 0), getProduct32(0, 1));
+ EXPECT_EQ(SP32(0, 0), getProduct32(0, 33));
+
+ // Basic.
+ EXPECT_EQ(SP32(6, 0), getProduct32(2, 3));
+ EXPECT_EQ(SP32(UINT16_MAX / 3 * UINT16_MAX / 5 * 2, 0),
+ getProduct32(UINT16_MAX / 3, UINT16_MAX / 5 * 2));
+
+ // Overflow, no loss of precision.
+ // ==> 0xf00010 * 0x1001
+ // ==> 0xf00f00000 + 0x10010
+ // ==> 0xf00f10010
+ // ==> 0xf00f1001 * 2^4
+ EXPECT_EQ(SP32(0xf00f1001, 4), getProduct32(0xf00010, 0x1001));
+
+ // Overflow, loss of precision, rounds down.
+ // ==> 0xf000070 * 0x1001
+ // ==> 0xf00f000000 + 0x70070
+ // ==> 0xf00f070070
+ // ==> 0xf00f0700 * 2^8
+ EXPECT_EQ(SP32(0xf00f0700, 8), getProduct32(0xf000070, 0x1001));
+
+ // Overflow, loss of precision, rounds up.
+ // ==> 0xf000080 * 0x1001
+ // ==> 0xf00f000000 + 0x80080
+ // ==> 0xf00f080080
+ // ==> 0xf00f0801 * 2^8
+ EXPECT_EQ(SP32(0xf00f0801, 8), getProduct32(0xf000080, 0x1001));
+
+ // Reverse operand order.
+ EXPECT_EQ(SP32(0, 0), getProduct32(1, 0));
+ EXPECT_EQ(SP32(0, 0), getProduct32(33, 0));
+ EXPECT_EQ(SP32(6, 0), getProduct32(3, 2));
+ EXPECT_EQ(SP32(UINT16_MAX / 3 * UINT16_MAX / 5 * 2, 0),
+ getProduct32(UINT16_MAX / 5 * 2, UINT16_MAX / 3));
+ EXPECT_EQ(SP32(0xf00f1001, 4), getProduct32(0x1001, 0xf00010));
+ EXPECT_EQ(SP32(0xf00f0700, 8), getProduct32(0x1001, 0xf000070));
+ EXPECT_EQ(SP32(0xf00f0801, 8), getProduct32(0x1001, 0xf000080));
+
+ // Round to overflow.
+ EXPECT_EQ(SP64(UINT64_C(1) << 63, 64),
+ getProduct64(UINT64_C(10376293541461622786),
+ UINT64_C(16397105843297379211)));
+
+ // Big number with rounding.
+ EXPECT_EQ(SP64(UINT64_C(9223372036854775810), 64),
+ getProduct64(UINT64_C(18446744073709551556),
+ UINT64_C(9223372036854775840)));
+}
+
+TEST(PositiveFloatTest, Divide) {
+ // Zero.
+ EXPECT_EQ(SP32(0, 0), getQuotient32(0, 0));
+ EXPECT_EQ(SP32(0, 0), getQuotient32(0, 1));
+ EXPECT_EQ(SP32(0, 0), getQuotient32(0, 73));
+ EXPECT_EQ(SP32(UINT32_MAX, INT16_MAX), getQuotient32(1, 0));
+ EXPECT_EQ(SP32(UINT32_MAX, INT16_MAX), getQuotient32(6, 0));
+
+ // Powers of two.
+ EXPECT_EQ(SP32(1u << 31, -31), getQuotient32(1, 1));
+ EXPECT_EQ(SP32(1u << 31, -30), getQuotient32(2, 1));
+ EXPECT_EQ(SP32(1u << 31, -33), getQuotient32(4, 16));
+ EXPECT_EQ(SP32(7u << 29, -29), getQuotient32(7, 1));
+ EXPECT_EQ(SP32(7u << 29, -30), getQuotient32(7, 2));
+ EXPECT_EQ(SP32(7u << 29, -33), getQuotient32(7, 16));
+
+ // Divide evenly.
+ EXPECT_EQ(SP32(3u << 30, -30), getQuotient32(9, 3));
+ EXPECT_EQ(SP32(9u << 28, -28), getQuotient32(63, 7));
+
+ // Divide unevenly.
+ EXPECT_EQ(SP32(0xaaaaaaab, -33), getQuotient32(1, 3));
+ EXPECT_EQ(SP32(0xd5555555, -31), getQuotient32(5, 3));
+
+ // 64-bit division is hard to test, since divide64 doesn't canonicalized its
+ // output. However, this is the algorithm the implementation uses:
+ //
+ // - Shift divisor right.
+ // - If we have 1 (power of 2), return early -- not canonicalized.
+ // - Shift dividend left.
+ // - 64-bit integer divide.
+ // - If there's a remainder, continue with long division.
+ //
+ // TODO: require less knowledge about the implementation in the test.
+
+ // Zero.
+ EXPECT_EQ(SP64(0, 0), getQuotient64(0, 0));
+ EXPECT_EQ(SP64(0, 0), getQuotient64(0, 1));
+ EXPECT_EQ(SP64(0, 0), getQuotient64(0, 73));
+ EXPECT_EQ(SP64(UINT64_MAX, INT16_MAX), getQuotient64(1, 0));
+ EXPECT_EQ(SP64(UINT64_MAX, INT16_MAX), getQuotient64(6, 0));
+
+ // Powers of two.
+ EXPECT_EQ(SP64(1, 0), getQuotient64(1, 1));
+ EXPECT_EQ(SP64(2, 0), getQuotient64(2, 1));
+ EXPECT_EQ(SP64(4, -4), getQuotient64(4, 16));
+ EXPECT_EQ(SP64(7, 0), getQuotient64(7, 1));
+ EXPECT_EQ(SP64(7, -1), getQuotient64(7, 2));
+ EXPECT_EQ(SP64(7, -4), getQuotient64(7, 16));
+
+ // Divide evenly.
+ EXPECT_EQ(SP64(UINT64_C(3) << 60, -60), getQuotient64(9, 3));
+ EXPECT_EQ(SP64(UINT64_C(9) << 58, -58), getQuotient64(63, 7));
+
+ // Divide unevenly.
+ EXPECT_EQ(SP64(0xaaaaaaaaaaaaaaab, -65), getQuotient64(1, 3));
+ EXPECT_EQ(SP64(0xd555555555555555, -63), getQuotient64(5, 3));
+}
+
} // end namespace