summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJakob Stoklund Olesen <stoklund@2pi.dk>2012-11-28 02:35:13 +0000
committerJakob Stoklund Olesen <stoklund@2pi.dk>2012-11-28 02:35:13 +0000
commitfa2d98632c77e5d9c305e97e5fa25d06f579127b (patch)
treef9660d42a520e4fd70a22a9c0e3f3c986d66775d
parent11fad6ec660d2131e040ebdecc4433b359d05e5f (diff)
downloadllvm-fa2d98632c77e5d9c305e97e5fa25d06f579127b.tar.gz
llvm-fa2d98632c77e5d9c305e97e5fa25d06f579127b.tar.bz2
llvm-fa2d98632c77e5d9c305e97e5fa25d06f579127b.tar.xz
Move the guts of TargetInstrInfoImpl into the TargetInstrInfo class.
The *Impl class no longer serves a purpose now that the super-class implementation is in CodeGen. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168759 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/Target/TargetInstrInfo.h129
-rw-r--r--lib/CodeGen/CMakeLists.txt1
-rw-r--r--lib/CodeGen/TargetInstrInfo.cpp667
-rw-r--r--lib/CodeGen/TargetInstrInfoImpl.cpp682
4 files changed, 686 insertions, 793 deletions
diff --git a/include/llvm/Target/TargetInstrInfo.h b/include/llvm/Target/TargetInstrInfo.h
index d2e06114d8..09ca04e946 100644
--- a/include/llvm/Target/TargetInstrInfo.h
+++ b/include/llvm/Target/TargetInstrInfo.h
@@ -143,9 +143,7 @@ public:
/// missed.
virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
- int &FrameIndex) const {
- return 0;
- }
+ int &FrameIndex) const;
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
@@ -173,9 +171,7 @@ public:
/// stack. This is just a hint, as some cases may be missed.
virtual bool hasStoreToStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
- int &FrameIndex) const {
- return 0;
- }
+ int &FrameIndex) const;
/// reMaterialize - Re-issue the specified 'original' instruction at the
/// specific location targeting a new destination register.
@@ -186,7 +182,7 @@ public:
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig,
- const TargetRegisterInfo &TRI) const = 0;
+ const TargetRegisterInfo &TRI) const;
/// duplicate - Create a duplicate of the Orig instruction in MF. This is like
/// MachineFunction::CloneMachineInstr(), but the target may update operands
@@ -194,7 +190,7 @@ public:
///
/// The instruction must be duplicable as indicated by isNotDuplicable().
virtual MachineInstr *duplicate(MachineInstr *Orig,
- MachineFunction &MF) const = 0;
+ MachineFunction &MF) const;
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
@@ -221,13 +217,13 @@ public:
/// method for a non-commutable instruction, but there may be some cases
/// where this method fails and returns null.
virtual MachineInstr *commuteInstruction(MachineInstr *MI,
- bool NewMI = false) const = 0;
+ bool NewMI = false) const;
/// findCommutedOpIndices - If specified MI is commutable, return the two
/// operand indices that would swap value. Return false if the instruction
/// is not in a form which this routine understands.
virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const = 0;
+ unsigned &SrcOpIdx2) const;
/// produceSameValue - Return true if two machine instructions would produce
/// identical values. By default, this is only true when the two instructions
@@ -236,7 +232,7 @@ public:
/// aggressive checks.
virtual bool produceSameValue(const MachineInstr *MI0,
const MachineInstr *MI1,
- const MachineRegisterInfo *MRI = 0) const = 0;
+ const MachineRegisterInfo *MRI = 0) const;
/// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
@@ -298,7 +294,7 @@ public:
/// after it, replacing it with an unconditional branch to NewDest. This is
/// used by the tail merging pass.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const = 0;
+ MachineBasicBlock *NewDest) const;
/// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
/// block at the specified instruction (i.e. instruction would be the start
@@ -569,7 +565,7 @@ public:
/// folding is possible.
virtual
bool canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const =0;
+ const SmallVectorImpl<unsigned> &Ops) const;
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
/// a store or a load and a store into two or more instruction. If this is
@@ -669,13 +665,13 @@ public:
/// isUnpredicatedTerminator - Returns true if the instruction is a
/// terminator instruction that has not been predicated.
- virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const = 0;
+ virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
/// PredicateInstruction - Convert the instruction into a predicated
/// instruction. It returns true if the operation was successful.
virtual
bool PredicateInstruction(MachineInstr *MI,
- const SmallVectorImpl<MachineOperand> &Pred) const = 0;
+ const SmallVectorImpl<MachineOperand> &Pred) const;
/// SubsumesPredicate - Returns true if the first specified predicate
/// subsumes the second, e.g. GE subsumes GT.
@@ -711,7 +707,7 @@ public:
/// terminators.
virtual bool isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
- const MachineFunction &MF) const = 0;
+ const MachineFunction &MF) const;
/// Measure the specified inline asm to determine an approximation of its
/// length.
@@ -723,21 +719,25 @@ public:
/// register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetHazardRecognizer(const TargetMachine *TM,
- const ScheduleDAG *DAG) const = 0;
+ const ScheduleDAG *DAG) const;
/// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
/// to use for this target when scheduling the machine instructions before
/// register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetMIHazardRecognizer(const InstrItineraryData*,
- const ScheduleDAG *DAG) const = 0;
+ const ScheduleDAG *DAG) const;
/// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
/// recognizer to use for this target when scheduling the machine instructions
/// after register allocation.
virtual ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
- const ScheduleDAG *DAG) const = 0;
+ const ScheduleDAG *DAG) const;
+
+ /// Provide a global flag for disabling the PreRA hazard recognizer that
+ /// targets may choose to honor.
+ bool usePreRAHazardRecognizer() const;
/// analyzeCompare - For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2 if having two register operands, and the value it
@@ -785,7 +785,7 @@ public:
/// IssueWidth is the number of microops that can be dispatched each
/// cycle. An instruction with zero microops takes no dispatch resources.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr *MI) const = 0;
+ const MachineInstr *MI) const;
/// isZeroCost - Return true for pseudo instructions that don't consume any
/// machine resources in their current form. These are common cases that the
@@ -797,7 +797,7 @@ public:
virtual int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const = 0;
+ SDNode *UseNode, unsigned UseIdx) const;
/// getOperandLatency - Compute and return the use operand latency of a given
/// pair of def and use.
@@ -810,7 +810,7 @@ public:
virtual int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI,
- unsigned UseIdx) const = 0;
+ unsigned UseIdx) const;
/// computeOperandLatency - Compute and return the latency of the given data
/// dependent def and use when the operand indices are already known.
@@ -826,10 +826,10 @@ public:
/// PredCost.
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
- unsigned *PredCost = 0) const = 0;
+ unsigned *PredCost = 0) const;
virtual int getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *Node) const = 0;
+ SDNode *Node) const;
/// Return the default expected latency for a def based on it's opcode.
unsigned defaultDefLatency(const MCSchedModel *SchedModel,
@@ -859,7 +859,7 @@ public:
/// if the target considered it 'low'.
virtual
bool hasLowDefLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx) const = 0;
+ const MachineInstr *DefMI, unsigned DefIdx) const;
/// verifyInstruction - Perform target specific instruction verification.
virtual
@@ -976,83 +976,8 @@ private:
int CallFrameSetupOpcode, CallFrameDestroyOpcode;
};
-/// TargetInstrInfoImpl - This is the default implementation of
-/// TargetInstrInfo, which just provides a couple of default implementations
-/// for various methods. This separated out because it is implemented in
-/// libcodegen, not in libtarget.
-class TargetInstrInfoImpl : public TargetInstrInfo {
-protected:
- TargetInstrInfoImpl(int CallFrameSetupOpcode = -1,
- int CallFrameDestroyOpcode = -1)
- : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {}
-public:
- virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
- MachineBasicBlock *NewDest) const;
- virtual MachineInstr *commuteInstruction(MachineInstr *MI,
- bool NewMI = false) const;
- virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const;
- virtual bool canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const;
- virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const;
- virtual bool hasStoreToStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const;
- virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
- virtual bool PredicateInstruction(MachineInstr *MI,
- const SmallVectorImpl<MachineOperand> &Pred) const;
- virtual void reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned DestReg, unsigned SubReg,
- const MachineInstr *Orig,
- const TargetRegisterInfo &TRI) const;
- virtual MachineInstr *duplicate(MachineInstr *Orig,
- MachineFunction &MF) const;
- virtual bool produceSameValue(const MachineInstr *MI0,
- const MachineInstr *MI1,
- const MachineRegisterInfo *MRI) const;
- virtual bool isSchedulingBoundary(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const;
-
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const;
-
- virtual int getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *Node) const;
-
- virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr *MI) const;
-
- virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr *MI,
- unsigned *PredCost = 0) const;
-
- virtual
- bool hasLowDefLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx) const;
-
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI,
- unsigned UseIdx) const;
-
- bool usePreRAHazardRecognizer() const;
-
- virtual ScheduleHazardRecognizer *
- CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
-
- virtual ScheduleHazardRecognizer *
- CreateTargetMIHazardRecognizer(const InstrItineraryData*,
- const ScheduleDAG*) const;
-
- virtual ScheduleHazardRecognizer *
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
- const ScheduleDAG*) const;
-};
+// Temporary typedef until all TargetInstrInfoImpl references are gone.
+typedef TargetInstrInfo TargetInstrInfoImpl;
} // End llvm namespace
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index 3039242203..1e08672183 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -100,7 +100,6 @@ add_llvm_library(LLVMCodeGen
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
- TargetInstrInfoImpl.cpp
TargetLoweringObjectFileImpl.cpp
TargetOptionsImpl.cpp
TargetRegisterInfo.cpp
diff --git a/lib/CodeGen/TargetInstrInfo.cpp b/lib/CodeGen/TargetInstrInfo.cpp
index f1d1d07c38..f949287421 100644
--- a/lib/CodeGen/TargetInstrInfo.cpp
+++ b/lib/CodeGen/TargetInstrInfo.cpp
@@ -12,20 +12,25 @@
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
#include <cctype>
using namespace llvm;
-//===----------------------------------------------------------------------===//
-// TargetInstrInfo
-//
-// Methods that depend on CodeGen are implemented in
-// TargetInstrInfoImpl.cpp. Invoking them without linking libCodeGen raises a
-// link error.
-// ===----------------------------------------------------------------------===//
+static cl::opt<bool> DisableHazardRecognizer(
+ "disable-sched-hazard", cl::Hidden, cl::init(false),
+ cl::desc("Disable hazard detection during preRA scheduling"));
TargetInstrInfo::~TargetInstrInfo() {
}
@@ -86,3 +91,649 @@ unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
return Length;
}
+
+/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
+/// after it, replacing it with an unconditional branch to NewDest.
+void
+TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
+ MachineBasicBlock *NewDest) const {
+ MachineBasicBlock *MBB = Tail->getParent();
+
+ // Remove all the old successors of MBB from the CFG.
+ while (!MBB->succ_empty())
+ MBB->removeSuccessor(MBB->succ_begin());
+
+ // Remove all the dead instructions from the end of MBB.
+ MBB->erase(Tail, MBB->end());
+
+ // If MBB isn't immediately before MBB, insert a branch to it.
+ if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
+ InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
+ Tail->getDebugLoc());
+ MBB->addSuccessor(NewDest);
+}
+
+// commuteInstruction - The default implementation of this method just exchanges
+// the two operands returned by findCommutedOpIndices.
+MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
+ bool NewMI) const {
+ const MCInstrDesc &MCID = MI->getDesc();
+ bool HasDef = MCID.getNumDefs();
+ if (HasDef && !MI->getOperand(0).isReg())
+ // No idea how to commute this instruction. Target should implement its own.
+ return 0;
+ unsigned Idx1, Idx2;
+ if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Don't know how to commute: " << *MI;
+ report_fatal_error(Msg.str());
+ }
+
+ assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
+ "This only knows how to commute register operands so far");
+ unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
+ unsigned Reg1 = MI->getOperand(Idx1).getReg();
+ unsigned Reg2 = MI->getOperand(Idx2).getReg();
+ unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
+ unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
+ unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
+ bool Reg1IsKill = MI->getOperand(Idx1).isKill();
+ bool Reg2IsKill = MI->getOperand(Idx2).isKill();
+ // If destination is tied to either of the commuted source register, then
+ // it must be updated.
+ if (HasDef && Reg0 == Reg1 &&
+ MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
+ Reg2IsKill = false;
+ Reg0 = Reg2;
+ SubReg0 = SubReg2;
+ } else if (HasDef && Reg0 == Reg2 &&
+ MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
+ Reg1IsKill = false;
+ Reg0 = Reg1;
+ SubReg0 = SubReg1;
+ }
+
+ if (NewMI) {
+ // Create a new instruction.
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ }
+
+ if (HasDef) {
+ MI->getOperand(0).setReg(Reg0);
+ MI->getOperand(0).setSubReg(SubReg0);
+ }
+ MI->getOperand(Idx2).setReg(Reg1);
+ MI->getOperand(Idx1).setReg(Reg2);
+ MI->getOperand(Idx2).setSubReg(SubReg1);
+ MI->getOperand(Idx1).setSubReg(SubReg2);
+ MI->getOperand(Idx2).setIsKill(Reg1IsKill);
+ MI->getOperand(Idx1).setIsKill(Reg2IsKill);
+ return MI;
+}
+
+/// findCommutedOpIndices - If specified MI is commutable, return the two
+/// operand indices that would swap value. Return true if the instruction
+/// is not in a form which this routine understands.
+bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
+ unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ assert(!MI->isBundle() &&
+ "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isCommutable())
+ return false;
+ // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
+ // is not true, then the target must implement this.
+ SrcOpIdx1 = MCID.getNumDefs();
+ SrcOpIdx2 = SrcOpIdx1 + 1;
+ if (!MI->getOperand(SrcOpIdx1).isReg() ||
+ !MI->getOperand(SrcOpIdx2).isReg())
+ // No idea.
+ return false;
+ return true;
+}
+
+
+bool
+TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ if (!MI->isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (MI->isBranch() && !MI->isBarrier())
+ return true;
+ if (!MI->isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+
+bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ bool MadeChange = false;
+
+ assert(!MI->isBundle() &&
+ "TargetInstrInfo::PredicateInstruction() can't handle bundles");
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MI->isPredicable())
+ return false;
+
+ for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ if (MCID.OpInfo[i].isPredicate()) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg()) {
+ MO.setReg(Pred[j].getReg());
+ MadeChange = true;
+ } else if (MO.isImm()) {
+ MO.setImm(Pred[j].getImm());
+ MadeChange = true;
+ } else if (MO.isMBB()) {
+ MO.setMBB(Pred[j].getMBB());
+ MadeChange = true;
+ }
+ ++j;
+ }
+ }
+ return MadeChange;
+}
+
+bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const {
+ for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
+ oe = MI->memoperands_end();
+ o != oe;
+ ++o) {
+ if ((*o)->isLoad() && (*o)->getValue())
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
+ FrameIndex = Value->getFrameIndex();
+ MMO = *o;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const {
+ for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
+ oe = MI->memoperands_end();
+ o != oe;
+ ++o) {
+ if ((*o)->isStore() && (*o)->getValue())
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
+ FrameIndex = Value->getFrameIndex();
+ MMO = *o;
+ return true;
+ }
+ }
+ return false;
+}
+
+void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg,
+ unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+ MBB.insert(I, MI);
+}
+
+bool
+TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
+ const MachineInstr *MI1,
+ const MachineRegisterInfo *MRI) const {
+ return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
+}
+
+MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
+ MachineFunction &MF) const {
+ assert(!Orig->isNotDuplicable() &&
+ "Instruction cannot be duplicated");
+ return MF.CloneMachineInstr(Orig);
+}
+
+// If the COPY instruction in MI can be folded to a stack operation, return
+// the register class to use.
+static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
+ unsigned FoldIdx) {
+ assert(MI->isCopy() && "MI must be a COPY instruction");
+ if (MI->getNumOperands() != 2)
+ return 0;
+ assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
+
+ const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
+ const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
+
+ if (FoldOp.getSubReg() || LiveOp.getSubReg())
+ return 0;
+
+ unsigned FoldReg = FoldOp.getReg();
+ unsigned LiveReg = LiveOp.getReg();
+
+ assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
+ "Cannot fold physregs");
+
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
+
+ if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
+ return RC->contains(LiveOp.getReg()) ? RC : 0;
+
+ if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
+ return RC;
+
+ // FIXME: Allow folding when register classes are memory compatible.
+ return 0;
+}
+
+bool TargetInstrInfo::
+canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const {
+ return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
+}
+
+/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
+/// slot into the specified machine instruction for the specified operand(s).
+/// If this is possible, a new instruction is returned with the specified
+/// operand folded, otherwise NULL is returned. The client is responsible for
+/// removing the old instruction and adding the new one in the instruction
+/// stream.
+MachineInstr*
+TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FI) const {
+ unsigned Flags = 0;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (MI->getOperand(Ops[i]).isDef())
+ Flags |= MachineMemOperand::MOStore;
+ else
+ Flags |= MachineMemOperand::MOLoad;
+
+ MachineBasicBlock *MBB = MI->getParent();
+ assert(MBB && "foldMemoryOperand needs an inserted instruction");
+ MachineFunction &MF = *MBB->getParent();
+
+ // Ask the target to do the actual folding.
+ if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
+ // Add a memory operand, foldMemoryOperandImpl doesn't do that.
+ assert((!(Flags & MachineMemOperand::MOStore) ||
+ NewMI->mayStore()) &&
+ "Folded a def to a non-store!");
+ assert((!(Flags & MachineMemOperand::MOLoad) ||
+ NewMI->mayLoad()) &&
+ "Folded a use to a non-load!");
+ const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ assert(MFI.getObjectOffset(FI) != -1);
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ Flags, MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ NewMI->addMemOperand(MF, MMO);
+
+ // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
+ return MBB->insert(MI, NewMI);
+ }
+
+ // Straight COPY may fold as load/store.
+ if (!MI->isCopy() || Ops.size() != 1)
+ return 0;
+
+ const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
+ if (!RC)
+ return 0;
+
+ const MachineOperand &MO = MI->getOperand(1-Ops[0]);
+ MachineBasicBlock::iterator Pos = MI;
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+
+ if (Flags == MachineMemOperand::MOStore)
+ storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
+ else
+ loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
+ return --Pos;
+}
+
+/// foldMemoryOperand - Same as the previous version except it allows folding
+/// of any load and store from / to any address, not just from a specific
+/// stack slot.
+MachineInstr*
+TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const {
+ assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
+#ifndef NDEBUG
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
+#endif
+ MachineBasicBlock &MBB = *MI->getParent();
+ MachineFunction &MF = *MBB.getParent();
+
+ // Ask the target to do the actual folding.
+ MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
+ if (!NewMI) return 0;
+
+ NewMI = MBB.insert(MI, NewMI);
+
+ // Copy the memoperands from the load to the folded instruction.
+ NewMI->setMemRefs(LoadMI->memoperands_begin(),
+ LoadMI->memoperands_end());
+
+ return NewMI;
+}
+
+bool TargetInstrInfo::
+isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
+ AliasAnalysis *AA) const {
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetMachine &TM = MF.getTarget();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+
+ // Remat clients assume operand 0 is the defined register.
+ if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
+ return false;
+ unsigned DefReg = MI->getOperand(0).getReg();
+
+ // A sub-register definition can only be rematerialized if the instruction
+ // doesn't read the other parts of the register. Otherwise it is really a
+ // read-modify-write operation on the full virtual register which cannot be
+ // moved safely.
+ if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
+ MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
+ return false;
+
+ // A load from a fixed stack slot can be rematerialized. This may be
+ // redundant with subsequent checks, but it's target-independent,
+ // simple, and a common case.
+ int FrameIdx = 0;
+ if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
+ MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
+ return true;
+
+ // Avoid instructions obviously unsafe for remat.
+ if (MI->isNotDuplicable() || MI->mayStore() ||
+ MI->hasUnmodeledSideEffects())
+ return false;
+
+ // Don't remat inline asm. We have no idea how expensive it is
+ // even if it's side effect free.
+ if (MI->isInlineAsm())
+ return false;
+
+ // Avoid instructions which load from potentially varying memory.
+ if (MI->mayLoad() && !MI->isInvariantLoad(AA))
+ return false;
+
+ // If any of the registers accessed are non-constant, conservatively assume
+ // the instruction is not rematerializable.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ // Check for a well-behaved physical register.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI.isConstantPhysReg(Reg, MF))
+ return false;
+ } else {
+ // A physreg def. We can't remat it.
+ return false;
+ }
+ continue;
+ }
+
+ // Only allow one virtual-register def. There may be multiple defs of the
+ // same virtual register, though.
+ if (MO.isDef() && Reg != DefReg)
+ return false;
+
+ // Don't allow any virtual-register uses. Rematting an instruction with
+ // virtual register uses would length the live ranges of the uses, which
+ // is not necessarily a good idea, certainly not "trivial".
+ if (MO.isUse())
+ return false;
+ }
+
+ // Everything checked out.
+ return true;
+}
+
+/// isSchedulingBoundary - Test if the given instruction should be
+/// considered a scheduling boundary. This primarily includes labels
+/// and terminators.
+bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Terminators and labels can't be scheduled around.
+ if (MI->isTerminator() || MI->isLabel())
+ return true;
+
+ // Don't attempt to schedule around any instruction that defines
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
+ return true;
+
+ return false;
+}
+
+// Provide a global flag for disabling the PreRA hazard recognizer that targets
+// may choose to honor.
+bool TargetInstrInfo::usePreRAHazardRecognizer() const {
+ return !DisableHazardRecognizer;
+}
+
+// Default implementation of CreateTargetRAHazardRecognizer.
+ScheduleHazardRecognizer *TargetInstrInfo::
+CreateTargetHazardRecognizer(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const {
+ // Dummy hazard recognizer allows all instructions to issue.
+ return new ScheduleHazardRecognizer();
+}
+
+// Default implementation of CreateTargetMIHazardRecognizer.
+ScheduleHazardRecognizer *TargetInstrInfo::
+CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ return (ScheduleHazardRecognizer *)
+ new ScoreboardHazardRecognizer(II, DAG, "misched");
+}
+
+// Default implementation of CreateTargetPostRAHazardRecognizer.
+ScheduleHazardRecognizer *TargetInstrInfo::
+CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ return (ScheduleHazardRecognizer *)
+ new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAG latency interface.
+//===----------------------------------------------------------------------===//
+
+int
+TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const {
+ if (!ItinData || ItinData->isEmpty())
+ return -1;
+
+ if (!DefNode->isMachineOpcode())
+ return -1;
+
+ unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
+ if (!UseNode->isMachineOpcode())
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+ unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+}
+
+int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *N) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ if (!N->isMachineOpcode())
+ return 1;
+
+ return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
+}
+
+//===----------------------------------------------------------------------===//
+// MachineInstr latency interface.
+//===----------------------------------------------------------------------===//
+
+unsigned
+TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ unsigned Class = MI->getDesc().getSchedClass();
+ int UOps = ItinData->Itineraries[Class].NumMicroOps;
+ if (UOps >= 0)
+ return UOps;
+
+ // The # of u-ops is dynamically determined. The specific target should
+ // override this function to return the right number.
+ return 1;
+}
+
+/// Return the default expected latency for a def based on it's opcode.
+unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
+ const MachineInstr *DefMI) const {
+ if (DefMI->isTransient())
+ return 0;
+ if (DefMI->mayLoad())
+ return SchedModel->LoadLatency;
+ if (isHighLatencyDef(DefMI->getOpcode()))
+ return SchedModel->HighLatency;
+ return 1;
+}
+
+unsigned TargetInstrInfo::
+getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost) const {
+ // Default to one cycle for no itinerary. However, an "empty" itinerary may
+ // still have a MinLatency property, which getStageLatency checks.
+ if (!ItinData)
+ return MI->mayLoad() ? 2 : 1;
+
+ return ItinData->getStageLatency(MI->getDesc().getSchedClass());
+}
+
+bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI,
+ unsigned DefIdx) const {
+ if (!ItinData || ItinData->isEmpty())
+ return false;
+
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ return (DefCycle != -1 && DefCycle <= 1);
+}
+
+/// Both DefMI and UseMI must be valid. By default, call directly to the
+/// itinerary. This may be overriden by the target.
+int TargetInstrInfo::
+getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx) const {
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ unsigned UseClass = UseMI->getDesc().getSchedClass();
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+}
+
+/// If we can determine the operand latency from the def only, without itinerary
+/// lookup, do so. Otherwise return -1.
+int TargetInstrInfo::computeDefOperandLatency(
+ const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, bool FindMin) const {
+
+ // Let the target hook getInstrLatency handle missing itineraries.
+ if (!ItinData)
+ return getInstrLatency(ItinData, DefMI);
+
+ // Return a latency based on the itinerary properties and defining instruction
+ // if possible. Some common subtargets don't require per-operand latency,
+ // especially for minimum latencies.
+ if (FindMin) {
+ // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
+ // it exists before defaulting to MinLatency.
+ if (ItinData->SchedModel->MinLatency >= 0)
+ return getInstrLatency(ItinData, DefMI);
+
+ // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
+ // For empty itineraries, short-cirtuit the check and default to one cycle.
+ if (ItinData->isEmpty())
+ return 1;
+ }
+ else if(ItinData->isEmpty())
+ return defaultDefLatency(ItinData->SchedModel, DefMI);
+
+ // ...operand lookup required
+ return -1;
+}
+
+/// computeOperandLatency - Compute and return the latency of the given data
+/// dependent def and use when the operand indices are already known. UseMI may
+/// be NULL for an unknown use.
+///
+/// FindMin may be set to get the minimum vs. expected latency. Minimum
+/// latency is used for scheduling groups, while expected latency is for
+/// instruction cost and critical path.
+///
+/// Depending on the subtarget's itinerary properties, this may or may not need
+/// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
+/// UseIdx to compute min latency.
+unsigned TargetInstrInfo::
+computeOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx,
+ bool FindMin) const {
+
+ int DefLatency = computeDefOperandLatency(ItinData, DefMI, FindMin);
+ if (DefLatency >= 0)
+ return DefLatency;
+
+ assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
+
+ int OperLatency = 0;
+ if (UseMI)
+ OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
+ else {
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
+ }
+ if (OperLatency >= 0)
+ return OperLatency;
+
+ // No operand latency was found.
+ unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
+
+ // Expected latency is the max of the stage latency and itinerary props.
+ if (!FindMin)
+ InstrLatency = std::max(InstrLatency,
+ defaultDefLatency(ItinData->SchedModel, DefMI));
+ return InstrLatency;
+}
diff --git a/lib/CodeGen/TargetInstrInfoImpl.cpp b/lib/CodeGen/TargetInstrInfoImpl.cpp
deleted file mode 100644
index 433f2ea061..0000000000
--- a/lib/CodeGen/TargetInstrInfoImpl.cpp
+++ /dev/null
@@ -1,682 +0,0 @@
-//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the TargetInstrInfoImpl class, it just provides default
-// implementations of various methods.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/MC/MCInstrItineraries.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace llvm;
-
-static cl::opt<bool> DisableHazardRecognizer(
- "disable-sched-hazard", cl::Hidden, cl::init(false),
- cl::desc("Disable hazard detection during preRA scheduling"));
-
-/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
-/// after it, replacing it with an unconditional branch to NewDest.
-void
-TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const {
- MachineBasicBlock *MBB = Tail->getParent();
-
- // Remove all the old successors of MBB from the CFG.
- while (!MBB->succ_empty())
- MBB->removeSuccessor(MBB->succ_begin());
-
- // Remove all the dead instructions from the end of MBB.
- MBB->erase(Tail, MBB->end());
-
- // If MBB isn't immediately before MBB, insert a branch to it.
- if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
- InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
- Tail->getDebugLoc());
- MBB->addSuccessor(NewDest);
-}
-
-// commuteInstruction - The default implementation of this method just exchanges
-// the two operands returned by findCommutedOpIndices.
-MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
- bool NewMI) const {
- const MCInstrDesc &MCID = MI->getDesc();
- bool HasDef = MCID.getNumDefs();
- if (HasDef && !MI->getOperand(0).isReg())
- // No idea how to commute this instruction. Target should implement its own.
- return 0;
- unsigned Idx1, Idx2;
- if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Don't know how to commute: " << *MI;
- report_fatal_error(Msg.str());
- }
-
- assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
- "This only knows how to commute register operands so far");
- unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
- unsigned Reg1 = MI->getOperand(Idx1).getReg();
- unsigned Reg2 = MI->getOperand(Idx2).getReg();
- unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
- unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
- unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
- bool Reg1IsKill = MI->getOperand(Idx1).isKill();
- bool Reg2IsKill = MI->getOperand(Idx2).isKill();
- // If destination is tied to either of the commuted source register, then
- // it must be updated.
- if (HasDef && Reg0 == Reg1 &&
- MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
- Reg2IsKill = false;
- Reg0 = Reg2;
- SubReg0 = SubReg2;
- } else if (HasDef && Reg0 == Reg2 &&
- MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
- Reg1IsKill = false;
- Reg0 = Reg1;
- SubReg0 = SubReg1;
- }
-
- if (NewMI) {
- // Create a new instruction.
- MachineFunction &MF = *MI->getParent()->getParent();
- MI = MF.CloneMachineInstr(MI);
- }
-
- if (HasDef) {
- MI->getOperand(0).setReg(Reg0);
- MI->getOperand(0).setSubReg(SubReg0);
- }
- MI->getOperand(Idx2).setReg(Reg1);
- MI->getOperand(Idx1).setReg(Reg2);
- MI->getOperand(Idx2).setSubReg(SubReg1);
- MI->getOperand(Idx1).setSubReg(SubReg2);
- MI->getOperand(Idx2).setIsKill(Reg1IsKill);
- MI->getOperand(Idx1).setIsKill(Reg2IsKill);
- return MI;
-}
-
-/// findCommutedOpIndices - If specified MI is commutable, return the two
-/// operand indices that would swap value. Return true if the instruction
-/// is not in a form which this routine understands.
-bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const {
- assert(!MI->isBundle() &&
- "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
-
- const MCInstrDesc &MCID = MI->getDesc();
- if (!MCID.isCommutable())
- return false;
- // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
- // is not true, then the target must implement this.
- SrcOpIdx1 = MCID.getNumDefs();
- SrcOpIdx2 = SrcOpIdx1 + 1;
- if (!MI->getOperand(SrcOpIdx1).isReg() ||
- !MI->getOperand(SrcOpIdx2).isReg())
- // No idea.
- return false;
- return true;
-}
-
-
-bool
-TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
- if (!MI->isTerminator()) return false;
-
- // Conditional branch is a special case.
- if (MI->isBranch() && !MI->isBarrier())
- return true;
- if (!MI->isPredicable())
- return true;
- return !isPredicated(MI);
-}
-
-
-bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
- const SmallVectorImpl<MachineOperand> &Pred) const {
- bool MadeChange = false;
-
- assert(!MI->isBundle() &&
- "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
-
- const MCInstrDesc &MCID = MI->getDesc();
- if (!MI->isPredicable())
- return false;
-
- for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
- if (MCID.OpInfo[i].isPredicate()) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg()) {
- MO.setReg(Pred[j].getReg());
- MadeChange = true;
- } else if (MO.isImm()) {
- MO.setImm(Pred[j].getImm());
- MadeChange = true;
- } else if (MO.isMBB()) {
- MO.setMBB(Pred[j].getMBB());
- MadeChange = true;
- }
- ++j;
- }
- }
- return MadeChange;
-}
-
-bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const {
- for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
- oe = MI->memoperands_end();
- o != oe;
- ++o) {
- if ((*o)->isLoad() && (*o)->getValue())
- if (const FixedStackPseudoSourceValue *Value =
- dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
- FrameIndex = Value->getFrameIndex();
- MMO = *o;
- return true;
- }
- }
- return false;
-}
-
-bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
- const MachineMemOperand *&MMO,
- int &FrameIndex) const {
- for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
- oe = MI->memoperands_end();
- o != oe;
- ++o) {
- if ((*o)->isStore() && (*o)->getValue())
- if (const FixedStackPseudoSourceValue *Value =
- dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
- FrameIndex = Value->getFrameIndex();
- MMO = *o;
- return true;
- }
- }
- return false;
-}
-
-void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg,
- unsigned SubIdx,
- const MachineInstr *Orig,
- const TargetRegisterInfo &TRI) const {
- MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
- MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
- MBB.insert(I, MI);
-}
-
-bool
-TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
- const MachineInstr *MI1,
- const MachineRegisterInfo *MRI) const {
- return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
-}
-
-MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
- MachineFunction &MF) const {
- assert(!Orig->isNotDuplicable() &&
- "Instruction cannot be duplicated");
- return MF.CloneMachineInstr(Orig);
-}
-
-// If the COPY instruction in MI can be folded to a stack operation, return
-// the register class to use.
-static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
- unsigned FoldIdx) {
- assert(MI->isCopy() && "MI must be a COPY instruction");
- if (MI->getNumOperands() != 2)
- return 0;
- assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
-
- const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
- const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
-
- if (FoldOp.getSubReg() || LiveOp.getSubReg())
- return 0;
-
- unsigned FoldReg = FoldOp.getReg();
- unsigned LiveReg = LiveOp.getReg();
-
- assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
- "Cannot fold physregs");
-
- const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
-
- if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
- return RC->contains(LiveOp.getReg()) ? RC : 0;
-
- if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
- return RC;
-
- // FIXME: Allow folding when register classes are memory compatible.
- return 0;
-}
-
-bool TargetInstrInfoImpl::
-canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const {
- return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
-}
-
-/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
-/// slot into the specified machine instruction for the specified operand(s).
-/// If this is possible, a new instruction is returned with the specified
-/// operand folded, otherwise NULL is returned. The client is responsible for
-/// removing the old instruction and adding the new one in the instruction
-/// stream.
-MachineInstr*
-TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
- const SmallVectorImpl<unsigned> &Ops,
- int FI) const {
- unsigned Flags = 0;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (MI->getOperand(Ops[i]).isDef())
- Flags |= MachineMemOperand::MOStore;
- else
- Flags |= MachineMemOperand::MOLoad;
-
- MachineBasicBlock *MBB = MI->getParent();
- assert(MBB && "foldMemoryOperand needs an inserted instruction");
- MachineFunction &MF = *MBB->getParent();
-
- // Ask the target to do the actual folding.
- if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
- // Add a memory operand, foldMemoryOperandImpl doesn't do that.
- assert((!(Flags & MachineMemOperand::MOStore) ||
- NewMI->mayStore()) &&
- "Folded a def to a non-store!");
- assert((!(Flags & MachineMemOperand::MOLoad) ||
- NewMI->mayLoad()) &&
- "Folded a use to a non-load!");
- const MachineFrameInfo &MFI = *MF.getFrameInfo();
- assert(MFI.getObjectOffset(FI) != -1);
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
- Flags, MFI.getObjectSize(FI),
- MFI.getObjectAlignment(FI));
- NewMI->addMemOperand(MF, MMO);
-
- // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
- return MBB->insert(MI, NewMI);
- }
-
- // Straight COPY may fold as load/store.
- if (!MI->isCopy() || Ops.size() != 1)
- return 0;
-
- const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
- if (!RC)
- return 0;
-
- const MachineOperand &MO = MI->getOperand(1-Ops[0]);
- MachineBasicBlock::iterator Pos = MI;
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
-
- if (Flags == MachineMemOperand::MOStore)
- storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
- else
- loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
- return --Pos;
-}
-
-/// foldMemoryOperand - Same as the previous version except it allows folding
-/// of any load and store from / to any address, not just from a specific
-/// stack slot.
-MachineInstr*
-TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
- const SmallVectorImpl<unsigned> &Ops,
- MachineInstr* LoadMI) const {
- assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
-#ifndef NDEBUG
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
-#endif
- MachineBasicBlock &MBB = *MI->getParent();
- MachineFunction &MF = *MBB.getParent();
-
- // Ask the target to do the actual folding.
- MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
- if (!NewMI) return 0;
-
- NewMI = MBB.insert(MI, NewMI);
-
- // Copy the memoperands from the load to the folded instruction.
- NewMI->setMemRefs(LoadMI->memoperands_begin(),
- LoadMI->memoperands_end());
-
- return NewMI;
-}
-
-bool TargetInstrInfo::
-isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
- AliasAnalysis *AA) const {
- const MachineFunction &MF = *MI->getParent()->getParent();
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- const TargetMachine &TM = MF.getTarget();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
-
- // Remat clients assume operand 0 is the defined register.
- if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
- return false;
- unsigned DefReg = MI->getOperand(0).getReg();
-
- // A sub-register definition can only be rematerialized if the instruction
- // doesn't read the other parts of the register. Otherwise it is really a
- // read-modify-write operation on the full virtual register which cannot be
- // moved safely.
- if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
- MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
- return false;
-
- // A load from a fixed stack slot can be rematerialized. This may be
- // redundant with subsequent checks, but it's target-independent,
- // simple, and a common case.
- int FrameIdx = 0;
- if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
- MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
- return true;
-
- // Avoid instructions obviously unsafe for remat.
- if (MI->isNotDuplicable() || MI->mayStore() ||
- MI->hasUnmodeledSideEffects())
- return false;
-
- // Don't remat inline asm. We have no idea how expensive it is
- // even if it's side effect free.
- if (MI->isInlineAsm())
- return false;
-
- // Avoid instructions which load from potentially varying memory.
- if (MI->mayLoad() && !MI->isInvariantLoad(AA))
- return false;
-
- // If any of the registers accessed are non-constant, conservatively assume
- // the instruction is not rematerializable.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
-
- // Check for a well-behaved physical register.
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- if (MO.isUse()) {
- // If the physreg has no defs anywhere, it's just an ambient register
- // and we can freely move its uses. Alternatively, if it's allocatable,
- // it could get allocated to something with a def during allocation.
- if (!MRI.isConstantPhysReg(Reg, MF))
- return false;
- } else {
- // A physreg def. We can't remat it.
- return false;
- }
- continue;
- }
-
- // Only allow one virtual-register def. There may be multiple defs of the
- // same virtual register, though.
- if (MO.isDef() && Reg != DefReg)
- return false;
-
- // Don't allow any virtual-register uses. Rematting an instruction with
- // virtual register uses would length the live ranges of the uses, which
- // is not necessarily a good idea, certainly not "trivial".
- if (MO.isUse())
- return false;
- }
-
- // Everything checked out.
- return true;
-}
-
-/// isSchedulingBoundary - Test if the given instruction should be
-/// considered a scheduling boundary. This primarily includes labels
-/// and terminators.
-bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const{
- // Terminators and labels can't be scheduled around.
- if (MI->isTerminator() || MI->isLabel())
- return true;
-
- // Don't attempt to schedule around any instruction that defines
- // a stack-oriented pointer, as it's unlikely to be profitable. This
- // saves compile time, because it doesn't require every single
- // stack slot reference to depend on the instruction that does the
- // modification.
- const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
- const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
- if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
- return true;
-
- return false;
-}
-
-// Provide a global flag for disabling the PreRA hazard recognizer that targets
-// may choose to honor.
-bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
- return !DisableHazardRecognizer;
-}
-
-// Default implementation of CreateTargetRAHazardRecognizer.
-ScheduleHazardRecognizer *TargetInstrInfoImpl::
-CreateTargetHazardRecognizer(const TargetMachine *TM,
- const ScheduleDAG *DAG) const {
- // Dummy hazard recognizer allows all instructions to issue.
- return new ScheduleHazardRecognizer();
-}
-
-// Default implementation of CreateTargetMIHazardRecognizer.
-ScheduleHazardRecognizer *TargetInstrInfoImpl::
-CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return (ScheduleHazardRecognizer *)
- new ScoreboardHazardRecognizer(II, DAG, "misched");
-}
-
-// Default implementation of CreateTargetPostRAHazardRecognizer.
-ScheduleHazardRecognizer *TargetInstrInfoImpl::
-CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return (ScheduleHazardRecognizer *)
- new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
-}
-
-//===----------------------------------------------------------------------===//
-// SelectionDAG latency interface.
-//===----------------------------------------------------------------------===//
-
-int
-TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const {
- if (!ItinData || ItinData->isEmpty())
- return -1;
-
- if (!DefNode->isMachineOpcode())
- return -1;
-
- unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
- if (!UseNode->isMachineOpcode())
- return ItinData->getOperandCycle(DefClass, DefIdx);
- unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
-}
-
-int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *N) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
-
- if (!N->isMachineOpcode())
- return 1;
-
- return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
-}
-
-//===----------------------------------------------------------------------===//
-// MachineInstr latency interface.
-//===----------------------------------------------------------------------===//
-
-unsigned
-TargetInstrInfoImpl::getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr *MI) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
-
- unsigned Class = MI->getDesc().getSchedClass();
- int UOps = ItinData->Itineraries[Class].NumMicroOps;
- if (UOps >= 0)
- return UOps;
-
- // The # of u-ops is dynamically determined. The specific target should
- // override this function to return the right number.
- return 1;
-}
-
-/// Return the default expected latency for a def based on it's opcode.
-unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
- const MachineInstr *DefMI) const {
- if (DefMI->isTransient())
- return 0;
- if (DefMI->mayLoad())
- return SchedModel->LoadLatency;
- if (isHighLatencyDef(DefMI->getOpcode()))
- return SchedModel->HighLatency;
- return 1;
-}
-
-unsigned TargetInstrInfoImpl::
-getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr *MI,
- unsigned *PredCost) const {
- // Default to one cycle for no itinerary. However, an "empty" itinerary may
- // still have a MinLatency property, which getStageLatency checks.
- if (!ItinData)
- return MI->mayLoad() ? 2 : 1;
-
- return ItinData->getStageLatency(MI->getDesc().getSchedClass());
-}
-
-bool TargetInstrInfoImpl::hasLowDefLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI,
- unsigned DefIdx) const {
- if (!ItinData || ItinData->isEmpty())
- return false;
-
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
- return (DefCycle != -1 && DefCycle <= 1);
-}
-
-/// Both DefMI and UseMI must be valid. By default, call directly to the
-/// itinerary. This may be overriden by the target.
-int TargetInstrInfoImpl::
-getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI, unsigned UseIdx) const {
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- unsigned UseClass = UseMI->getDesc().getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
-}
-
-/// If we can determine the operand latency from the def only, without itinerary
-/// lookup, do so. Otherwise return -1.
-int TargetInstrInfo::computeDefOperandLatency(
- const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, bool FindMin) const {
-
- // Let the target hook getInstrLatency handle missing itineraries.
- if (!ItinData)
- return getInstrLatency(ItinData, DefMI);
-
- // Return a latency based on the itinerary properties and defining instruction
- // if possible. Some common subtargets don't require per-operand latency,
- // especially for minimum latencies.
- if (FindMin) {
- // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
- // it exists before defaulting to MinLatency.
- if (ItinData->SchedModel->MinLatency >= 0)
- return getInstrLatency(ItinData, DefMI);
-
- // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
- // For empty itineraries, short-cirtuit the check and default to one cycle.
- if (ItinData->isEmpty())
- return 1;
- }
- else if(ItinData->isEmpty())
- return defaultDefLatency(ItinData->SchedModel, DefMI);
-
- // ...operand lookup required
- return -1;
-}
-
-/// computeOperandLatency - Compute and return the latency of the given data
-/// dependent def and use when the operand indices are already known. UseMI may
-/// be NULL for an unknown use.
-///
-/// FindMin may be set to get the minimum vs. expected latency. Minimum
-/// latency is used for scheduling groups, while expected latency is for
-/// instruction cost and critical path.
-///
-/// Depending on the subtarget's itinerary properties, this may or may not need
-/// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
-/// UseIdx to compute min latency.
-unsigned TargetInstrInfo::
-computeOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr *DefMI, unsigned DefIdx,
- const MachineInstr *UseMI, unsigned UseIdx,
- bool FindMin) const {
-
- int DefLatency = computeDefOperandLatency(ItinData, DefMI, FindMin);
- if (DefLatency >= 0)
- return DefLatency;
-
- assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
-
- int OperLatency = 0;
- if (UseMI)
- OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
- else {
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
- }
- if (OperLatency >= 0)
- return OperLatency;
-
- // No operand latency was found.
- unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
-
- // Expected latency is the max of the stage latency and itinerary props.
- if (!FindMin)
- InstrLatency = std::max(InstrLatency,
- defaultDefLatency(ItinData->SchedModel, DefMI));
- return InstrLatency;
-}