summaryrefslogtreecommitdiff
path: root/docs/HowToSubmitABug.rst
diff options
context:
space:
mode:
authorSean Silva <silvas@purdue.edu>2012-09-25 20:52:04 +0000
committerSean Silva <silvas@purdue.edu>2012-09-25 20:52:04 +0000
commit87ed553019846d84849513b0a7e8233b31b58858 (patch)
tree6bfd9b54d2b2881734ebc0b135866db0dc350322 /docs/HowToSubmitABug.rst
parent853a8c5f2ee9fa16f7c4c1fca658db40d4c73743 (diff)
downloadllvm-87ed553019846d84849513b0a7e8233b31b58858.tar.gz
llvm-87ed553019846d84849513b0a7e8233b31b58858.tar.bz2
llvm-87ed553019846d84849513b0a7e8233b31b58858.tar.xz
docs: Sphinxify HowToSubmitABug
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164630 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/HowToSubmitABug.rst')
-rw-r--r--docs/HowToSubmitABug.rst233
1 files changed, 233 insertions, 0 deletions
diff --git a/docs/HowToSubmitABug.rst b/docs/HowToSubmitABug.rst
new file mode 100644
index 0000000000..ff2d649ce3
--- /dev/null
+++ b/docs/HowToSubmitABug.rst
@@ -0,0 +1,233 @@
+.. _how-to-submit-a-bug-report:
+
+================================
+How to submit an LLVM bug report
+================================
+
+.. sectionauthor:: Chris Lattner <sabre@nondot.org> and Misha Brukman <http://misha.brukman.net>
+
+Introduction - Got bugs?
+========================
+
+
+If you're working with LLVM and run into a bug, we definitely want to know
+about it. This document describes what you can do to increase the odds of
+getting it fixed quickly.
+
+Basically you have to do two things at a minimum. First, decide whether
+the bug `crashes the compiler`_ (or an LLVM pass), or if the
+compiler is `miscompiling`_ the program (i.e., the
+compiler successfully produces an executable, but it doesn't run right).
+Based on what type of bug it is, follow the instructions in the linked
+section to narrow down the bug so that the person who fixes it will be able
+to find the problem more easily.
+
+Once you have a reduced test-case, go to `the LLVM Bug Tracking System
+<http://llvm.org/bugs/enter_bug.cgi>`_ and fill out the form with the
+necessary details (note that you don't need to pick a category, just use
+the "new-bugs" category if you're not sure). The bug description should
+contain the following information:
+
+* All information necessary to reproduce the problem.
+* The reduced test-case that triggers the bug.
+* The location where you obtained LLVM (if not from our Subversion
+ repository).
+
+Thanks for helping us make LLVM better!
+
+.. _crashes the compiler:
+
+Crashing Bugs
+=============
+
+More often than not, bugs in the compiler cause it to crash---often due to
+an assertion failure of some sort. The most important piece of the puzzle
+is to figure out if it is crashing in the GCC front-end or if it is one of
+the LLVM libraries (e.g. the optimizer or code generator) that has
+problems.
+
+To figure out which component is crashing (the front-end, optimizer or code
+generator), run the ``llvm-gcc`` command line as you were when the crash
+occurred, but with the following extra command line options:
+
+* ``-O0 -emit-llvm``: If ``llvm-gcc`` still crashes when passed these
+ options (which disable the optimizer and code generator), then the crash
+ is in the front-end. Jump ahead to the section on :ref:`front-end bugs
+ <front-end>`.
+
+* ``-emit-llvm``: If ``llvm-gcc`` crashes with this option (which disables
+ the code generator), you found an optimizer bug. Jump ahead to
+ `compile-time optimization bugs`_.
+
+* Otherwise, you have a code generator crash. Jump ahead to `code
+ generator bugs`_.
+
+.. _front-end bug:
+.. _front-end:
+
+Front-end bugs
+--------------
+
+If the problem is in the front-end, you should re-run the same ``llvm-gcc``
+command that resulted in the crash, but add the ``-save-temps`` option.
+The compiler will crash again, but it will leave behind a ``foo.i`` file
+(containing preprocessed C source code) and possibly ``foo.s`` for each
+compiled ``foo.c`` file. Send us the ``foo.i`` file, along with the options
+you passed to ``llvm-gcc``, and a brief description of the error it caused.
+
+The `delta <http://delta.tigris.org/>`_ tool helps to reduce the
+preprocessed file down to the smallest amount of code that still replicates
+the problem. You're encouraged to use delta to reduce the code to make the
+developers' lives easier. `This website
+<http://gcc.gnu.org/wiki/A_guide_to_testcase_reduction>`_ has instructions
+on the best way to use delta.
+
+.. _compile-time optimization bugs:
+
+Compile-time optimization bugs
+------------------------------
+
+If you find that a bug crashes in the optimizer, compile your test-case to a
+``.bc`` file by passing "``-emit-llvm -O0 -c -o foo.bc``".
+Then run:
+
+.. code-block:: bash
+
+ opt -std-compile-opts -debug-pass=Arguments foo.bc -disable-output
+
+This command should do two things: it should print out a list of passes, and
+then it should crash in the same way as llvm-gcc. If it doesn't crash, please
+follow the instructions for a `front-end bug`_.
+
+If this does crash, then you should be able to debug this with the following
+bugpoint command:
+
+.. code-block:: bash
+
+ bugpoint foo.bc <list of passes printed by opt>
+
+Please run this, then file a bug with the instructions and reduced .bc
+files that bugpoint emits. If something goes wrong with bugpoint, please
+submit the "foo.bc" file and the list of passes printed by ``opt``.
+
+.. _code generator bugs:
+
+Code generator bugs
+-------------------
+
+If you find a bug that crashes llvm-gcc in the code generator, compile your
+source file to a .bc file by passing "``-emit-llvm -c -o foo.bc``" to
+llvm-gcc (in addition to the options you already pass). Once your have
+foo.bc, one of the following commands should fail:
+
+#. ``llc foo.bc``
+#. ``llc foo.bc -relocation-model=pic``
+#. ``llc foo.bc -relocation-model=static``
+
+If none of these crash, please follow the instructions for a `front-end
+bug`_. If one of these do crash, you should be able to reduce this with
+one of the following bugpoint command lines (use the one corresponding to
+the command above that failed):
+
+#. ``bugpoint -run-llc foo.bc``
+#. ``bugpoint -run-llc foo.bc --tool-args -relocation-model=pic``
+#. ``bugpoint -run-llc foo.bc --tool-args -relocation-model=static``
+
+Please run this, then file a bug with the instructions and reduced .bc file
+that bugpoint emits. If something goes wrong with bugpoint, please submit
+the "foo.bc" file and the option that llc crashes with.
+
+.. _miscompiling:
+
+Miscompilations
+===============
+
+If llvm-gcc successfully produces an executable, but that executable
+doesn't run right, this is either a bug in the code or a bug in the
+compiler. The first thing to check is to make sure it is not using
+undefined behavior (e.g. reading a variable before it is defined). In
+particular, check to see if the program `valgrind
+<http://valgrind.org/>`_'s clean, passes purify, or some other memory
+checker tool. Many of the "LLVM bugs" that we have chased down ended up
+being bugs in the program being compiled, not LLVM.
+
+Once you determine that the program itself is not buggy, you should choose
+which code generator you wish to compile the program with (e.g. LLC or the JIT)
+and optionally a series of LLVM passes to run. For example:
+
+.. code-block:: bash
+
+ bugpoint -run-llc [... optzn passes ...] file-to-test.bc --args -- [program arguments]
+
+bugpoint will try to narrow down your list of passes to the one pass that
+causes an error, and simplify the bitcode file as much as it can to assist
+you. It will print a message letting you know how to reproduce the
+resulting error.
+
+Incorrect code generation
+=========================
+
+Similarly to debugging incorrect compilation by mis-behaving passes, you
+can debug incorrect code generation by either LLC or the JIT, using
+``bugpoint``. The process ``bugpoint`` follows in this case is to try to
+narrow the code down to a function that is miscompiled by one or the other
+method, but since for correctness, the entire program must be run,
+``bugpoint`` will compile the code it deems to not be affected with the C
+Backend, and then link in the shared object it generates.
+
+To debug the JIT:
+
+.. code-block:: bash
+
+ bugpoint -run-jit -output=[correct output file] [bitcode file] \
+ --tool-args -- [arguments to pass to lli] \
+ --args -- [program arguments]
+
+Similarly, to debug the LLC, one would run:
+
+.. code-block:: bash
+
+ bugpoint -run-llc -output=[correct output file] [bitcode file] \
+ --tool-args -- [arguments to pass to llc] \
+ --args -- [program arguments]
+
+**Special note:** if you are debugging MultiSource or SPEC tests that
+already exist in the ``llvm/test`` hierarchy, there is an easier way to
+debug the JIT, LLC, and CBE, using the pre-written Makefile targets, which
+will pass the program options specified in the Makefiles:
+
+.. code-block:: bash
+
+ cd llvm/test/../../program
+ make bugpoint-jit
+
+At the end of a successful ``bugpoint`` run, you will be presented
+with two bitcode files: a *safe* file which can be compiled with the C
+backend and the *test* file which either LLC or the JIT
+mis-codegenerates, and thus causes the error.
+
+To reproduce the error that ``bugpoint`` found, it is sufficient to do
+the following:
+
+#. Regenerate the shared object from the safe bitcode file:
+
+ .. code-block:: bash
+
+ llc -march=c safe.bc -o safe.c
+ gcc -shared safe.c -o safe.so
+
+#. If debugging LLC, compile test bitcode native and link with the shared
+ object:
+
+ .. code-block:: bash
+
+ llc test.bc -o test.s
+ gcc test.s safe.so -o test.llc
+ ./test.llc [program options]
+
+#. If debugging the JIT, load the shared object and supply the test
+ bitcode:
+
+ .. code-block:: bash
+
+ lli -load=safe.so test.bc [program options]