summaryrefslogtreecommitdiff
path: root/docs/ProgrammersManual.rst
diff options
context:
space:
mode:
authorSean Silva <silvas@purdue.edu>2012-12-04 03:20:08 +0000
committerSean Silva <silvas@purdue.edu>2012-12-04 03:20:08 +0000
commitb715b205a41dc53942acbcfbfdbdce6bdaf9a4aa (patch)
tree65d1f5b9f5423962d5b5efa87b6b645291771e68 /docs/ProgrammersManual.rst
parentf985f44b13681071e585acb7a5703a2c1c23b6ce (diff)
downloadllvm-b715b205a41dc53942acbcfbfdbdce6bdaf9a4aa.tar.gz
llvm-b715b205a41dc53942acbcfbfdbdce6bdaf9a4aa.tar.bz2
llvm-b715b205a41dc53942acbcfbfdbdce6bdaf9a4aa.tar.xz
docs: Convert ProgrammersManual to reST.
Patch by Alexander Zinenko! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169208 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/ProgrammersManual.rst')
-rw-r--r--docs/ProgrammersManual.rst3165
1 files changed, 3165 insertions, 0 deletions
diff --git a/docs/ProgrammersManual.rst b/docs/ProgrammersManual.rst
new file mode 100644
index 0000000000..f626c60ee6
--- /dev/null
+++ b/docs/ProgrammersManual.rst
@@ -0,0 +1,3165 @@
+========================
+LLVM Programmer's Manual
+========================
+
+.. contents::
+ :local:
+
+.. warning::
+ This is a work in progress.
+
+.. sectionauthor:: Chris Lattner <sabre@nondot.org>,
+ Dinakar Dhurjati <dhurjati@cs.uiuc.edu>,
+ Gabor Greif <ggreif@gmail.com>,
+ Joel Stanley <jstanley@cs.uiuc.edu>,
+ Reid Spencer <rspencer@x10sys.com> and
+ Owen Anderson <owen@apple.com>
+
+.. _introduction:
+
+Introduction
+============
+
+This document is meant to highlight some of the important classes and interfaces
+available in the LLVM source-base. This manual is not intended to explain what
+LLVM is, how it works, and what LLVM code looks like. It assumes that you know
+the basics of LLVM and are interested in writing transformations or otherwise
+analyzing or manipulating the code.
+
+This document should get you oriented so that you can find your way in the
+continuously growing source code that makes up the LLVM infrastructure. Note
+that this manual is not intended to serve as a replacement for reading the
+source code, so if you think there should be a method in one of these classes to
+do something, but it's not listed, check the source. Links to the `doxygen
+<http://llvm.org/doxygen/>`__ sources are provided to make this as easy as
+possible.
+
+The first section of this document describes general information that is useful
+to know when working in the LLVM infrastructure, and the second describes the
+Core LLVM classes. In the future this manual will be extended with information
+describing how to use extension libraries, such as dominator information, CFG
+traversal routines, and useful utilities like the ``InstVisitor`` (`doxygen
+<http://llvm.org/doxygen/InstVisitor_8h-source.html>`__) template.
+
+.. _general:
+
+General Information
+===================
+
+This section contains general information that is useful if you are working in
+the LLVM source-base, but that isn't specific to any particular API.
+
+.. _stl:
+
+The C++ Standard Template Library
+---------------------------------
+
+LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
+more than you are used to, or have seen before. Because of this, you might want
+to do a little background reading in the techniques used and capabilities of the
+library. There are many good pages that discuss the STL, and several books on
+the subject that you can get, so it will not be discussed in this document.
+
+Here are some useful links:
+
+#. `Dinkumware C++ Library reference
+ <http://www.dinkumware.com/manuals/#Standard C++ Library>`_ - an excellent
+ reference for the STL and other parts of the standard C++ library.
+
+#. `C++ In a Nutshell <http://www.tempest-sw.com/cpp/>`_ - This is an O'Reilly
+ book in the making. It has a decent Standard Library Reference that rivals
+ Dinkumware's, and is unfortunately no longer free since the book has been
+ published.
+
+#. `C++ Frequently Asked Questions <http://www.parashift.com/c++-faq-lite/>`_.
+
+#. `SGI's STL Programmer's Guide <http://www.sgi.com/tech/stl/>`_ - Contains a
+ useful `Introduction to the STL
+ <http://www.sgi.com/tech/stl/stl_introduction.html>`_.
+
+#. `Bjarne Stroustrup's C++ Page
+ <http://www.research.att.com/%7Ebs/C++.html>`_.
+
+#. `Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0
+ (even better, get the book) <http://64.78.49.204/>`_.
+
+You are also encouraged to take a look at the :ref:`LLVM Coding Standards
+<coding_standards>` guide which focuses on how to write maintainable code more
+than where to put your curly braces.
+
+.. _resources:
+
+Other useful references
+-----------------------
+
+#. `Using static and shared libraries across platforms
+ <http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html>`_
+
+.. _apis:
+
+Important and useful LLVM APIs
+==============================
+
+Here we highlight some LLVM APIs that are generally useful and good to know
+about when writing transformations.
+
+.. _isa:
+
+The ``isa<>``, ``cast<>`` and ``dyn_cast<>`` templates
+------------------------------------------------------
+
+The LLVM source-base makes extensive use of a custom form of RTTI. These
+templates have many similarities to the C++ ``dynamic_cast<>`` operator, but
+they don't have some drawbacks (primarily stemming from the fact that
+``dynamic_cast<>`` only works on classes that have a v-table). Because they are
+used so often, you must know what they do and how they work. All of these
+templates are defined in the ``llvm/Support/Casting.h`` (`doxygen
+<http://llvm.org/doxygen/Casting_8h-source.html>`__) file (note that you very
+rarely have to include this file directly).
+
+``isa<>``:
+ The ``isa<>`` operator works exactly like the Java "``instanceof``" operator.
+ It returns true or false depending on whether a reference or pointer points to
+ an instance of the specified class. This can be very useful for constraint
+ checking of various sorts (example below).
+
+``cast<>``:
+ The ``cast<>`` operator is a "checked cast" operation. It converts a pointer
+ or reference from a base class to a derived class, causing an assertion
+ failure if it is not really an instance of the right type. This should be
+ used in cases where you have some information that makes you believe that
+ something is of the right type. An example of the ``isa<>`` and ``cast<>``
+ template is:
+
+ .. code-block:: c++
+
+ static bool isLoopInvariant(const Value *V, const Loop *L) {
+ if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
+ return true;
+
+ // Otherwise, it must be an instruction...
+ return !L->contains(cast<Instruction>(V)->getParent());
+ }
+
+ Note that you should **not** use an ``isa<>`` test followed by a ``cast<>``,
+ for that use the ``dyn_cast<>`` operator.
+
+``dyn_cast<>``:
+ The ``dyn_cast<>`` operator is a "checking cast" operation. It checks to see
+ if the operand is of the specified type, and if so, returns a pointer to it
+ (this operator does not work with references). If the operand is not of the
+ correct type, a null pointer is returned. Thus, this works very much like
+ the ``dynamic_cast<>`` operator in C++, and should be used in the same
+ circumstances. Typically, the ``dyn_cast<>`` operator is used in an ``if``
+ statement or some other flow control statement like this:
+
+ .. code-block:: c++
+
+ if (AllocationInst *AI = dyn_cast<AllocationInst>(Val)) {
+ // ...
+ }
+
+ This form of the ``if`` statement effectively combines together a call to
+ ``isa<>`` and a call to ``cast<>`` into one statement, which is very
+ convenient.
+
+ Note that the ``dyn_cast<>`` operator, like C++'s ``dynamic_cast<>`` or Java's
+ ``instanceof`` operator, can be abused. In particular, you should not use big
+ chained ``if/then/else`` blocks to check for lots of different variants of
+ classes. If you find yourself wanting to do this, it is much cleaner and more
+ efficient to use the ``InstVisitor`` class to dispatch over the instruction
+ type directly.
+
+``cast_or_null<>``:
+ The ``cast_or_null<>`` operator works just like the ``cast<>`` operator,
+ except that it allows for a null pointer as an argument (which it then
+ propagates). This can sometimes be useful, allowing you to combine several
+ null checks into one.
+
+``dyn_cast_or_null<>``:
+ The ``dyn_cast_or_null<>`` operator works just like the ``dyn_cast<>``
+ operator, except that it allows for a null pointer as an argument (which it
+ then propagates). This can sometimes be useful, allowing you to combine
+ several null checks into one.
+
+These five templates can be used with any classes, whether they have a v-table
+or not. If you want to add support for these templates, see the document
+:ref:`How to set up LLVM-style RTTI for your class hierarchy
+<how-to-set-up-llvm-style-rtti>`
+
+.. _string_apis:
+
+Passing strings (the ``StringRef`` and ``Twine`` classes)
+---------------------------------------------------------
+
+Although LLVM generally does not do much string manipulation, we do have several
+important APIs which take strings. Two important examples are the Value class
+-- which has names for instructions, functions, etc. -- and the ``StringMap``
+class which is used extensively in LLVM and Clang.
+
+These are generic classes, and they need to be able to accept strings which may
+have embedded null characters. Therefore, they cannot simply take a ``const
+char *``, and taking a ``const std::string&`` requires clients to perform a heap
+allocation which is usually unnecessary. Instead, many LLVM APIs use a
+``StringRef`` or a ``const Twine&`` for passing strings efficiently.
+
+.. _StringRef:
+
+The ``StringRef`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``StringRef`` data type represents a reference to a constant string (a
+character array and a length) and supports the common operations available on
+``std::string``, but does not require heap allocation.
+
+It can be implicitly constructed using a C style null-terminated string, an
+``std::string``, or explicitly with a character pointer and length. For
+example, the ``StringRef`` find function is declared as:
+
+.. code-block:: c++
+
+ iterator find(StringRef Key);
+
+and clients can call it using any one of:
+
+.. code-block:: c++
+
+ Map.find("foo"); // Lookup "foo"
+ Map.find(std::string("bar")); // Lookup "bar"
+ Map.find(StringRef("\0baz", 4)); // Lookup "\0baz"
+
+Similarly, APIs which need to return a string may return a ``StringRef``
+instance, which can be used directly or converted to an ``std::string`` using
+the ``str`` member function. See ``llvm/ADT/StringRef.h`` (`doxygen
+<http://llvm.org/doxygen/classllvm_1_1StringRef_8h-source.html>`__) for more
+information.
+
+You should rarely use the ``StringRef`` class directly, because it contains
+pointers to external memory it is not generally safe to store an instance of the
+class (unless you know that the external storage will not be freed).
+``StringRef`` is small and pervasive enough in LLVM that it should always be
+passed by value.
+
+The ``Twine`` class
+^^^^^^^^^^^^^^^^^^^
+
+The ``Twine`` (`doxygen <http://llvm.org/doxygen/classllvm_1_1Twine.html>`__)
+class is an efficient way for APIs to accept concatenated strings. For example,
+a common LLVM paradigm is to name one instruction based on the name of another
+instruction with a suffix, for example:
+
+.. code-block:: c++
+
+ New = CmpInst::Create(..., SO->getName() + ".cmp");
+
+The ``Twine`` class is effectively a lightweight `rope
+<http://en.wikipedia.org/wiki/Rope_(computer_science)>`_ which points to
+temporary (stack allocated) objects. Twines can be implicitly constructed as
+the result of the plus operator applied to strings (i.e., a C strings, an
+``std::string``, or a ``StringRef``). The twine delays the actual concatenation
+of strings until it is actually required, at which point it can be efficiently
+rendered directly into a character array. This avoids unnecessary heap
+allocation involved in constructing the temporary results of string
+concatenation. See ``llvm/ADT/Twine.h`` (`doxygen
+<http://llvm.org/doxygen/Twine_8h_source.html>`__) and :ref:`here <dss_twine>`
+for more information.
+
+As with a ``StringRef``, ``Twine`` objects point to external memory and should
+almost never be stored or mentioned directly. They are intended solely for use
+when defining a function which should be able to efficiently accept concatenated
+strings.
+
+.. _DEBUG:
+
+The ``DEBUG()`` macro and ``-debug`` option
+-------------------------------------------
+
+Often when working on your pass you will put a bunch of debugging printouts and
+other code into your pass. After you get it working, you want to remove it, but
+you may need it again in the future (to work out new bugs that you run across).
+
+Naturally, because of this, you don't want to delete the debug printouts, but
+you don't want them to always be noisy. A standard compromise is to comment
+them out, allowing you to enable them if you need them in the future.
+
+The ``llvm/Support/Debug.h`` (`doxygen
+<http://llvm.org/doxygen/Debug_8h-source.html>`__) file provides a macro named
+``DEBUG()`` that is a much nicer solution to this problem. Basically, you can
+put arbitrary code into the argument of the ``DEBUG`` macro, and it is only
+executed if '``opt``' (or any other tool) is run with the '``-debug``' command
+line argument:
+
+.. code-block:: c++
+
+ DEBUG(errs() << "I am here!\n");
+
+Then you can run your pass like this:
+
+.. code-block:: none
+
+ $ opt < a.bc > /dev/null -mypass
+ <no output>
+ $ opt < a.bc > /dev/null -mypass -debug
+ I am here!
+
+Using the ``DEBUG()`` macro instead of a home-brewed solution allows you to not
+have to create "yet another" command line option for the debug output for your
+pass. Note that ``DEBUG()`` macros are disabled for optimized builds, so they
+do not cause a performance impact at all (for the same reason, they should also
+not contain side-effects!).
+
+One additional nice thing about the ``DEBUG()`` macro is that you can enable or
+disable it directly in gdb. Just use "``set DebugFlag=0``" or "``set
+DebugFlag=1``" from the gdb if the program is running. If the program hasn't
+been started yet, you can always just run it with ``-debug``.
+
+.. _DEBUG_TYPE:
+
+Fine grained debug info with ``DEBUG_TYPE`` and the ``-debug-only`` option
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sometimes you may find yourself in a situation where enabling ``-debug`` just
+turns on **too much** information (such as when working on the code generator).
+If you want to enable debug information with more fine-grained control, you
+define the ``DEBUG_TYPE`` macro and the ``-debug`` only option as follows:
+
+.. code-block:: c++
+
+ #undef DEBUG_TYPE
+ DEBUG(errs() << "No debug type\n");
+ #define DEBUG_TYPE "foo"
+ DEBUG(errs() << "'foo' debug type\n");
+ #undef DEBUG_TYPE
+ #define DEBUG_TYPE "bar"
+ DEBUG(errs() << "'bar' debug type\n"));
+ #undef DEBUG_TYPE
+ #define DEBUG_TYPE ""
+ DEBUG(errs() << "No debug type (2)\n");
+
+Then you can run your pass like this:
+
+.. code-block:: none
+
+ $ opt < a.bc > /dev/null -mypass
+ <no output>
+ $ opt < a.bc > /dev/null -mypass -debug
+ No debug type
+ 'foo' debug type
+ 'bar' debug type
+ No debug type (2)
+ $ opt < a.bc > /dev/null -mypass -debug-only=foo
+ 'foo' debug type
+ $ opt < a.bc > /dev/null -mypass -debug-only=bar
+ 'bar' debug type
+
+Of course, in practice, you should only set ``DEBUG_TYPE`` at the top of a file,
+to specify the debug type for the entire module (if you do this before you
+``#include "llvm/Support/Debug.h"``, you don't have to insert the ugly
+``#undef``'s). Also, you should use names more meaningful than "foo" and "bar",
+because there is no system in place to ensure that names do not conflict. If
+two different modules use the same string, they will all be turned on when the
+name is specified. This allows, for example, all debug information for
+instruction scheduling to be enabled with ``-debug-type=InstrSched``, even if
+the source lives in multiple files.
+
+The ``DEBUG_WITH_TYPE`` macro is also available for situations where you would
+like to set ``DEBUG_TYPE``, but only for one specific ``DEBUG`` statement. It
+takes an additional first parameter, which is the type to use. For example, the
+preceding example could be written as:
+
+.. code-block:: c++
+
+ DEBUG_WITH_TYPE("", errs() << "No debug type\n");
+ DEBUG_WITH_TYPE("foo", errs() << "'foo' debug type\n");
+ DEBUG_WITH_TYPE("bar", errs() << "'bar' debug type\n"));
+ DEBUG_WITH_TYPE("", errs() << "No debug type (2)\n");
+
+.. _Statistic:
+
+The ``Statistic`` class & ``-stats`` option
+-------------------------------------------
+
+The ``llvm/ADT/Statistic.h`` (`doxygen
+<http://llvm.org/doxygen/Statistic_8h-source.html>`__) file provides a class
+named ``Statistic`` that is used as a unified way to keep track of what the LLVM
+compiler is doing and how effective various optimizations are. It is useful to
+see what optimizations are contributing to making a particular program run
+faster.
+
+Often you may run your pass on some big program, and you're interested to see
+how many times it makes a certain transformation. Although you can do this with
+hand inspection, or some ad-hoc method, this is a real pain and not very useful
+for big programs. Using the ``Statistic`` class makes it very easy to keep
+track of this information, and the calculated information is presented in a
+uniform manner with the rest of the passes being executed.
+
+There are many examples of ``Statistic`` uses, but the basics of using it are as
+follows:
+
+#. Define your statistic like this:
+
+ .. code-block:: c++
+
+ #define DEBUG_TYPE "mypassname" // This goes before any #includes.
+ STATISTIC(NumXForms, "The # of times I did stuff");
+
+ The ``STATISTIC`` macro defines a static variable, whose name is specified by
+ the first argument. The pass name is taken from the ``DEBUG_TYPE`` macro, and
+ the description is taken from the second argument. The variable defined
+ ("NumXForms" in this case) acts like an unsigned integer.
+
+#. Whenever you make a transformation, bump the counter:
+
+ .. code-block:: c++
+
+ ++NumXForms; // I did stuff!
+
+That's all you have to do. To get '``opt``' to print out the statistics
+gathered, use the '``-stats``' option:
+
+.. code-block:: none
+
+ $ opt -stats -mypassname < program.bc > /dev/null
+ ... statistics output ...
+
+When running ``opt`` on a C file from the SPEC benchmark suite, it gives a
+report that looks like this:
+
+.. code-block:: none
+
+ 7646 bitcodewriter - Number of normal instructions
+ 725 bitcodewriter - Number of oversized instructions
+ 129996 bitcodewriter - Number of bitcode bytes written
+ 2817 raise - Number of insts DCEd or constprop'd
+ 3213 raise - Number of cast-of-self removed
+ 5046 raise - Number of expression trees converted
+ 75 raise - Number of other getelementptr's formed
+ 138 raise - Number of load/store peepholes
+ 42 deadtypeelim - Number of unused typenames removed from symtab
+ 392 funcresolve - Number of varargs functions resolved
+ 27 globaldce - Number of global variables removed
+ 2 adce - Number of basic blocks removed
+ 134 cee - Number of branches revectored
+ 49 cee - Number of setcc instruction eliminated
+ 532 gcse - Number of loads removed
+ 2919 gcse - Number of instructions removed
+ 86 indvars - Number of canonical indvars added
+ 87 indvars - Number of aux indvars removed
+ 25 instcombine - Number of dead inst eliminate
+ 434 instcombine - Number of insts combined
+ 248 licm - Number of load insts hoisted
+ 1298 licm - Number of insts hoisted to a loop pre-header
+ 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
+ 75 mem2reg - Number of alloca's promoted
+ 1444 cfgsimplify - Number of blocks simplified
+
+Obviously, with so many optimizations, having a unified framework for this stuff
+is very nice. Making your pass fit well into the framework makes it more
+maintainable and useful.
+
+.. _ViewGraph:
+
+Viewing graphs while debugging code
+-----------------------------------
+
+Several of the important data structures in LLVM are graphs: for example CFGs
+made out of LLVM :ref:`BasicBlocks <BasicBlock>`, CFGs made out of LLVM
+:ref:`MachineBasicBlocks <MachineBasicBlock>`, and :ref:`Instruction Selection
+DAGs <SelectionDAG>`. In many cases, while debugging various parts of the
+compiler, it is nice to instantly visualize these graphs.
+
+LLVM provides several callbacks that are available in a debug build to do
+exactly that. If you call the ``Function::viewCFG()`` method, for example, the
+current LLVM tool will pop up a window containing the CFG for the function where
+each basic block is a node in the graph, and each node contains the instructions
+in the block. Similarly, there also exists ``Function::viewCFGOnly()`` (does
+not include the instructions), the ``MachineFunction::viewCFG()`` and
+``MachineFunction::viewCFGOnly()``, and the ``SelectionDAG::viewGraph()``
+methods. Within GDB, for example, you can usually use something like ``call
+DAG.viewGraph()`` to pop up a window. Alternatively, you can sprinkle calls to
+these functions in your code in places you want to debug.
+
+Getting this to work requires a small amount of configuration. On Unix systems
+with X11, install the `graphviz <http://www.graphviz.org>`_ toolkit, and make
+sure 'dot' and 'gv' are in your path. If you are running on Mac OS/X, download
+and install the Mac OS/X `Graphviz program
+<http://www.pixelglow.com/graphviz/>`_ and add
+``/Applications/Graphviz.app/Contents/MacOS/`` (or wherever you install it) to
+your path. Once in your system and path are set up, rerun the LLVM configure
+script and rebuild LLVM to enable this functionality.
+
+``SelectionDAG`` has been extended to make it easier to locate *interesting*
+nodes in large complex graphs. From gdb, if you ``call DAG.setGraphColor(node,
+"color")``, then the next ``call DAG.viewGraph()`` would highlight the node in
+the specified color (choices of colors can be found at `colors
+<http://www.graphviz.org/doc/info/colors.html>`_.) More complex node attributes
+can be provided with ``call DAG.setGraphAttrs(node, "attributes")`` (choices can
+be found at `Graph attributes <http://www.graphviz.org/doc/info/attrs.html>`_.)
+If you want to restart and clear all the current graph attributes, then you can
+``call DAG.clearGraphAttrs()``.
+
+Note that graph visualization features are compiled out of Release builds to
+reduce file size. This means that you need a Debug+Asserts or Release+Asserts
+build to use these features.
+
+.. _datastructure:
+
+Picking the Right Data Structure for a Task
+===========================================
+
+LLVM has a plethora of data structures in the ``llvm/ADT/`` directory, and we
+commonly use STL data structures. This section describes the trade-offs you
+should consider when you pick one.
+
+The first step is a choose your own adventure: do you want a sequential
+container, a set-like container, or a map-like container? The most important
+thing when choosing a container is the algorithmic properties of how you plan to
+access the container. Based on that, you should use:
+
+
+* a :ref:`map-like <ds_map>` container if you need efficient look-up of a
+ value based on another value. Map-like containers also support efficient
+ queries for containment (whether a key is in the map). Map-like containers
+ generally do not support efficient reverse mapping (values to keys). If you
+ need that, use two maps. Some map-like containers also support efficient
+ iteration through the keys in sorted order. Map-like containers are the most
+ expensive sort, only use them if you need one of these capabilities.
+
+* a :ref:`set-like <ds_set>` container if you need to put a bunch of stuff into
+ a container that automatically eliminates duplicates. Some set-like
+ containers support efficient iteration through the elements in sorted order.
+ Set-like containers are more expensive than sequential containers.
+
+* a :ref:`sequential <ds_sequential>` container provides the most efficient way
+ to add elements and keeps track of the order they are added to the collection.
+ They permit duplicates and support efficient iteration, but do not support
+ efficient look-up based on a key.
+
+* a :ref:`string <ds_string>` container is a specialized sequential container or
+ reference structure that is used for character or byte arrays.
+
+* a :ref:`bit <ds_bit>` container provides an efficient way to store and
+ perform set operations on sets of numeric id's, while automatically
+ eliminating duplicates. Bit containers require a maximum of 1 bit for each
+ identifier you want to store.
+
+Once the proper category of container is determined, you can fine tune the
+memory use, constant factors, and cache behaviors of access by intelligently
+picking a member of the category. Note that constant factors and cache behavior
+can be a big deal. If you have a vector that usually only contains a few
+elements (but could contain many), for example, it's much better to use
+:ref:`SmallVector <dss_smallvector>` than :ref:`vector <dss_vector>`. Doing so
+avoids (relatively) expensive malloc/free calls, which dwarf the cost of adding
+the elements to the container.
+
+.. _ds_sequential:
+
+Sequential Containers (std::vector, std::list, etc)
+---------------------------------------------------
+
+There are a variety of sequential containers available for you, based on your
+needs. Pick the first in this section that will do what you want.
+
+.. _dss_arrayref:
+
+llvm/ADT/ArrayRef.h
+^^^^^^^^^^^^^^^^^^^
+
+The ``llvm::ArrayRef`` class is the preferred class to use in an interface that
+accepts a sequential list of elements in memory and just reads from them. By
+taking an ``ArrayRef``, the API can be passed a fixed size array, an
+``std::vector``, an ``llvm::SmallVector`` and anything else that is contiguous
+in memory.
+
+.. _dss_fixedarrays:
+
+Fixed Size Arrays
+^^^^^^^^^^^^^^^^^
+
+Fixed size arrays are very simple and very fast. They are good if you know
+exactly how many elements you have, or you have a (low) upper bound on how many
+you have.
+
+.. _dss_heaparrays:
+
+Heap Allocated Arrays
+^^^^^^^^^^^^^^^^^^^^^
+
+Heap allocated arrays (``new[]`` + ``delete[]``) are also simple. They are good
+if the number of elements is variable, if you know how many elements you will
+need before the array is allocated, and if the array is usually large (if not,
+consider a :ref:`SmallVector <dss_smallvector>`). The cost of a heap allocated
+array is the cost of the new/delete (aka malloc/free). Also note that if you
+are allocating an array of a type with a constructor, the constructor and
+destructors will be run for every element in the array (re-sizable vectors only
+construct those elements actually used).
+
+.. _dss_tinyptrvector:
+
+llvm/ADT/TinyPtrVector.h
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+``TinyPtrVector<Type>`` is a highly specialized collection class that is
+optimized to avoid allocation in the case when a vector has zero or one
+elements. It has two major restrictions: 1) it can only hold values of pointer
+type, and 2) it cannot hold a null pointer.
+
+Since this container is highly specialized, it is rarely used.
+
+.. _dss_smallvector:
+
+llvm/ADT/SmallVector.h
+^^^^^^^^^^^^^^^^^^^^^^
+
+``SmallVector<Type, N>`` is a simple class that looks and smells just like
+``vector<Type>``: it supports efficient iteration, lays out elements in memory
+order (so you can do pointer arithmetic between elements), supports efficient
+push_back/pop_back operations, supports efficient random access to its elements,
+etc.
+
+The advantage of SmallVector is that it allocates space for some number of
+elements (N) **in the object itself**. Because of this, if the SmallVector is
+dynamically smaller than N, no malloc is performed. This can be a big win in
+cases where the malloc/free call is far more expensive than the code that
+fiddles around with the elements.
+
+This is good for vectors that are "usually small" (e.g. the number of
+predecessors/successors of a block is usually less than 8). On the other hand,
+this makes the size of the SmallVector itself large, so you don't want to
+allocate lots of them (doing so will waste a lot of space). As such,
+SmallVectors are most useful when on the stack.
+
+SmallVector also provides a nice portable and efficient replacement for
+``alloca``.
+
+.. _dss_vector:
+
+<vector>
+^^^^^^^^
+
+``std::vector`` is well loved and respected. It is useful when SmallVector
+isn't: when the size of the vector is often large (thus the small optimization
+will rarely be a benefit) or if you will be allocating many instances of the
+vector itself (which would waste space for elements that aren't in the
+container). vector is also useful when interfacing with code that expects
+vectors :).
+
+One worthwhile note about std::vector: avoid code like this:
+
+.. code-block:: c++
+
+ for ( ... ) {
+ std::vector<foo> V;
+ // make use of V.
+ }
+
+Instead, write this as:
+
+.. code-block:: c++
+
+ std::vector<foo> V;
+ for ( ... ) {
+ // make use of V.
+ V.clear();
+ }
+
+Doing so will save (at least) one heap allocation and free per iteration of the
+loop.
+
+.. _dss_deque:
+
+<deque>
+^^^^^^^
+
+``std::deque`` is, in some senses, a generalized version of ``std::vector``.
+Like ``std::vector``, it provides constant time random access and other similar
+properties, but it also provides efficient access to the front of the list. It
+does not guarantee continuity of elements within memory.
+
+In exchange for this extra flexibility, ``std::deque`` has significantly higher
+constant factor costs than ``std::vector``. If possible, use ``std::vector`` or
+something cheaper.
+
+.. _dss_list:
+
+<list>
+^^^^^^
+
+``std::list`` is an extremely inefficient class that is rarely useful. It
+performs a heap allocation for every element inserted into it, thus having an
+extremely high constant factor, particularly for small data types.
+``std::list`` also only supports bidirectional iteration, not random access
+iteration.
+
+In exchange for this high cost, std::list supports efficient access to both ends
+of the list (like ``std::deque``, but unlike ``std::vector`` or
+``SmallVector``). In addition, the iterator invalidation characteristics of
+std::list are stronger than that of a vector class: inserting or removing an
+element into the list does not invalidate iterator or pointers to other elements
+in the list.
+
+.. _dss_ilist:
+
+llvm/ADT/ilist.h
+^^^^^^^^^^^^^^^^
+
+``ilist<T>`` implements an 'intrusive' doubly-linked list. It is intrusive,
+because it requires the element to store and provide access to the prev/next
+pointers for the list.
+
+``ilist`` has the same drawbacks as ``std::list``, and additionally requires an
+``ilist_traits`` implementation for the element type, but it provides some novel
+characteristics. In particular, it can efficiently store polymorphic objects,
+the traits class is informed when an element is inserted or removed from the
+list, and ``ilist``\ s are guaranteed to support a constant-time splice
+operation.
+
+These properties are exactly what we want for things like ``Instruction``\ s and
+basic blocks, which is why these are implemented with ``ilist``\ s.
+
+Related classes of interest are explained in the following subsections:
+
+* :ref:`ilist_traits <dss_ilist_traits>`
+
+* :ref:`iplist <dss_iplist>`
+
+* :ref:`llvm/ADT/ilist_node.h <dss_ilist_node>`
+
+* :ref:`Sentinels <dss_ilist_sentinel>`
+
+.. _dss_packedvector:
+
+llvm/ADT/PackedVector.h
+^^^^^^^^^^^^^^^^^^^^^^^
+
+Useful for storing a vector of values using only a few number of bits for each
+value. Apart from the standard operations of a vector-like container, it can
+also perform an 'or' set operation.
+
+For example:
+
+.. code-block:: c++
+
+ enum State {
+ None = 0x0,
+ FirstCondition = 0x1,
+ SecondCondition = 0x2,
+ Both = 0x3
+ };
+
+ State get() {
+ PackedVector<State, 2> Vec1;
+ Vec1.push_back(FirstCondition);
+
+ PackedVector<State, 2> Vec2;
+ Vec2.push_back(SecondCondition);
+
+ Vec1 |= Vec2;
+ return Vec1[0]; // returns 'Both'.
+ }
+
+.. _dss_ilist_traits:
+
+ilist_traits
+^^^^^^^^^^^^
+
+``ilist_traits<T>`` is ``ilist<T>``'s customization mechanism. ``iplist<T>``
+(and consequently ``ilist<T>``) publicly derive from this traits class.
+
+.. _dss_iplist:
+
+iplist
+^^^^^^
+
+``iplist<T>`` is ``ilist<T>``'s base and as such supports a slightly narrower
+interface. Notably, inserters from ``T&`` are absent.
+
+``ilist_traits<T>`` is a public base of this class and can be used for a wide
+variety of customizations.
+
+.. _dss_ilist_node:
+
+llvm/ADT/ilist_node.h
+^^^^^^^^^^^^^^^^^^^^^
+
+``ilist_node<T>`` implements a the forward and backward links that are expected
+by the ``ilist<T>`` (and analogous containers) in the default manner.
+
+``ilist_node<T>``\ s are meant to be embedded in the node type ``T``, usually
+``T`` publicly derives from ``ilist_node<T>``.
+
+.. _dss_ilist_sentinel:
+
+Sentinels
+^^^^^^^^^
+
+``ilist``\ s have another specialty that must be considered. To be a good
+citizen in the C++ ecosystem, it needs to support the standard container
+operations, such as ``begin`` and ``end`` iterators, etc. Also, the
+``operator--`` must work correctly on the ``end`` iterator in the case of
+non-empty ``ilist``\ s.
+
+The only sensible solution to this problem is to allocate a so-called *sentinel*
+along with the intrusive list, which serves as the ``end`` iterator, providing
+the back-link to the last element. However conforming to the C++ convention it
+is illegal to ``operator++`` beyond the sentinel and it also must not be
+dereferenced.
+
+These constraints allow for some implementation freedom to the ``ilist`` how to
+allocate and store the sentinel. The corresponding policy is dictated by
+``ilist_traits<T>``. By default a ``T`` gets heap-allocated whenever the need
+for a sentinel arises.
+
+While the default policy is sufficient in most cases, it may break down when
+``T`` does not provide a default constructor. Also, in the case of many
+instances of ``ilist``\ s, the memory overhead of the associated sentinels is
+wasted. To alleviate the situation with numerous and voluminous
+``T``-sentinels, sometimes a trick is employed, leading to *ghostly sentinels*.
+
+Ghostly sentinels are obtained by specially-crafted ``ilist_traits<T>`` which
+superpose the sentinel with the ``ilist`` instance in memory. Pointer
+arithmetic is used to obtain the sentinel, which is relative to the ``ilist``'s
+``this`` pointer. The ``ilist`` is augmented by an extra pointer, which serves
+as the back-link of the sentinel. This is the only field in the ghostly
+sentinel which can be legally accessed.
+
+.. _dss_other:
+
+Other Sequential Container options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Other STL containers are available, such as ``std::string``.
+
+There are also various STL adapter classes such as ``std::queue``,
+``std::priority_queue``, ``std::stack``, etc. These provide simplified access
+to an underlying container but don't affect the cost of the container itself.
+
+.. _ds_string:
+
+String-like containers
+----------------------
+
+There are a variety of ways to pass around and use strings in C and C++, and
+LLVM adds a few new options to choose from. Pick the first option on this list
+that will do what you need, they are ordered according to their relative cost.
+
+Note that is is generally preferred to *not* pass strings around as ``const
+char*``'s. These have a number of problems, including the fact that they
+cannot represent embedded nul ("\0") characters, and do not have a length
+available efficiently. The general replacement for '``const char*``' is
+StringRef.
+
+For more information on choosing string containers for APIs, please see
+:ref:`Passing Strings <string_apis>`.
+
+.. _dss_stringref:
+
+llvm/ADT/StringRef.h
+^^^^^^^^^^^^^^^^^^^^
+
+The StringRef class is a simple value class that contains a pointer to a
+character and a length, and is quite related to the :ref:`ArrayRef
+<dss_arrayref>` class (but specialized for arrays of characters). Because
+StringRef carries a length with it, it safely handles strings with embedded nul
+characters in it, getting the length does not require a strlen call, and it even
+has very convenient APIs for slicing and dicing the character range that it
+represents.
+
+StringRef is ideal for passing simple strings around that are known to be live,
+either because they are C string literals, std::string, a C array, or a
+SmallVector. Each of these cases has an efficient implicit conversion to
+StringRef, which doesn't result in a dynamic strlen being executed.
+
+StringRef has a few major limitations which make more powerful string containers
+useful:
+
+#. You cannot directly convert a StringRef to a 'const char*' because there is
+ no way to add a trailing nul (unlike the .c_str() method on various stronger
+ classes).
+
+#. StringRef doesn't own or keep alive the underlying string bytes.
+ As such it can easily lead to dangling pointers, and is not suitable for
+ embedding in datastructures in most cases (instead, use an std::string or
+ something like that).
+
+#. For the same reason, StringRef cannot be used as the return value of a
+ method if the method "computes" the result string. Instead, use std::string.
+
+#. StringRef's do not allow you to mutate the pointed-to string bytes and it
+ doesn't allow you to insert or remove bytes from the range. For editing
+ operations like this, it interoperates with the :ref:`Twine <dss_twine>`
+ class.
+
+Because of its strengths and limitations, it is very common for a function to
+take a StringRef and for a method on an object to return a StringRef that points
+into some string that it owns.
+
+.. _dss_twine:
+
+llvm/ADT/Twine.h
+^^^^^^^^^^^^^^^^
+
+The Twine class is used as an intermediary datatype for APIs that want to take a
+string that can be constructed inline with a series of concatenations. Twine
+works by forming recursive instances of the Twine datatype (a simple value
+object) on the stack as temporary objects, linking them together into a tree
+which is then linearized when the Twine is consumed. Twine is only safe to use
+as the argument to a function, and should always be a const reference, e.g.:
+
+.. code-block:: c++
+
+ void foo(const Twine &T);
+ ...
+ StringRef X = ...
+ unsigned i = ...
+ foo(X + "." + Twine(i));
+
+This example forms a string like "blarg.42" by concatenating the values
+together, and does not form intermediate strings containing "blarg" or "blarg.".
+
+Because Twine is constructed with temporary objects on the stack, and because
+these instances are destroyed at the end of the current statement, it is an
+inherently dangerous API. For example, this simple variant contains undefined
+behavior and will probably crash:
+
+.. code-block:: c++
+
+ void foo(const Twine &T);
+ ...
+ StringRef X = ...
+ unsigned i = ...
+ const Twine &Tmp = X + "." + Twine(i);
+ foo(Tmp);
+
+... because the temporaries are destroyed before the call. That said, Twine's
+are much more efficient than intermediate std::string temporaries, and they work
+really well with StringRef. Just be aware of their limitations.
+
+.. _dss_smallstring:
+
+llvm/ADT/SmallString.h
+^^^^^^^^^^^^^^^^^^^^^^
+
+SmallString is a subclass of :ref:`SmallVector <dss_smallvector>` that adds some
+convenience APIs like += that takes StringRef's. SmallString avoids allocating
+memory in the case when the preallocated space is enough to hold its data, and
+it calls back to general heap allocation when required. Since it owns its data,
+it is very safe to use and supports full mutation of the string.
+
+Like SmallVector's, the big downside to SmallString is their sizeof. While they
+are optimized for small strings, they themselves are not particularly small.
+This means that they work great for temporary scratch buffers on the stack, but
+should not generally be put into the heap: it is very rare to see a SmallString
+as the member of a frequently-allocated heap data structure or returned
+by-value.
+
+.. _dss_stdstring:
+
+std::string
+^^^^^^^^^^^
+
+The standard C++ std::string class is a very general class that (like
+SmallString) owns its underlying data. sizeof(std::string) is very reasonable
+so it can be embedded into heap data structures and returned by-value. On the
+other hand, std::string is highly inefficient for inline editing (e.g.
+concatenating a bunch of stuff together) and because it is provided by the
+standard library, its performance characteristics depend a lot of the host
+standard library (e.g. libc++ and MSVC provide a highly optimized string class,
+GCC contains a really slow implementation).
+
+The major disadvantage of std::string is that almost every operation that makes
+them larger can allocate memory, which is slow. As such, it is better to use
+SmallVector or Twine as a scratch buffer, but then use std::string to persist
+the result.
+
+.. _ds_set:
+
+Set-Like Containers (std::set, SmallSet, SetVector, etc)
+--------------------------------------------------------
+
+Set-like containers are useful when you need to canonicalize multiple values
+into a single representation. There are several different choices for how to do
+this, providing various trade-offs.
+
+.. _dss_sortedvectorset:
+
+A sorted 'vector'
+^^^^^^^^^^^^^^^^^
+
+If you intend to insert a lot of elements, then do a lot of queries, a great
+approach is to use a vector (or other sequential container) with
+std::sort+std::unique to remove duplicates. This approach works really well if
+your usage pattern has these two distinct phases (insert then query), and can be
+coupled with a good choice of :ref:`sequential container <ds_sequential>`.
+
+This combination provides the several nice properties: the result data is
+contiguous in memory (good for cache locality), has few allocations, is easy to
+address (iterators in the final vector are just indices or pointers), and can be
+efficiently queried with a standard binary or radix search.
+
+.. _dss_smallset:
+
+llvm/ADT/SmallSet.h
+^^^^^^^^^^^^^^^^^^^
+
+If you have a set-like data structure that is usually small and whose elements
+are reasonably small, a ``SmallSet<Type, N>`` is a good choice. This set has
+space for N elements in place (thus, if the set is dynamically smaller than N,
+no malloc traffic is required) and accesses them with a simple linear search.
+When the set grows beyond 'N' elements, it allocates a more expensive
+representation that guarantees efficient access (for most types, it falls back
+to std::set, but for pointers it uses something far better, :ref:`SmallPtrSet
+<dss_smallptrset>`.
+
+The magic of this class is that it handles small sets extremely efficiently, but
+gracefully handles extremely large sets without loss of efficiency. The
+drawback is that the interface is quite small: it supports insertion, queries
+and erasing, but does not support iteration.
+
+.. _dss_smallptrset:
+
+llvm/ADT/SmallPtrSet.h
+^^^^^^^^^^^^^^^^^^^^^^
+
+SmallPtrSet has all the advantages of ``SmallSet`` (and a ``SmallSet`` of
+pointers is transparently implemented with a ``SmallPtrSet``), but also supports
+iterators. If more than 'N' insertions are performed, a single quadratically
+probed hash table is allocated and grows as needed, providing extremely
+efficient access (constant time insertion/deleting/queries with low constant
+factors) and is very stingy with malloc traffic.
+
+Note that, unlike ``std::set``, the iterators of ``SmallPtrSet`` are invalidated
+whenever an insertion occurs. Also, the values visited by the iterators are not
+visited in sorted order.
+
+.. _dss_denseset:
+
+llvm/ADT/DenseSet.h
+^^^^^^^^^^^^^^^^^^^
+
+DenseSet is a simple quadratically probed hash table. It excels at supporting
+small values: it uses a single allocation to hold all of the pairs that are
+currently inserted in the set. DenseSet is a great way to unique small values
+that are not simple pointers (use :ref:`SmallPtrSet <dss_smallptrset>` for
+pointers). Note that DenseSet has the same requirements for the value type that
+:ref:`DenseMap <dss_densemap>` has.
+
+.. _dss_sparseset:
+
+llvm/ADT/SparseSet.h
+^^^^^^^^^^^^^^^^^^^^
+
+SparseSet holds a small number of objects identified by unsigned keys of
+moderate size. It uses a lot of memory, but provides operations that are almost
+as fast as a vector. Typical keys are physical registers, virtual registers, or
+numbered basic blocks.
+
+SparseSet is useful for algorithms that need very fast clear/find/insert/erase
+and fast iteration over small sets. It is not intended for building composite
+data structures.
+
+.. _dss_FoldingSet:
+
+llvm/ADT/FoldingSet.h
+^^^^^^^^^^^^^^^^^^^^^
+
+FoldingSet is an aggregate class that is really good at uniquing
+expensive-to-create or polymorphic objects. It is a combination of a chained
+hash table with intrusive links (uniqued objects are required to inherit from
+FoldingSetNode) that uses :ref:`SmallVector <dss_smallvector>` as part of its ID
+process.
+
+Consider a case where you want to implement a "getOrCreateFoo" method for a
+complex object (for example, a node in the code generator). The client has a
+description of **what** it wants to generate (it knows the opcode and all the
+operands), but we don't want to 'new' a node, then try inserting it into a set
+only to find out it already exists, at which point we would have to delete it
+and return the node that already exists.
+
+To support this style of client, FoldingSet perform a query with a
+FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
+element that we want to query for. The query either returns the element
+matching the ID or it returns an opaque ID that indicates where insertion should
+take place. Construction of the ID usually does not require heap traffic.
+
+Because FoldingSet uses intrusive links, it can support polymorphic objects in
+the set (for example, you can have SDNode instances mixed with LoadSDNodes).
+Because the elements are individually allocated, pointers to the elements are
+stable: inserting or removing elements does not invalidate any pointers to other
+elements.
+
+.. _dss_set:
+
+<set>
+^^^^^
+
+``std::set`` is a reasonable all-around set class, which is decent at many
+things but great at nothing. std::set allocates memory for each element
+inserted (thus it is very malloc intensive) and typically stores three pointers
+per element in the set (thus adding a large amount of per-element space
+overhead). It offers guaranteed log(n) performance, which is not particularly
+fast from a complexity standpoint (particularly if the elements of the set are
+expensive to compare, like strings), and has extremely high constant factors for
+lookup, insertion and removal.
+
+The advantages of std::set are that its iterators are stable (deleting or
+inserting an element from the set does not affect iterators or pointers to other
+elements) and that iteration over the set is guaranteed to be in sorted order.
+If the elements in the set are large, then the relative overhead of the pointers
+and malloc traffic is not a big deal, but if the elements of the set are small,
+std::set is almost never a good choice.
+
+.. _dss_setvector:
+
+llvm/ADT/SetVector.h
+^^^^^^^^^^^^^^^^^^^^
+
+LLVM's ``SetVector<Type>`` is an adapter class that combines your choice of a
+set-like container along with a :ref:`Sequential Container <ds_sequential>` The
+important property that this provides is efficient insertion with uniquing
+(duplicate elements are ignored) with iteration support. It implements this by
+inserting elements into both a set-like container and the sequential container,
+using the set-like container for uniquing and the sequential container for
+iteration.
+
+The difference between SetVector and other sets is that the order of iteration
+is guaranteed to match the order of insertion into the SetVector. This property
+is really important for things like sets of pointers. Because pointer values
+are non-deterministic (e.g. vary across runs of the program on different
+machines), iterating over the pointers in the set will not be in a well-defined
+order.
+
+The drawback of SetVector is that it requires twice as much space as a normal
+set and has the sum of constant factors from the set-like container and the
+sequential container that it uses. Use it **only** if you need to iterate over
+the elements in a deterministic order. SetVector is also expensive to delete
+elements out of (linear time), unless you use it's "pop_back" method, which is
+faster.
+
+``SetVector`` is an adapter class that defaults to using ``std::vector`` and a
+size 16 ``SmallSet`` for the underlying containers, so it is quite expensive.
+However, ``"llvm/ADT/SetVector.h"`` also provides a ``SmallSetVector`` class,
+which defaults to using a ``SmallVector`` and ``SmallSet`` of a specified size.
+If you use this, and if your sets are dynamically smaller than ``N``, you will
+save a lot of heap traffic.
+
+.. _dss_uniquevector:
+
+llvm/ADT/UniqueVector.h
+^^^^^^^^^^^^^^^^^^^^^^^
+
+UniqueVector is similar to :ref:`SetVector <dss_setvector>` but it retains a
+unique ID for each element inserted into the set. It internally contains a map
+and a vector, and it assigns a unique ID for each value inserted into the set.
+
+UniqueVector is very expensive: its cost is the sum of the cost of maintaining
+both the map and vector, it has high complexity, high constant factors, and
+produces a lot of malloc traffic. It should be avoided.
+
+.. _dss_immutableset:
+
+llvm/ADT/ImmutableSet.h
+^^^^^^^^^^^^^^^^^^^^^^^
+
+ImmutableSet is an immutable (functional) set implementation based on an AVL
+tree. Adding or removing elements is done through a Factory object and results
+in the creation of a new ImmutableSet object. If an ImmutableSet already exists
+with the given contents, then the existing one is returned; equality is compared
+with a FoldingSetNodeID. The time and space complexity of add or remove
+operations is logarithmic in the size of the original set.
+
+There is no method for returning an element of the set, you can only check for
+membership.
+
+.. _dss_otherset:
+
+Other Set-Like Container Options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The STL provides several other options, such as std::multiset and the various
+"hash_set" like containers (whether from C++ TR1 or from the SGI library). We
+never use hash_set and unordered_set because they are generally very expensive
+(each insertion requires a malloc) and very non-portable.
+
+std::multiset is useful if you're not interested in elimination of duplicates,
+but has all the drawbacks of std::set. A sorted vector (where you don't delete
+duplicate entries) or some other approach is almost always better.
+
+.. _ds_map:
+
+Map-Like Containers (std::map, DenseMap, etc)
+---------------------------------------------
+
+Map-like containers are useful when you want to associate data to a key. As
+usual, there are a lot of different ways to do this. :)
+
+.. _dss_sortedvectormap:
+
+A sorted 'vector'
+^^^^^^^^^^^^^^^^^
+
+If your usage pattern follows a strict insert-then-query approach, you can
+trivially use the same approach as :ref:`sorted vectors for set-like containers
+<dss_sortedvectorset>`. The only difference is that your query function (which
+uses std::lower_bound to get efficient log(n) lookup) should only compare the
+key, not both the key and value. This yields the same advantages as sorted
+vectors for sets.
+
+.. _dss_stringmap:
+
+llvm/ADT/StringMap.h
+^^^^^^^^^^^^^^^^^^^^
+
+Strings are commonly used as keys in maps, and they are difficult to support
+efficiently: they are variable length, inefficient to hash and compare when
+long, expensive to copy, etc. StringMap is a specialized container designed to
+cope with these issues. It supports mapping an arbitrary range of bytes to an
+arbitrary other object.
+
+The StringMap implementation uses a quadratically-probed hash table, where the
+buckets store a pointer to the heap allocated entries (and some other stuff).
+The entries in the map must be heap allocated because the strings are variable
+length. The string data (key) and the element object (value) are stored in the
+same allocation with the string data immediately after the element object.
+This container guarantees the "``(char*)(&Value+1)``" points to the key string
+for a value.
+
+The StringMap is very fast for several reasons: quadratic probing is very cache
+efficient for lookups, the hash value of strings in buckets is not recomputed
+when looking up an element, StringMap rarely has to touch the memory for
+unrelated objects when looking up a value (even when hash collisions happen),
+hash table growth does not recompute the hash values for strings already in the
+table, and each pair in the map is store in a single allocation (the string data
+is stored in the same allocation as the Value of a pair).
+
+StringMap also provides query methods that take byte ranges, so it only ever
+copies a string if a value is inserted into the table.
+
+StringMap iteratation order, however, is not guaranteed to be deterministic, so
+any uses which require that should instead use a std::map.
+
+.. _dss_indexmap:
+
+llvm/ADT/IndexedMap.h
+^^^^^^^^^^^^^^^^^^^^^
+
+IndexedMap is a specialized container for mapping small dense integers (or
+values that can be mapped to small dense integers) to some other type. It is
+internally implemented as a vector with a mapping function that maps the keys
+to the dense integer range.
+
+This is useful for cases like virtual registers in the LLVM code generator: they
+have a dense mapping that is offset by a compile-time constant (the first
+virtual register ID).
+
+.. _dss_densemap:
+
+llvm/ADT/DenseMap.h
+^^^^^^^^^^^^^^^^^^^
+
+DenseMap is a simple quadratically probed hash table. It excels at supporting
+small keys and values: it uses a single allocation to hold all of the pairs
+that are currently inserted in the map. DenseMap is a great way to map
+pointers to pointers, or map other small types to each other.
+
+There are several aspects of DenseMap that you should be aware of, however.
+The iterators in a DenseMap are invalidated whenever an insertion occurs,
+unlike map. Also, because DenseMap allocates space for a large number of
+key/value pairs (it starts with 64 by default), it will waste a lot of space if
+your keys or values are large. Finally, you must implement a partial
+specialization of DenseMapInfo for the key that you want, if it isn't already
+supported. This is required to tell DenseMap about two special marker values
+(which can never be inserted into the map) that it needs internally.
+
+DenseMap's find_as() method supports lookup operations using an alternate key
+type. This is useful in cases where the normal key type is expensive to
+construct, but cheap to compare against. The DenseMapInfo is responsible for
+defining the appropriate comparison and hashing methods for each alternate key
+type used.
+
+.. _dss_valuemap:
+
+llvm/ADT/ValueMap.h
+^^^^^^^^^^^^^^^^^^^
+
+ValueMap is a wrapper around a :ref:`DenseMap <dss_densemap>` mapping
+``Value*``\ s (or subclasses) to another type. When a Value is deleted or
+RAUW'ed, ValueMap will update itself so the new version of the key is mapped to
+the same value, just as if the key were a WeakVH. You can configure exactly how
+this happens, and what else happens on these two events, by passing a ``Config``
+parameter to the ValueMap template.
+
+.. _dss_intervalmap:
+
+llvm/ADT/IntervalMap.h
+^^^^^^^^^^^^^^^^^^^^^^
+
+IntervalMap is a compact map for small keys and values. It maps key intervals
+instead of single keys, and it will automatically coalesce adjacent intervals.
+When then map only contains a few intervals, they are stored in the map object
+itself to avoid allocations.
+
+The IntervalMap iterators are quite big, so they should not be passed around as
+STL iterators. The heavyweight iterators allow a smaller data structure.
+
+.. _dss_map:
+
+<map>
+^^^^^
+
+std::map has similar characteristics to :ref:`std::set <dss_set>`: it uses a
+single allocation per pair inserted into the map, it offers log(n) lookup with
+an extremely large constant factor, imposes a space penalty of 3 pointers per
+pair in the map, etc.
+
+std::map is most useful when your keys or values are very large, if you need to
+iterate over the collection in sorted order, or if you need stable iterators
+into the map (i.e. they don't get invalidated if an insertion or deletion of
+another element takes place).
+
+.. _dss_mapvector:
+
+llvm/ADT/MapVector.h
+^^^^^^^^^^^^^^^^^^^^
+
+``MapVector<KeyT,ValueT>`` provides a subset of the DenseMap interface. The
+main difference is that the iteration order is guaranteed to be the insertion
+order, making it an easy (but somewhat expensive) solution for non-deterministic
+iteration over maps of pointers.
+
+It is implemented by mapping from key to an index in a vector of key,value
+pairs. This provides fast lookup and iteration, but has two main drawbacks: The
+key is stored twice and it doesn't support removing elements.
+
+.. _dss_inteqclasses:
+
+llvm/ADT/IntEqClasses.h
+^^^^^^^^^^^^^^^^^^^^^^^
+
+IntEqClasses provides a compact representation of equivalence classes of small
+integers. Initially, each integer in the range 0..n-1 has its own equivalence
+class. Classes can be joined by passing two class representatives to the
+join(a, b) method. Two integers are in the same class when findLeader() returns
+the same representative.
+
+Once all equivalence classes are formed, the map can be compressed so each
+integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
+is the total number of equivalence classes. The map must be uncompressed before
+it can be edited again.
+
+.. _dss_immutablemap:
+
+llvm/ADT/ImmutableMap.h
+^^^^^^^^^^^^^^^^^^^^^^^
+
+ImmutableMap is an immutable (functional) map implementation based on an AVL
+tree. Adding or removing elements is done through a Factory object and results
+in the creation of a new ImmutableMap object. If an ImmutableMap already exists
+with the given key set, then the existing one is returned; equality is compared
+with a FoldingSetNodeID. The time and space complexity of add or remove
+operations is logarithmic in the size of the original map.
+
+.. _dss_othermap:
+
+Other Map-Like Container Options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The STL provides several other options, such as std::multimap and the various
+"hash_map" like containers (whether from C++ TR1 or from the SGI library). We
+never use hash_set and unordered_set because they are generally very expensive
+(each insertion requires a malloc) and very non-portable.
+
+std::multimap is useful if you want to map a key to multiple values, but has all
+the drawbacks of std::map. A sorted vector or some other approach is almost
+always better.
+
+.. _ds_bit:
+
+Bit storage containers (BitVector, SparseBitVector)
+---------------------------------------------------
+
+Unlike the other containers, there are only two bit storage containers, and
+choosing when to use each is relatively straightforward.
+
+One additional option is ``std::vector<bool>``: we discourage its use for two
+reasons 1) the implementation in many common compilers (e.g. commonly
+available versions of GCC) is extremely inefficient and 2) the C++ standards
+committee is likely to deprecate this container and/or change it significantly
+somehow. In any case, please don't use it.
+
+.. _dss_bitvector:
+
+BitVector
+^^^^^^^^^
+
+The BitVector container provides a dynamic size set of bits for manipulation.
+It supports individual bit setting/testing, as well as set operations. The set
+operations take time O(size of bitvector), but operations are performed one word
+at a time, instead of one bit at a time. This makes the BitVector very fast for
+set operations compared to other containers. Use the BitVector when you expect
+the number of set bits to be high (i.e. a dense set).
+
+.. _dss_smallbitvector:
+
+SmallBitVector
+^^^^^^^^^^^^^^
+
+The SmallBitVector container provides the same interface as BitVector, but it is
+optimized for the case where only a small number of bits, less than 25 or so,
+are needed. It also transparently supports larger bit counts, but slightly less
+efficiently than a plain BitVector, so SmallBitVector should only be used when
+larger counts are rare.
+
+At this time, SmallBitVector does not support set operations (and, or, xor), and
+its operator[] does not provide an assignable lvalue.
+
+.. _dss_sparsebitvector:
+
+SparseBitVector
+^^^^^^^^^^^^^^^
+
+The SparseBitVector container is much like BitVector, with one major difference:
+Only the bits that are set, are stored. This makes the SparseBitVector much
+more space efficient than BitVector when the set is sparse, as well as making
+set operations O(number of set bits) instead of O(size of universe). The
+downside to the SparseBitVector is that setting and testing of random bits is
+O(N), and on large SparseBitVectors, this can be slower than BitVector. In our
+implementation, setting or testing bits in sorted order (either forwards or
+reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends
+on size) of the current bit is also O(1). As a general statement,
+testing/setting bits in a SparseBitVector is O(distance away from last set bit).
+
+.. _common:
+
+Helpful Hints for Common Operations
+===================================
+
+This section describes how to perform some very simple transformations of LLVM
+code. This is meant to give examples of common idioms used, showing the
+practical side of LLVM transformations.
+
+Because this is a "how-to" section, you should also read about the main classes
+that you will be working with. The :ref:`Core LLVM Class Hierarchy Reference
+<coreclasses>` contains details and descriptions of the main classes that you
+should know about.
+
+.. _inspection:
+
+Basic Inspection and Traversal Routines
+---------------------------------------
+
+The LLVM compiler infrastructure have many different data structures that may be
+traversed. Following the example of the C++ standard template library, the
+techniques used to traverse these various data structures are all basically the
+same. For a enumerable sequence of values, the ``XXXbegin()`` function (or
+method) returns an iterator to the start of the sequence, the ``XXXend()``
+function returns an iterator pointing to one past the last valid element of the
+sequence, and there is some ``XXXiterator`` data type that is common between the
+two operations.
+
+Because the pattern for iteration is common across many different aspects of the
+program representation, the standard template library algorithms may be used on
+them, and it is easier to remember how to iterate. First we show a few common
+examples of the data structures that need to be traversed. Other data
+structures are traversed in very similar ways.
+
+.. _iterate_function:
+
+Iterating over the ``BasicBlock`` in a ``Function``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+It's quite common to have a ``Function`` instance that you'd like to transform
+in some way; in particular, you'd like to manipulate its ``BasicBlock``\ s. To
+facilitate this, you'll need to iterate over all of the ``BasicBlock``\ s that
+constitute the ``Function``. The following is an example that prints the name
+of a ``BasicBlock`` and the number of ``Instruction``\ s it contains:
+
+.. code-block:: c++
+
+ // func is a pointer to a Function instance
+ for (Function::iterator i = func->begin(), e = func->end(); i != e; ++i)
+ // Print out the name of the basic block if it has one, and then the
+ // number of instructions that it contains
+ errs() << "Basic block (name=" << i->getName() << ") has "
+ << i->size() << " instructions.\n";
+
+Note that i can be used as if it were a pointer for the purposes of invoking
+member functions of the ``Instruction`` class. This is because the indirection
+operator is overloaded for the iterator classes. In the above code, the
+expression ``i->size()`` is exactly equivalent to ``(*i).size()`` just like
+you'd expect.
+
+.. _iterate_basicblock:
+
+Iterating over the ``Instruction`` in a ``BasicBlock``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Just like when dealing with ``BasicBlock``\ s in ``Function``\ s, it's easy to
+iterate over the individual instructions that make up ``BasicBlock``\ s. Here's
+a code snippet that prints out each instruction in a ``BasicBlock``:
+
+.. code-block:: c++
+
+ // blk is a pointer to a BasicBlock instance
+ for (BasicBlock::iterator i = blk->begin(), e = blk->end(); i != e; ++i)
+ // The next statement works since operator<<(ostream&,...)
+ // is overloaded for Instruction&
+ errs() << *i << "\n";
+
+
+However, this isn't really the best way to print out the contents of a
+``BasicBlock``! Since the ostream operators are overloaded for virtually
+anything you'll care about, you could have just invoked the print routine on the
+basic block itself: ``errs() << *blk << "\n";``.
+
+.. _iterate_insiter:
+
+Iterating over the ``Instruction`` in a ``Function``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If you're finding that you commonly iterate over a ``Function``'s
+``BasicBlock``\ s and then that ``BasicBlock``'s ``Instruction``\ s,
+``InstIterator`` should be used instead. You'll need to include
+``llvm/Support/InstIterator.h`` (`doxygen
+<http://llvm.org/doxygen/InstIterator_8h-source.html>`__) and then instantiate
+``InstIterator``\ s explicitly in your code. Here's a small example that shows
+how to dump all instructions in a function to the standard error stream:
+
+.. code-block:: c++
+
+ #include "llvm/Support/InstIterator.h"
+
+ // F is a pointer to a Function instance
+ for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
+ errs() << *I << "\n";
+
+Easy, isn't it? You can also use ``InstIterator``\ s to fill a work list with
+its initial contents. For example, if you wanted to initialize a work list to
+contain all instructions in a ``Function`` F, all you would need to do is
+something like:
+
+.. code-block:: c++
+
+ std::set<Instruction*> worklist;
+ // or better yet, SmallPtrSet<Instruction*, 64> worklist;
+
+ for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
+ worklist.insert(&*I);
+
+The STL set ``worklist`` would now contain all instructions in the ``Function``
+pointed to by F.
+
+.. _iterate_convert:
+
+Turning an iterator into a class pointer (and vice-versa)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sometimes, it'll be useful to grab a reference (or pointer) to a class instance
+when all you've got at hand is an iterator. Well, extracting a reference or a
+pointer from an iterator is very straight-forward. Assuming that ``i`` is a
+``BasicBlock::iterator`` and ``j`` is a ``BasicBlock::const_iterator``:
+
+.. code-block:: c++
+
+ Instruction& inst = *i; // Grab reference to instruction reference
+ Instruction* pinst = &*i; // Grab pointer to instruction reference
+ const Instruction& inst = *j;
+
+However, the iterators you'll be working with in the LLVM framework are special:
+they will automatically convert to a ptr-to-instance type whenever they need to.
+Instead of derferencing the iterator and then taking the address of the result,
+you can simply assign the iterator to the proper pointer type and you get the
+dereference and address-of operation as a result of the assignment (behind the
+scenes, this is a result of overloading casting mechanisms). Thus the last line
+of the last example,
+
+.. code-block:: c++
+
+ Instruction *pinst = &*i;
+
+is semantically equivalent to
+
+.. code-block:: c++
+
+ Instruction *pinst = i;
+
+It's also possible to turn a class pointer into the corresponding iterator, and
+this is a constant time operation (very efficient). The following code snippet
+illustrates use of the conversion constructors provided by LLVM iterators. By
+using these, you can explicitly grab the iterator of something without actually
+obtaining it via iteration over some structure:
+
+.. code-block:: c++
+
+ void printNextInstruction(Instruction* inst) {
+ BasicBlock::iterator it(inst);
+ ++it; // After this line, it refers to the instruction after *inst
+ if (it != inst->getParent()->end()) errs() << *it << "\n";
+ }
+
+Unfortunately, these implicit conversions come at a cost; they prevent these
+iterators from conforming to standard iterator conventions, and thus from being
+usable with standard algorithms and containers. For example, they prevent the
+following code, where ``B`` is a ``BasicBlock``, from compiling:
+
+.. code-block:: c++
+
+ llvm::SmallVector<llvm::Instruction *, 16>(B->begin(), B->end());
+
+Because of this, these implicit conversions may be removed some day, and
+``operator*`` changed to return a pointer instead of a reference.
+
+.. _iterate_complex:
+
+Finding call sites: a slightly more complex example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Say that you're writing a FunctionPass and would like to count all the locations
+in the entire module (that is, across every ``Function``) where a certain
+function (i.e., some ``Function *``) is already in scope. As you'll learn
+later, you may want to use an ``InstVisitor`` to accomplish this in a much more
+straight-forward manner, but this example will allow us to explore how you'd do
+it if you didn't have ``InstVisitor`` around. In pseudo-code, this is what we
+want to do:
+
+.. code-block:: none
+
+ initialize callCounter to zero
+ for each Function f in the Module
+ for each BasicBlock b in f
+ for each Instruction i in b
+ if (i is a CallInst and calls the given function)
+ increment callCounter
+
+And the actual code is (remember, because we're writing a ``FunctionPass``, our
+``FunctionPass``-derived class simply has to override the ``runOnFunction``
+method):
+
+.. code-block:: c++
+
+ Function* targetFunc = ...;
+
+ class OurFunctionPass : public FunctionPass {
+ public:
+ OurFunctionPass(): callCounter(0) { }
+
+ virtual runOnFunction(Function& F) {
+ for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
+ for (BasicBlock::iterator i = b->begin(), ie = b->end(); i != ie; ++i) {
+ if (CallInst* callInst = dyn_cast<CallInst>(&*i)) {
+ // We know we've encountered a call instruction, so we
+ // need to determine if it's a call to the
+ // function pointed to by m_func or not.
+ if (callInst->getCalledFunction() == targetFunc)
+ ++callCounter;
+ }
+ }
+ }
+ }
+
+ private:
+ unsigned callCounter;
+ };
+
+.. _calls_and_invokes:
+
+Treating calls and invokes the same way
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+You may have noticed that the previous example was a bit oversimplified in that
+it did not deal with call sites generated by 'invoke' instructions. In this,
+and in other situations, you may find that you want to treat ``CallInst``\ s and
+``InvokeInst``\ s the same way, even though their most-specific common base
+class is ``Instruction``, which includes lots of less closely-related things.
+For these cases, LLVM provides a handy wrapper class called ``CallSite``
+(`doxygen <http://llvm.org/doxygen/classllvm_1_1CallSite.html>`__) It is
+essentially a wrapper around an ``Instruction`` pointer, with some methods that
+provide functionality common to ``CallInst``\ s and ``InvokeInst``\ s.
+
+This class has "value semantics": it should be passed by value, not by reference
+and it should not be dynamically allocated or deallocated using ``operator new``
+or ``operator delete``. It is efficiently copyable, assignable and
+constructable, with costs equivalents to that of a bare pointer. If you look at
+its definition, it has only a single pointer member.
+
+.. _iterate_chains:
+
+Iterating over def-use & use-def chains
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Frequently, we might have an instance of the ``Value`` class (`doxygen
+<http://llvm.org/doxygen/classllvm_1_1Value.html>`__) and we want to determine
+which ``User`` s use the ``Value``. The list of all ``User``\ s of a particular
+``Value`` is called a *def-use* chain. For example, let's say we have a
+``Function*`` named ``F`` to a particular function ``foo``. Finding all of the
+instructions that *use* ``foo`` is as simple as iterating over the *def-use*
+chain of ``F``:
+
+.. code-block:: c++
+
+ Function *F = ...;
+
+ for (Value::use_iterator i = F->use_begin(), e = F->use_end(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(*i)) {
+ errs() << "F is used in instruction:\n";
+ errs() << *Inst << "\n";
+ }
+
+Note that dereferencing a ``Value::use_iterator`` is not a very cheap operation.
+Instead of performing ``*i`` above several times, consider doing it only once in
+the loop body and reusing its result.
+
+Alternatively, it's common to have an instance of the ``User`` Class (`doxygen
+<http://llvm.org/doxygen/classllvm_1_1User.html>`__) and need to know what
+``Value``\ s are used by it. The list of all ``Value``\ s used by a ``User`` is
+known as a *use-def* chain. Instances of class ``Instruction`` are common
+``User`` s, so we might want to iterate over all of the values that a particular
+instruction uses (that is, the operands of the particular ``Instruction``):
+
+.. code-block:: c++
+
+ Instruction *pi = ...;
+
+ for (User::op_iterator i = pi->op_begin(), e = pi->op_end(); i != e; ++i) {
+ Value *v = *i;
+ // ...
+ }
+
+Declaring objects as ``const`` is an important tool of enforcing mutation free
+algorithms (such as analyses, etc.). For this purpose above iterators come in
+constant flavors as ``Value::const_use_iterator`` and
+``Value::const_op_iterator``. They automatically arise when calling
+``use/op_begin()`` on ``const Value*``\ s or ``const User*``\ s respectively.
+Upon dereferencing, they return ``const Use*``\ s. Otherwise the above patterns
+remain unchanged.
+
+.. _iterate_preds:
+
+Iterating over predecessors & successors of blocks
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Iterating over the predecessors and successors of a block is quite easy with the
+routines defined in ``"llvm/Support/CFG.h"``. Just use code like this to
+iterate over all predecessors of BB:
+
+.. code-block:: c++
+
+ #include "llvm/Support/CFG.h"
+ BasicBlock *BB = ...;
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ // ...
+ }
+
+Similarly, to iterate over successors use ``succ_iterator/succ_begin/succ_end``.
+
+.. _simplechanges:
+
+Making simple changes
+---------------------
+
+There are some primitive transformation operations present in the LLVM
+infrastructure that are worth knowing about. When performing transformations,
+it's fairly common to manipulate the contents of basic blocks. This section
+describes some of the common methods for doing so and gives example code.
+
+.. _schanges_creating:
+
+Creating and inserting new ``Instruction``\ s
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+*Instantiating Instructions*
+
+Creation of ``Instruction``\ s is straight-forward: simply call the constructor
+for the kind of instruction to instantiate and provide the necessary parameters.
+For example, an ``AllocaInst`` only *requires* a (const-ptr-to) ``Type``. Thus:
+
+.. code-block:: c++
+
+ AllocaInst* ai = new AllocaInst(Type::Int32Ty);
+
+will create an ``AllocaInst`` instance that represents the allocation of one
+integer in the current stack frame, at run time. Each ``Instruction`` subclass
+is likely to have varying default parameters which change the semantics of the
+instruction, so refer to the `doxygen documentation for the subclass of
+Instruction <http://llvm.org/doxygen/classllvm_1_1Instruction.html>`_ that
+you're interested in instantiating.
+
+*Naming values*
+
+It is very useful to name the values of instructions when you're able to, as
+this facilitates the debugging of your transformations. If you end up looking
+at generated LLVM machine code, you definitely want to have logical names
+associated with the results of instructions! By supplying a value for the
+``Name`` (default) parameter of the ``Instruction`` constructor, you associate a
+logical name with the result of the instruction's execution at run time. For
+example, say that I'm writing a transformation that dynamically allocates space
+for an integer on the stack, and that integer is going to be used as some kind
+of index by some other code. To accomplish this, I place an ``AllocaInst`` at
+the first point in the first ``BasicBlock`` of some ``Function``, and I'm
+intending to use it within the same ``Function``. I might do:
+
+.. code-block:: c++
+
+ AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
+
+where ``indexLoc`` is now the logical name of the instruction's execution value,
+which is a pointer to an integer on the run time stack.
+
+*Inserting instructions*
+
+There are essentially two ways to insert an ``Instruction`` into an existing
+sequence of instructions that form a ``BasicBlock``:
+
+* Insertion into an explicit instruction list
+
+ Given a ``BasicBlock* pb``, an ``Instruction* pi`` within that ``BasicBlock``,
+ and a newly-created instruction we wish to insert before ``*pi``, we do the
+ following:
+
+ .. code-block:: c++
+
+ BasicBlock *pb = ...;
+ Instruction *pi = ...;
+ Instruction *newInst = new Instruction(...);
+
+ pb->getInstList().insert(pi, newInst); // Inserts newInst before pi in pb
+
+ Appending to the end of a ``BasicBlock`` is so common that the ``Instruction``
+ class and ``Instruction``-derived classes provide constructors which take a
+ pointer to a ``BasicBlock`` to be appended to. For example code that looked
+ like:
+
+ .. code-block:: c++
+
+ BasicBlock *pb = ...;
+ Instruction *newInst = new Instruction(...);
+
+ pb->getInstList().push_back(newInst); // Appends newInst to pb
+
+ becomes:
+
+ .. code-block:: c++
+
+ BasicBlock *pb = ...;
+ Instruction *newInst = new Instruction(..., pb);
+
+ which is much cleaner, especially if you are creating long instruction
+ streams.
+
+* Insertion into an implicit instruction list
+
+ ``Instruction`` instances that are already in ``BasicBlock``\ s are implicitly
+ associated with an existing instruction list: the instruction list of the
+ enclosing basic block. Thus, we could have accomplished the same thing as the
+ above code without being given a ``BasicBlock`` by doing:
+
+ .. code-block:: c++
+
+ Instruction *pi = ...;
+ Instruction *newInst = new Instruction(...);
+
+ pi->getParent()->getInstList().insert(pi, newInst);
+
+ In fact, this sequence of steps occurs so frequently that the ``Instruction``
+ class and ``Instruction``-derived classes provide constructors which take (as
+ a default parameter) a pointer to an ``Instruction`` which the newly-created
+ ``Instruction`` should precede. That is, ``Instruction`` constructors are
+ capable of inserting the newly-created instance into the ``BasicBlock`` of a
+ provided instruction, immediately before that instruction. Using an
+ ``Instruction`` constructor with a ``insertBefore`` (default) parameter, the
+ above code becomes:
+
+ .. code-block:: c++
+
+ Instruction* pi = ...;
+ Instruction* newInst = new Instruction(..., pi);
+
+ which is much cleaner, especially if you're creating a lot of instructions and
+ adding them to ``BasicBlock``\ s.
+
+.. _schanges_deleting:
+
+Deleting Instructions
+^^^^^^^^^^^^^^^^^^^^^
+
+Deleting an instruction from an existing sequence of instructions that form a
+BasicBlock_ is very straight-forward: just call the instruction's
+``eraseFromParent()`` method. For example:
+
+.. code-block:: c++
+
+ Instruction *I = .. ;
+ I->eraseFromParent();
+
+This unlinks the instruction from its containing basic block and deletes it. If
+you'd just like to unlink the instruction from its containing basic block but
+not delete it, you can use the ``removeFromParent()`` method.
+
+.. _schanges_replacing:
+
+Replacing an Instruction with another Value
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Replacing individual instructions
+"""""""""""""""""""""""""""""""""
+
+Including "`llvm/Transforms/Utils/BasicBlockUtils.h
+<http://llvm.org/doxygen/BasicBlockUtils_8h-source.html>`_" permits use of two
+very useful replace functions: ``ReplaceInstWithValue`` and
+``ReplaceInstWithInst``.
+
+.. _schanges_deleting_sub:
+
+Deleting Instructions
+"""""""""""""""""""""
+
+* ``ReplaceInstWithValue``
+
+ This function replaces all uses of a given instruction with a value, and then
+ removes the original instruction. The following example illustrates the
+ replacement of the result of a particular ``AllocaInst`` that allocates memory
+ for a single integer with a null pointer to an integer.
+
+ .. code-block:: c++
+
+ AllocaInst* instToReplace = ...;
+ BasicBlock::iterator ii(instToReplace);
+
+ ReplaceInstWithValue(instToReplace->getParent()->getInstList(), ii,
+ Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
+
+* ``ReplaceInstWithInst``
+
+ This function replaces a particular instruction with another instruction,
+ inserting the new instruction into the basic block at the location where the
+ old instruction was, and replacing any uses of the old instruction with the
+ new instruction. The following example illustrates the replacement of one
+ ``AllocaInst`` with another.
+
+ .. code-block:: c++
+
+ AllocaInst* instToReplace = ...;
+ BasicBlock::iterator ii(instToReplace);
+
+ ReplaceInstWithInst(instToReplace->getParent()->getInstList(), ii,
+ new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
+
+
+Replacing multiple uses of Users and Values
+"""""""""""""""""""""""""""""""""""""""""""
+
+You can use ``Value::replaceAllUsesWith`` and ``User::replaceUsesOfWith`` to
+change more than one use at a time. See the doxygen documentation for the
+`Value Class <http://llvm.org/doxygen/classllvm_1_1Value.html>`_ and `User Class
+<http://llvm.org/doxygen/classllvm_1_1User.html>`_, respectively, for more
+information.
+
+.. _schanges_deletingGV:
+
+Deleting GlobalVariables
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+Deleting a global variable from a module is just as easy as deleting an
+Instruction. First, you must have a pointer to the global variable that you
+wish to delete. You use this pointer to erase it from its parent, the module.
+For example:
+
+.. code-block:: c++
+
+ GlobalVariable *GV = .. ;
+
+ GV->eraseFromParent();
+
+
+.. _create_types:
+
+How to Create Types
+-------------------
+
+In generating IR, you may need some complex types. If you know these types
+statically, you can use ``TypeBuilder<...>::get()``, defined in
+``llvm/Support/TypeBuilder.h``, to retrieve them. ``TypeBuilder`` has two forms
+depending on whether you're building types for cross-compilation or native
+library use. ``TypeBuilder<T, true>`` requires that ``T`` be independent of the
+host environment, meaning that it's built out of types from the ``llvm::types``
+(`doxygen <http://llvm.org/doxygen/namespacellvm_1_1types.html>`__) namespace
+and pointers, functions, arrays, etc. built of those. ``TypeBuilder<T, false>``
+additionally allows native C types whose size may depend on the host compiler.
+For example,
+
+.. code-block:: c++
+
+ FunctionType *ft = TypeBuilder<types::i<8>(types::i<32>*), true>::get();
+
+is easier to read and write than the equivalent
+
+.. code-block:: c++
+
+ std::vector<const Type*> params;
+ params.push_back(PointerType::getUnqual(Type::Int32Ty));
+ FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
+
+See the `class comment
+<http://llvm.org/doxygen/TypeBuilder_8h-source.html#l00001>`_ for more details.
+
+.. _threading:
+
+Threads and LLVM
+================
+
+This section describes the interaction of the LLVM APIs with multithreading,
+both on the part of client applications, and in the JIT, in the hosted
+application.
+
+Note that LLVM's support for multithreading is still relatively young. Up
+through version 2.5, the execution of threaded hosted applications was
+supported, but not threaded client access to the APIs. While this use case is
+now supported, clients *must* adhere to the guidelines specified below to ensure
+proper operation in multithreaded mode.
+
+Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
+intrinsics in order to support threaded operation. If you need a
+multhreading-capable LLVM on a platform without a suitably modern system
+compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
+using the resultant compiler to build a copy of LLVM with multithreading
+support.
+
+.. _startmultithreaded:
+
+Entering and Exiting Multithreaded Mode
+---------------------------------------
+
+In order to properly protect its internal data structures while avoiding
+excessive locking overhead in the single-threaded case, the LLVM must intialize
+certain data structures necessary to provide guards around its internals. To do
+so, the client program must invoke ``llvm_start_multithreaded()`` before making
+any concurrent LLVM API calls. To subsequently tear down these structures, use
+the ``llvm_stop_multithreaded()`` call. You can also use the
+``llvm_is_multithreaded()`` call to check the status of multithreaded mode.
+
+Note that both of these calls must be made *in isolation*. That is to say that
+no other LLVM API calls may be executing at any time during the execution of
+``llvm_start_multithreaded()`` or ``llvm_stop_multithreaded``. It's is the
+client's responsibility to enforce this isolation.
+
+The return value of ``llvm_start_multithreaded()`` indicates the success or
+failure of the initialization. Failure typically indicates that your copy of
+LLVM was built without multithreading support, typically because GCC atomic
+intrinsics were not found in your system compiler. In this case, the LLVM API
+will not be safe for concurrent calls. However, it *will* be safe for hosting
+threaded applications in the JIT, though :ref:`care must be taken
+<jitthreading>` to ensure that side exits and the like do not accidentally
+result in concurrent LLVM API calls.
+
+.. _shutdown:
+
+Ending Execution with ``llvm_shutdown()``
+-----------------------------------------
+
+When you are done using the LLVM APIs, you should call ``llvm_shutdown()`` to
+deallocate memory used for internal structures. This will also invoke
+``llvm_stop_multithreaded()`` if LLVM is operating in multithreaded mode. As
+such, ``llvm_shutdown()`` requires the same isolation guarantees as
+``llvm_stop_multithreaded()``.
+
+Note that, if you use scope-based shutdown, you can use the
+``llvm_shutdown_obj`` class, which calls ``llvm_shutdown()`` in its destructor.
+
+.. _managedstatic:
+
+Lazy Initialization with ``ManagedStatic``
+------------------------------------------
+
+``ManagedStatic`` is a utility class in LLVM used to implement static
+initialization of static resources, such as the global type tables. Before the
+invocation of ``llvm_shutdown()``, it implements a simple lazy initialization
+scheme. Once ``llvm_start_multithreaded()`` returns, however, it uses
+double-checked locking to implement thread-safe lazy initialization.
+
+Note that, because no other threads are allowed to issue LLVM API calls before
+``llvm_start_multithreaded()`` returns, it is possible to have
+``ManagedStatic``\ s of ``llvm::sys::Mutex``\ s.
+
+The ``llvm_acquire_global_lock()`` and ``llvm_release_global_lock`` APIs provide
+access to the global lock used to implement the double-checked locking for lazy
+initialization. These should only be used internally to LLVM, and only if you
+know what you're doing!
+
+.. _llvmcontext:
+
+Achieving Isolation with ``LLVMContext``
+----------------------------------------
+
+``LLVMContext`` is an opaque class in the LLVM API which clients can use to
+operate multiple, isolated instances of LLVM concurrently within the same
+address space. For instance, in a hypothetical compile-server, the compilation
+of an individual translation unit is conceptually independent from all the
+others, and it would be desirable to be able to compile incoming translation
+units concurrently on independent server threads. Fortunately, ``LLVMContext``
+exists to enable just this kind of scenario!
+
+Conceptually, ``LLVMContext`` provides isolation. Every LLVM entity
+(``Module``\ s, ``Value``\ s, ``Type``\ s, ``Constant``\ s, etc.) in LLVM's
+in-memory IR belongs to an ``LLVMContext``. Entities in different contexts
+*cannot* interact with each other: ``Module``\ s in different contexts cannot be
+linked together, ``Function``\ s cannot be added to ``Module``\ s in different
+contexts, etc. What this means is that is is safe to compile on multiple
+threads simultaneously, as long as no two threads operate on entities within the
+same context.
+
+In practice, very few places in the API require the explicit specification of a
+``LLVMContext``, other than the ``Type`` creation/lookup APIs. Because every
+``Type`` carries a reference to its owning context, most other entities can
+determine what context they belong to by looking at their own ``Type``. If you
+are adding new entities to LLVM IR, please try to maintain this interface
+design.
+
+For clients that do *not* require the benefits of isolation, LLVM provides a
+convenience API ``getGlobalContext()``. This returns a global, lazily
+initialized ``LLVMContext`` that may be used in situations where isolation is
+not a concern.
+
+.. _jitthreading:
+
+Threads and the JIT
+-------------------
+
+LLVM's "eager" JIT compiler is safe to use in threaded programs. Multiple
+threads can call ``ExecutionEngine::getPointerToFunction()`` or
+``ExecutionEngine::runFunction()`` concurrently, and multiple threads can run
+code output by the JIT concurrently. The user must still ensure that only one
+thread accesses IR in a given ``LLVMContext`` while another thread might be
+modifying it. One way to do that is to always hold the JIT lock while accessing
+IR outside the JIT (the JIT *modifies* the IR by adding ``CallbackVH``\ s).
+Another way is to only call ``getPointerToFunction()`` from the
+``LLVMContext``'s thread.
+
+When the JIT is configured to compile lazily (using
+``ExecutionEngine::DisableLazyCompilation(false)``), there is currently a `race
+condition <http://llvm.org/bugs/show_bug.cgi?id=5184>`_ in updating call sites
+after a function is lazily-jitted. It's still possible to use the lazy JIT in a
+threaded program if you ensure that only one thread at a time can call any
+particular lazy stub and that the JIT lock guards any IR access, but we suggest
+using only the eager JIT in threaded programs.
+
+.. _advanced:
+
+Advanced Topics
+===============
+
+This section describes some of the advanced or obscure API's that most clients
+do not need to be aware of. These API's tend manage the inner workings of the
+LLVM system, and only need to be accessed in unusual circumstances.
+
+.. _SymbolTable:
+
+The ``ValueSymbolTable`` class
+------------------------------
+
+The ``ValueSymbolTable`` (`doxygen
+<http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html>`__) class provides
+a symbol table that the :ref:`Function <c_Function>` and Module_ classes use for
+naming value definitions. The symbol table can provide a name for any Value_.
+
+Note that the ``SymbolTable`` class should not be directly accessed by most
+clients. It should only be used when iteration over the symbol table names
+themselves are required, which is very special purpose. Note that not all LLVM
+Value_\ s have names, and those without names (i.e. they have an empty name) do
+not exist in the symbol table.
+
+Symbol tables support iteration over the values in the symbol table with
+``begin/end/iterator`` and supports querying to see if a specific name is in the
+symbol table (with ``lookup``). The ``ValueSymbolTable`` class exposes no
+public mutator methods, instead, simply call ``setName`` on a value, which will
+autoinsert it into the appropriate symbol table.
+
+.. _UserLayout:
+
+The ``User`` and owned ``Use`` classes' memory layout
+-----------------------------------------------------
+
+The ``User`` (`doxygen <http://llvm.org/doxygen/classllvm_1_1User.html>`__)
+class provides a basis for expressing the ownership of ``User`` towards other
+`Value instance <http://llvm.org/doxygen/classllvm_1_1Value.html>`_\ s. The
+``Use`` (`doxygen <http://llvm.org/doxygen/classllvm_1_1Use.html>`__) helper
+class is employed to do the bookkeeping and to facilitate *O(1)* addition and
+removal.
+
+.. _Use2User:
+
+Interaction and relationship between ``User`` and ``Use`` objects
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+A subclass of ``User`` can choose between incorporating its ``Use`` objects or
+refer to them out-of-line by means of a pointer. A mixed variant (some ``Use``
+s inline others hung off) is impractical and breaks the invariant that the
+``Use`` objects belonging to the same ``User`` form a contiguous array.
+
+We have 2 different layouts in the ``User`` (sub)classes:
+
+* Layout a)
+
+ The ``Use`` object(s) are inside (resp. at fixed offset) of the ``User``
+ object and there are a fixed number of them.
+
+* Layout b)
+
+ The ``Use`` object(s) are referenced by a pointer to an array from the
+ ``User`` object and there may be a variable number of them.
+
+As of v2.4 each layout still possesses a direct pointer to the start of the
+array of ``Use``\ s. Though not mandatory for layout a), we stick to this
+redundancy for the sake of simplicity. The ``User`` object also stores the
+number of ``Use`` objects it has. (Theoretically this information can also be
+calculated given the scheme presented below.)
+
+Special forms of allocation operators (``operator new``) enforce the following
+memory layouts:
+
+* Layout a) is modelled by prepending the ``User`` object by the ``Use[]``
+ array.
+
+ .. code-block:: none
+
+ ...---.---.---.---.-------...
+ | P | P | P | P | User
+ '''---'---'---'---'-------'''
+
+* Layout b) is modelled by pointing at the ``Use[]`` array.
+
+ .. code-block:: none
+
+ .-------...
+ | User
+ '-------'''
+ |
+ v
+ .---.---.---.---...
+ | P | P | P | P |
+ '---'---'---'---'''
+
+*(In the above figures* '``P``' *stands for the* ``Use**`` *that is stored in
+each* ``Use`` *object in the member* ``Use::Prev`` *)*
+
+.. _Waymarking:
+
+The waymarking algorithm
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+Since the ``Use`` objects are deprived of the direct (back)pointer to their
+``User`` objects, there must be a fast and exact method to recover it. This is
+accomplished by the following scheme:
+
+A bit-encoding in the 2 LSBits (least significant bits) of the ``Use::Prev``
+allows to find the start of the ``User`` object:
+
+* ``00`` –> binary digit 0
+
+* ``01`` –> binary digit 1
+
+* ``10`` –> stop and calculate (``s``)
+
+* ``11`` –> full stop (``S``)
+
+Given a ``Use*``, all we have to do is to walk till we get a stop and we either
+have a ``User`` immediately behind or we have to walk to the next stop picking
+up digits and calculating the offset:
+
+.. code-block:: none
+
+ .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
+ | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
+ '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
+ |+15 |+10 |+6 |+3 |+1
+ | | | | | __>
+ | | | | __________>
+ | | | ______________________>
+ | | ______________________________________>
+ | __________________________________________________________>
+
+Only the significant number of bits need to be stored between the stops, so that
+the *worst case is 20 memory accesses* when there are 1000 ``Use`` objects
+associated with a ``User``.
+
+.. _ReferenceImpl:
+
+Reference implementation
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following literate Haskell fragment demonstrates the concept:
+
+.. code-block:: haskell
+
+ > import Test.QuickCheck
+ >
+ > digits :: Int -> [Char] -> [Char]
+ > digits 0 acc = '0' : acc
+ > digits 1 acc = '1' : acc
+ > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
+ >
+ > dist :: Int -> [Char] -> [Char]
+ > dist 0 [] = ['S']
+ > dist 0 acc = acc
+ > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
+ > dist n acc = dist (n - 1) $ dist 1 acc
+ >
+ > takeLast n ss = reverse $ take n $ reverse ss
+ >
+ > test = takeLast 40 $ dist 20 []
+ >
+
+Printing <test> gives: ``"1s100000s11010s10100s1111s1010s110s11s1S"``
+
+The reverse algorithm computes the length of the string just by examining a
+certain prefix:
+
+.. code-block:: haskell
+
+ > pref :: [Char] -> Int
+ > pref "S" = 1
+ > pref ('s':'1':rest) = decode 2 1 rest
+ > pref (_:rest) = 1 + pref rest
+ >
+ > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
+ > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
+ > decode walk acc _ = walk + acc
+ >
+
+Now, as expected, printing <pref test> gives ``40``.
+
+We can *quickCheck* this with following property:
+
+.. code-block:: haskell
+
+ > testcase = dist 2000 []
+ > testcaseLength = length testcase
+ >
+ > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
+ > where arr = takeLast n testcase
+ >
+
+As expected <quickCheck identityProp> gives:
+
+::
+
+ *Main> quickCheck identityProp
+ OK, passed 100 tests.
+
+Let's be a bit more exhaustive:
+
+.. code-block:: haskell
+
+ >
+ > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
+ >
+
+And here is the result of <deepCheck identityProp>:
+
+::
+
+ *Main> deepCheck identityProp
+ OK, passed 500 tests.
+
+.. _Tagging:
+
+Tagging considerations
+^^^^^^^^^^^^^^^^^^^^^^
+
+To maintain the invariant that the 2 LSBits of each ``Use**`` in ``Use`` never
+change after being set up, setters of ``Use::Prev`` must re-tag the new
+``Use**`` on every modification. Accordingly getters must strip the tag bits.
+
+For layout b) instead of the ``User`` we find a pointer (``User*`` with LSBit
+set). Following this pointer brings us to the ``User``. A portable trick
+ensures that the first bytes of ``User`` (if interpreted as a pointer) never has
+the LSBit set. (Portability is relying on the fact that all known compilers
+place the ``vptr`` in the first word of the instances.)
+
+.. _coreclasses:
+
+The Core LLVM Class Hierarchy Reference
+=======================================
+
+``#include "llvm/Type.h"``
+
+header source: `Type.h <http://llvm.org/doxygen/Type_8h-source.html>`_
+
+doxygen info: `Type Clases <http://llvm.org/doxygen/classllvm_1_1Type.html>`_
+
+The Core LLVM classes are the primary means of representing the program being
+inspected or transformed. The core LLVM classes are defined in header files in
+the ``include/llvm/`` directory, and implemented in the ``lib/VMCore``
+directory.
+
+.. _Type:
+
+The Type class and Derived Types
+--------------------------------
+
+``Type`` is a superclass of all type classes. Every ``Value`` has a ``Type``.
+``Type`` cannot be instantiated directly but only through its subclasses.
+Certain primitive types (``VoidType``, ``LabelType``, ``FloatType`` and
+``DoubleType``) have hidden subclasses. They are hidden because they offer no
+useful functionality beyond what the ``Type`` class offers except to distinguish
+themselves from other subclasses of ``Type``.
+
+All other types are subclasses of ``DerivedType``. Types can be named, but this
+is not a requirement. There exists exactly one instance of a given shape at any
+one time. This allows type equality to be performed with address equality of
+the Type Instance. That is, given two ``Type*`` values, the types are identical
+if the pointers are identical.
+
+.. _m_Type:
+
+Important Public Methods
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ``bool isIntegerTy() const``: Returns true for any integer type.
+
+* ``bool isFloatingPointTy()``: Return true if this is one of the five
+ floating point types.
+
+* ``bool isSized()``: Return true if the type has known size. Things
+ that don't have a size are abstract types, labels and void.
+
+.. _derivedtypes:
+
+Important Derived Types
+^^^^^^^^^^^^^^^^^^^^^^^
+
+``IntegerType``
+ Subclass of DerivedType that represents integer types of any bit width. Any
+ bit width between ``IntegerType::MIN_INT_BITS`` (1) and
+ ``IntegerType::MAX_INT_BITS`` (~8 million) can be represented.
+
+ * ``static const IntegerType* get(unsigned NumBits)``: get an integer
+ type of a specific bit width.
+
+ * ``unsigned getBitWidth() const``: Get the bit width of an integer type.
+
+``SequentialType``
+ This is subclassed by ArrayType, PointerType and VectorType.
+
+ * ``const Type * getElementType() const``: Returns the type of each
+ of the elements in the sequential type.
+
+``ArrayType``
+ This is a subclass of SequentialType and defines the interface for array
+ types.
+
+ * ``unsigned getNumElements() const``: Returns the number of elements
+ in the array.
+
+``PointerType``
+ Subclass of SequentialType for pointer types.
+
+``VectorType``
+ Subclass of SequentialType for vector types. A vector type is similar to an
+ ArrayType but is distinguished because it is a first class type whereas
+ ArrayType is not. Vector types are used for vector operations and are usually
+ small vectors of of an integer or floating point type.
+
+``StructType``
+ Subclass of DerivedTypes for struct types.
+
+.. _FunctionType:
+
+``FunctionType``
+ Subclass of DerivedTypes for function types.
+
+ * ``bool isVarArg() const``: Returns true if it's a vararg function.
+
+ * ``const Type * getReturnType() const``: Returns the return type of the
+ function.
+
+ * ``const Type * getParamType (unsigned i)``: Returns the type of the ith
+ parameter.
+
+ * ``const unsigned getNumParams() const``: Returns the number of formal
+ parameters.
+
+.. _Module:
+
+The ``Module`` class
+--------------------
+
+``#include "llvm/Module.h"``
+
+header source: `Module.h <http://llvm.org/doxygen/Module_8h-source.html>`_
+
+doxygen info: `Module Class <http://llvm.org/doxygen/classllvm_1_1Module.html>`_
+
+The ``Module`` class represents the top level structure present in LLVM
+programs. An LLVM module is effectively either a translation unit of the
+original program or a combination of several translation units merged by the
+linker. The ``Module`` class keeps track of a list of :ref:`Function
+<c_Function>`\ s, a list of GlobalVariable_\ s, and a SymbolTable_.
+Additionally, it contains a few helpful member functions that try to make common
+operations easy.
+
+.. _m_Module:
+
+Important Public Members of the ``Module`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ``Module::Module(std::string name = "")``
+
+ Constructing a Module_ is easy. You can optionally provide a name for it
+ (probably based on the name of the translation unit).
+
+* | ``Module::iterator`` - Typedef for function list iterator
+ | ``Module::const_iterator`` - Typedef for const_iterator.
+ | ``begin()``, ``end()``, ``size()``, ``empty()``
+
+ These are forwarding methods that make it easy to access the contents of a
+ ``Module`` object's :ref:`Function <c_Function>` list.
+
+* ``Module::FunctionListType &getFunctionList()``
+
+ Returns the list of :ref:`Function <c_Function>`\ s. This is necessary to use
+ when you need to update the list or perform a complex action that doesn't have
+ a forwarding method.
+
+----------------
+
+* | ``Module::global_iterator`` - Typedef for global variable list iterator
+ | ``Module::const_global_iterator`` - Typedef for const_iterator.
+ | ``global_begin()``, ``global_end()``, ``global_size()``, ``global_empty()``
+
+ These are forwarding methods that make it easy to access the contents of a
+ ``Module`` object's GlobalVariable_ list.
+
+* ``Module::GlobalListType &getGlobalList()``
+
+ Returns the list of GlobalVariable_\ s. This is necessary to use when you
+ need to update the list or perform a complex action that doesn't have a
+ forwarding method.
+
+----------------
+
+* ``SymbolTable *getSymbolTable()``
+
+ Return a reference to the SymbolTable_ for this ``Module``.
+
+----------------
+
+* ``Function *getFunction(StringRef Name) const``
+
+ Look up the specified function in the ``Module`` SymbolTable_. If it does not
+ exist, return ``null``.
+
+* ``Function *getOrInsertFunction(const std::string &Name, const FunctionType
+ *T)``
+
+ Look up the specified function in the ``Module`` SymbolTable_. If it does not
+ exist, add an external declaration for the function and return it.
+
+* ``std::string getTypeName(const Type *Ty)``
+
+ If there is at least one entry in the SymbolTable_ for the specified Type_,
+ return it. Otherwise return the empty string.
+
+* ``bool addTypeName(const std::string &Name, const Type *Ty)``
+
+ Insert an entry in the SymbolTable_ mapping ``Name`` to ``Ty``. If there is
+ already an entry for this name, true is returned and the SymbolTable_ is not
+ modified.
+
+.. _Value:
+
+The ``Value`` class
+-------------------
+
+``#include "llvm/Value.h"``
+
+header source: `Value.h <http://llvm.org/doxygen/Value_8h-source.html>`_
+
+doxygen info: `Value Class <http://llvm.org/doxygen/classllvm_1_1Value.html>`_
+
+The ``Value`` class is the most important class in the LLVM Source base. It
+represents a typed value that may be used (among other things) as an operand to
+an instruction. There are many different types of ``Value``\ s, such as
+Constant_\ s, Argument_\ s. Even Instruction_\ s and :ref:`Function
+<c_Function>`\ s are ``Value``\ s.
+
+A particular ``Value`` may be used many times in the LLVM representation for a
+program. For example, an incoming argument to a function (represented with an
+instance of the Argument_ class) is "used" by every instruction in the function
+that references the argument. To keep track of this relationship, the ``Value``
+class keeps a list of all of the ``User``\ s that is using it (the User_ class
+is a base class for all nodes in the LLVM graph that can refer to ``Value``\ s).
+This use list is how LLVM represents def-use information in the program, and is
+accessible through the ``use_*`` methods, shown below.
+
+Because LLVM is a typed representation, every LLVM ``Value`` is typed, and this
+Type_ is available through the ``getType()`` method. In addition, all LLVM
+values can be named. The "name" of the ``Value`` is a symbolic string printed
+in the LLVM code:
+
+.. code-block:: llvm
+
+ %foo = add i32 1, 2
+
+.. _nameWarning:
+
+The name of this instruction is "foo". **NOTE** that the name of any value may
+be missing (an empty string), so names should **ONLY** be used for debugging
+(making the source code easier to read, debugging printouts), they should not be
+used to keep track of values or map between them. For this purpose, use a
+``std::map`` of pointers to the ``Value`` itself instead.
+
+One important aspect of LLVM is that there is no distinction between an SSA
+variable and the operation that produces it. Because of this, any reference to
+the value produced by an instruction (or the value available as an incoming
+argument, for example) is represented as a direct pointer to the instance of the
+class that represents this value. Although this may take some getting used to,
+it simplifies the representation and makes it easier to manipulate.
+
+.. _m_Value:
+
+Important Public Members of the ``Value`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* | ``Value::use_iterator`` - Typedef for iterator over the use-list
+ | ``Value::const_use_iterator`` - Typedef for const_iterator over the
+ use-list
+ | ``unsigned use_size()`` - Returns the number of users of the value.
+ | ``bool use_empty()`` - Returns true if there are no users.
+ | ``use_iterator use_begin()`` - Get an iterator to the start of the
+ use-list.
+ | ``use_iterator use_end()`` - Get an iterator to the end of the use-list.
+ | ``User *use_back()`` - Returns the last element in the list.
+
+ These methods are the interface to access the def-use information in LLVM.
+ As with all other iterators in LLVM, the naming conventions follow the
+ conventions defined by the STL_.
+
+* ``Type *getType() const``
+ This method returns the Type of the Value.
+
+* | ``bool hasName() const``
+ | ``std::string getName() const``
+ | ``void setName(const std::string &Name)``
+
+ This family of methods is used to access and assign a name to a ``Value``, be
+ aware of the :ref:`precaution above <nameWarning>`.
+
+* ``void replaceAllUsesWith(Value *V)``
+
+ This method traverses the use list of a ``Value`` changing all User_\ s of the
+ current value to refer to "``V``" instead. For example, if you detect that an
+ instruction always produces a constant value (for example through constant
+ folding), you can replace all uses of the instruction with the constant like
+ this:
+
+ .. code-block:: c++
+
+ Inst->replaceAllUsesWith(ConstVal);
+
+.. _User:
+
+The ``User`` class
+------------------
+
+``#include "llvm/User.h"``
+
+header source: `User.h <http://llvm.org/doxygen/User_8h-source.html>`_
+
+doxygen info: `User Class <http://llvm.org/doxygen/classllvm_1_1User.html>`_
+
+Superclass: Value_
+
+The ``User`` class is the common base class of all LLVM nodes that may refer to
+``Value``\ s. It exposes a list of "Operands" that are all of the ``Value``\ s
+that the User is referring to. The ``User`` class itself is a subclass of
+``Value``.
+
+The operands of a ``User`` point directly to the LLVM ``Value`` that it refers
+to. Because LLVM uses Static Single Assignment (SSA) form, there can only be
+one definition referred to, allowing this direct connection. This connection
+provides the use-def information in LLVM.
+
+.. _m_User:
+
+Important Public Members of the ``User`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``User`` class exposes the operand list in two ways: through an index access
+interface and through an iterator based interface.
+
+* | ``Value *getOperand(unsigned i)``
+ | ``unsigned getNumOperands()``
+
+ These two methods expose the operands of the ``User`` in a convenient form for
+ direct access.
+
+* | ``User::op_iterator`` - Typedef for iterator over the operand list
+ | ``op_iterator op_begin()`` - Get an iterator to the start of the operand
+ list.
+ | ``op_iterator op_end()`` - Get an iterator to the end of the operand list.
+
+ Together, these methods make up the iterator based interface to the operands
+ of a ``User``.
+
+
+.. _Instruction:
+
+The ``Instruction`` class
+-------------------------
+
+``#include "llvm/Instruction.h"``
+
+header source: `Instruction.h
+<http://llvm.org/doxygen/Instruction_8h-source.html>`_
+
+doxygen info: `Instruction Class
+<http://llvm.org/doxygen/classllvm_1_1Instruction.html>`_
+
+Superclasses: User_, Value_
+
+The ``Instruction`` class is the common base class for all LLVM instructions.
+It provides only a few methods, but is a very commonly used class. The primary
+data tracked by the ``Instruction`` class itself is the opcode (instruction
+type) and the parent BasicBlock_ the ``Instruction`` is embedded into. To
+represent a specific type of instruction, one of many subclasses of
+``Instruction`` are used.
+
+Because the ``Instruction`` class subclasses the User_ class, its operands can
+be accessed in the same way as for other ``User``\ s (with the
+``getOperand()``/``getNumOperands()`` and ``op_begin()``/``op_end()`` methods).
+An important file for the ``Instruction`` class is the ``llvm/Instruction.def``
+file. This file contains some meta-data about the various different types of
+instructions in LLVM. It describes the enum values that are used as opcodes
+(for example ``Instruction::Add`` and ``Instruction::ICmp``), as well as the
+concrete sub-classes of ``Instruction`` that implement the instruction (for
+example BinaryOperator_ and CmpInst_). Unfortunately, the use of macros in this
+file confuses doxygen, so these enum values don't show up correctly in the
+`doxygen output <http://llvm.org/doxygen/classllvm_1_1Instruction.html>`_.
+
+.. _s_Instruction:
+
+Important Subclasses of the ``Instruction`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. _BinaryOperator:
+
+* ``BinaryOperator``
+
+ This subclasses represents all two operand instructions whose operands must be
+ the same type, except for the comparison instructions.
+
+.. _CastInst:
+
+* ``CastInst``
+ This subclass is the parent of the 12 casting instructions. It provides
+ common operations on cast instructions.
+
+.. _CmpInst:
+
+* ``CmpInst``
+
+ This subclass respresents the two comparison instructions,
+ `ICmpInst <LangRef.html#i_icmp>`_ (integer opreands), and
+ `FCmpInst <LangRef.html#i_fcmp>`_ (floating point operands).
+
+.. _TerminatorInst:
+
+* ``TerminatorInst``
+
+ This subclass is the parent of all terminator instructions (those which can
+ terminate a block).
+
+.. _m_Instruction:
+
+Important Public Members of the ``Instruction`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ``BasicBlock *getParent()``
+
+ Returns the BasicBlock_ that this
+ ``Instruction`` is embedded into.
+
+* ``bool mayWriteToMemory()``
+
+ Returns true if the instruction writes to memory, i.e. it is a ``call``,
+ ``free``, ``invoke``, or ``store``.
+
+* ``unsigned getOpcode()``
+
+ Returns the opcode for the ``Instruction``.
+
+* ``Instruction *clone() const``
+
+ Returns another instance of the specified instruction, identical in all ways
+ to the original except that the instruction has no parent (i.e. it's not
+ embedded into a BasicBlock_), and it has no name.
+
+.. _Constant:
+
+The ``Constant`` class and subclasses
+-------------------------------------
+
+Constant represents a base class for different types of constants. It is
+subclassed by ConstantInt, ConstantArray, etc. for representing the various
+types of Constants. GlobalValue_ is also a subclass, which represents the
+address of a global variable or function.
+
+.. _s_Constant:
+
+Important Subclasses of Constant
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ConstantInt : This subclass of Constant represents an integer constant of
+ any width.
+
+ * ``const APInt& getValue() const``: Returns the underlying
+ value of this constant, an APInt value.
+
+ * ``int64_t getSExtValue() const``: Converts the underlying APInt value to an
+ int64_t via sign extension. If the value (not the bit width) of the APInt
+ is too large to fit in an int64_t, an assertion will result. For this
+ reason, use of this method is discouraged.
+
+ * ``uint64_t getZExtValue() const``: Converts the underlying APInt value
+ to a uint64_t via zero extension. IF the value (not the bit width) of the
+ APInt is too large to fit in a uint64_t, an assertion will result. For this
+ reason, use of this method is discouraged.
+
+ * ``static ConstantInt* get(const APInt& Val)``: Returns the ConstantInt
+ object that represents the value provided by ``Val``. The type is implied
+ as the IntegerType that corresponds to the bit width of ``Val``.
+
+ * ``static ConstantInt* get(const Type *Ty, uint64_t Val)``: Returns the
+ ConstantInt object that represents the value provided by ``Val`` for integer
+ type ``Ty``.
+
+* ConstantFP : This class represents a floating point constant.
+
+ * ``double getValue() const``: Returns the underlying value of this constant.
+
+* ConstantArray : This represents a constant array.
+
+ * ``const std::vector<Use> &getValues() const``: Returns a vector of
+ component constants that makeup this array.
+
+* ConstantStruct : This represents a constant struct.
+
+ * ``const std::vector<Use> &getValues() const``: Returns a vector of
+ component constants that makeup this array.
+
+* GlobalValue : This represents either a global variable or a function. In
+ either case, the value is a constant fixed address (after linking).
+
+.. _GlobalValue:
+
+The ``GlobalValue`` class
+-------------------------
+
+``#include "llvm/GlobalValue.h"``
+
+header source: `GlobalValue.h
+<http://llvm.org/doxygen/GlobalValue_8h-source.html>`_
+
+doxygen info: `GlobalValue Class
+<http://llvm.org/doxygen/classllvm_1_1GlobalValue.html>`_
+
+Superclasses: Constant_, User_, Value_
+
+Global values ( GlobalVariable_\ s or :ref:`Function <c_Function>`\ s) are the
+only LLVM values that are visible in the bodies of all :ref:`Function
+<c_Function>`\ s. Because they are visible at global scope, they are also
+subject to linking with other globals defined in different translation units.
+To control the linking process, ``GlobalValue``\ s know their linkage rules.
+Specifically, ``GlobalValue``\ s know whether they have internal or external
+linkage, as defined by the ``LinkageTypes`` enumeration.
+
+If a ``GlobalValue`` has internal linkage (equivalent to being ``static`` in C),
+it is not visible to code outside the current translation unit, and does not
+participate in linking. If it has external linkage, it is visible to external
+code, and does participate in linking. In addition to linkage information,
+``GlobalValue``\ s keep track of which Module_ they are currently part of.
+
+Because ``GlobalValue``\ s are memory objects, they are always referred to by
+their **address**. As such, the Type_ of a global is always a pointer to its
+contents. It is important to remember this when using the ``GetElementPtrInst``
+instruction because this pointer must be dereferenced first. For example, if
+you have a ``GlobalVariable`` (a subclass of ``GlobalValue)`` that is an array
+of 24 ints, type ``[24 x i32]``, then the ``GlobalVariable`` is a pointer to
+that array. Although the address of the first element of this array and the
+value of the ``GlobalVariable`` are the same, they have different types. The
+``GlobalVariable``'s type is ``[24 x i32]``. The first element's type is
+``i32.`` Because of this, accessing a global value requires you to dereference
+the pointer with ``GetElementPtrInst`` first, then its elements can be accessed.
+This is explained in the `LLVM Language Reference Manual
+<LangRef.html#globalvars>`_.
+
+.. _m_GlobalValue:
+
+Important Public Members of the ``GlobalValue`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* | ``bool hasInternalLinkage() const``
+ | ``bool hasExternalLinkage() const``
+ | ``void setInternalLinkage(bool HasInternalLinkage)``
+
+ These methods manipulate the linkage characteristics of the ``GlobalValue``.
+
+* ``Module *getParent()``
+
+ This returns the Module_ that the
+ GlobalValue is currently embedded into.
+
+.. _c_Function:
+
+The ``Function`` class
+----------------------
+
+``#include "llvm/Function.h"``
+
+header source: `Function.h <http://llvm.org/doxygen/Function_8h-source.html>`_
+
+doxygen info: `Function Class
+<http://llvm.org/doxygen/classllvm_1_1Function.html>`_
+
+Superclasses: GlobalValue_, Constant_, User_, Value_
+
+The ``Function`` class represents a single procedure in LLVM. It is actually
+one of the more complex classes in the LLVM hierarchy because it must keep track
+of a large amount of data. The ``Function`` class keeps track of a list of
+BasicBlock_\ s, a list of formal Argument_\ s, and a SymbolTable_.
+
+The list of BasicBlock_\ s is the most commonly used part of ``Function``
+objects. The list imposes an implicit ordering of the blocks in the function,
+which indicate how the code will be laid out by the backend. Additionally, the
+first BasicBlock_ is the implicit entry node for the ``Function``. It is not
+legal in LLVM to explicitly branch to this initial block. There are no implicit
+exit nodes, and in fact there may be multiple exit nodes from a single
+``Function``. If the BasicBlock_ list is empty, this indicates that the
+``Function`` is actually a function declaration: the actual body of the function
+hasn't been linked in yet.
+
+In addition to a list of BasicBlock_\ s, the ``Function`` class also keeps track
+of the list of formal Argument_\ s that the function receives. This container
+manages the lifetime of the Argument_ nodes, just like the BasicBlock_ list does
+for the BasicBlock_\ s.
+
+The SymbolTable_ is a very rarely used LLVM feature that is only used when you
+have to look up a value by name. Aside from that, the SymbolTable_ is used
+internally to make sure that there are not conflicts between the names of
+Instruction_\ s, BasicBlock_\ s, or Argument_\ s in the function body.
+
+Note that ``Function`` is a GlobalValue_ and therefore also a Constant_. The
+value of the function is its address (after linking) which is guaranteed to be
+constant.
+
+.. _m_Function:
+
+Important Public Members of the ``Function``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ``Function(const FunctionType *Ty, LinkageTypes Linkage,
+ const std::string &N = "", Module* Parent = 0)``
+
+ Constructor used when you need to create new ``Function``\ s to add the
+ program. The constructor must specify the type of the function to create and
+ what type of linkage the function should have. The FunctionType_ argument
+ specifies the formal arguments and return value for the function. The same
+ FunctionType_ value can be used to create multiple functions. The ``Parent``
+ argument specifies the Module in which the function is defined. If this
+ argument is provided, the function will automatically be inserted into that
+ module's list of functions.
+
+* ``bool isDeclaration()``
+
+ Return whether or not the ``Function`` has a body defined. If the function is
+ "external", it does not have a body, and thus must be resolved by linking with
+ a function defined in a different translation unit.
+
+* | ``Function::iterator`` - Typedef for basic block list iterator
+ | ``Function::const_iterator`` - Typedef for const_iterator.
+ | ``begin()``, ``end()``, ``size()``, ``empty()``
+
+ These are forwarding methods that make it easy to access the contents of a
+ ``Function`` object's BasicBlock_ list.
+
+* ``Function::BasicBlockListType &getBasicBlockList()``
+
+ Returns the list of BasicBlock_\ s. This is necessary to use when you need to
+ update the list or perform a complex action that doesn't have a forwarding
+ method.
+
+* | ``Function::arg_iterator`` - Typedef for the argument list iterator
+ | ``Function::const_arg_iterator`` - Typedef for const_iterator.
+ | ``arg_begin()``, ``arg_end()``, ``arg_size()``, ``arg_empty()``
+
+ These are forwarding methods that make it easy to access the contents of a
+ ``Function`` object's Argument_ list.
+
+* ``Function::ArgumentListType &getArgumentList()``
+
+ Returns the list of Argument_. This is necessary to use when you need to
+ update the list or perform a complex action that doesn't have a forwarding
+ method.
+
+* ``BasicBlock &getEntryBlock()``
+
+ Returns the entry ``BasicBlock`` for the function. Because the entry block
+ for the function is always the first block, this returns the first block of
+ the ``Function``.
+
+* | ``Type *getReturnType()``
+ | ``FunctionType *getFunctionType()``
+
+ This traverses the Type_ of the ``Function`` and returns the return type of
+ the function, or the FunctionType_ of the actual function.
+
+* ``SymbolTable *getSymbolTable()``
+
+ Return a pointer to the SymbolTable_ for this ``Function``.
+
+.. _GlobalVariable:
+
+The ``GlobalVariable`` class
+----------------------------
+
+``#include "llvm/GlobalVariable.h"``
+
+header source: `GlobalVariable.h
+<http://llvm.org/doxygen/GlobalVariable_8h-source.html>`_
+
+doxygen info: `GlobalVariable Class
+<http://llvm.org/doxygen/classllvm_1_1GlobalVariable.html>`_
+
+Superclasses: GlobalValue_, Constant_, User_, Value_
+
+Global variables are represented with the (surprise surprise) ``GlobalVariable``
+class. Like functions, ``GlobalVariable``\ s are also subclasses of
+GlobalValue_, and as such are always referenced by their address (global values
+must live in memory, so their "name" refers to their constant address). See
+GlobalValue_ for more on this. Global variables may have an initial value
+(which must be a Constant_), and if they have an initializer, they may be marked
+as "constant" themselves (indicating that their contents never change at
+runtime).
+
+.. _m_GlobalVariable:
+
+Important Public Members of the ``GlobalVariable`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ``GlobalVariable(const Type *Ty, bool isConstant, LinkageTypes &Linkage,
+ Constant *Initializer = 0, const std::string &Name = "", Module* Parent = 0)``
+
+ Create a new global variable of the specified type. If ``isConstant`` is true
+ then the global variable will be marked as unchanging for the program. The
+ Linkage parameter specifies the type of linkage (internal, external, weak,
+ linkonce, appending) for the variable. If the linkage is InternalLinkage,
+ WeakAnyLinkage, WeakODRLinkage, LinkOnceAnyLinkage or LinkOnceODRLinkage, then
+ the resultant global variable will have internal linkage. AppendingLinkage
+ concatenates together all instances (in different translation units) of the
+ variable into a single variable but is only applicable to arrays. See the
+ `LLVM Language Reference <LangRef.html#modulestructure>`_ for further details
+ on linkage types. Optionally an initializer, a name, and the module to put
+ the variable into may be specified for the global variable as well.
+
+* ``bool isConstant() const``
+
+ Returns true if this is a global variable that is known not to be modified at
+ runtime.
+
+* ``bool hasInitializer()``
+
+ Returns true if this ``GlobalVariable`` has an intializer.
+
+* ``Constant *getInitializer()``
+
+ Returns the initial value for a ``GlobalVariable``. It is not legal to call
+ this method if there is no initializer.
+
+.. _BasicBlock:
+
+The ``BasicBlock`` class
+------------------------
+
+``#include "llvm/BasicBlock.h"``
+
+header source: `BasicBlock.h
+<http://llvm.org/doxygen/BasicBlock_8h-source.html>`_
+
+doxygen info: `BasicBlock Class
+<http://llvm.org/doxygen/classllvm_1_1BasicBlock.html>`_
+
+Superclass: Value_
+
+This class represents a single entry single exit section of the code, commonly
+known as a basic block by the compiler community. The ``BasicBlock`` class
+maintains a list of Instruction_\ s, which form the body of the block. Matching
+the language definition, the last element of this list of instructions is always
+a terminator instruction (a subclass of the TerminatorInst_ class).
+
+In addition to tracking the list of instructions that make up the block, the
+``BasicBlock`` class also keeps track of the :ref:`Function <c_Function>` that
+it is embedded into.
+
+Note that ``BasicBlock``\ s themselves are Value_\ s, because they are
+referenced by instructions like branches and can go in the switch tables.
+``BasicBlock``\ s have type ``label``.
+
+.. _m_BasicBlock:
+
+Important Public Members of the ``BasicBlock`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* ``BasicBlock(const std::string &Name = "", Function *Parent = 0)``
+
+ The ``BasicBlock`` constructor is used to create new basic blocks for
+ insertion into a function. The constructor optionally takes a name for the
+ new block, and a :ref:`Function <c_Function>` to insert it into. If the
+ ``Parent`` parameter is specified, the new ``BasicBlock`` is automatically
+ inserted at the end of the specified :ref:`Function <c_Function>`, if not
+ specified, the BasicBlock must be manually inserted into the :ref:`Function
+ <c_Function>`.
+
+* | ``BasicBlock::iterator`` - Typedef for instruction list iterator
+ | ``BasicBlock::const_iterator`` - Typedef for const_iterator.
+ | ``begin()``, ``end()``, ``front()``, ``back()``,
+ ``size()``, ``empty()``
+ STL-style functions for accessing the instruction list.
+
+ These methods and typedefs are forwarding functions that have the same
+ semantics as the standard library methods of the same names. These methods
+ expose the underlying instruction list of a basic block in a way that is easy
+ to manipulate. To get the full complement of container operations (including
+ operations to update the list), you must use the ``getInstList()`` method.
+
+* ``BasicBlock::InstListType &getInstList()``
+
+ This method is used to get access to the underlying container that actually
+ holds the Instructions. This method must be used when there isn't a
+ forwarding function in the ``BasicBlock`` class for the operation that you
+ would like to perform. Because there are no forwarding functions for
+ "updating" operations, you need to use this if you want to update the contents
+ of a ``BasicBlock``.
+
+* ``Function *getParent()``
+
+ Returns a pointer to :ref:`Function <c_Function>` the block is embedded into,
+ or a null pointer if it is homeless.
+
+* ``TerminatorInst *getTerminator()``
+
+ Returns a pointer to the terminator instruction that appears at the end of the
+ ``BasicBlock``. If there is no terminator instruction, or if the last
+ instruction in the block is not a terminator, then a null pointer is returned.
+
+.. _Argument:
+
+The ``Argument`` class
+----------------------
+
+This subclass of Value defines the interface for incoming formal arguments to a
+function. A Function maintains a list of its formal arguments. An argument has
+a pointer to the parent Function.
+
+