summaryrefslogtreecommitdiff
path: root/docs/WritingAnLLVMBackend.html
diff options
context:
space:
mode:
authormike-m <mikem.llvm@gmail.com>2010-05-06 23:45:43 +0000
committermike-m <mikem.llvm@gmail.com>2010-05-06 23:45:43 +0000
commit68cb31901c590cabceee6e6356d62c84142114cb (patch)
tree6444bddc975b662fbe47d63cd98a7b776a407c1a /docs/WritingAnLLVMBackend.html
parentc26ae5ab7e2d65b67c97524e66f50ce86445dec7 (diff)
downloadllvm-68cb31901c590cabceee6e6356d62c84142114cb.tar.gz
llvm-68cb31901c590cabceee6e6356d62c84142114cb.tar.bz2
llvm-68cb31901c590cabceee6e6356d62c84142114cb.tar.xz
Overhauled llvm/clang docs builds. Closes PR6613.
NOTE: 2nd part changeset for cfe trunk to follow. *** PRE-PATCH ISSUES ADDRESSED - clang api docs fail build from objdir - clang/llvm api docs collide in install PREFIX/ - clang/llvm main docs collide in install - clang/llvm main docs have full of hard coded destination assumptions and make use of absolute root in static html files; namely CommandGuide tools hard codes a website destination for cross references and some html cross references assume website root paths *** IMPROVEMENTS - bumped Doxygen from 1.4.x -> 1.6.3 - splits llvm/clang docs into 'main' and 'api' (doxygen) build trees - provide consistent, reliable doc builds for both main+api docs - support buid vs. install vs. website intentions - support objdir builds - document targets with 'make help' - correct clean and uninstall operations - use recursive dir delete only where absolutely necessary - added call function fn.RMRF which safeguards against botched 'rm -rf'; if any target (or any variable is evaluated) which attempts to remove any dirs which match a hard-coded 'safelist', a verbose error will be printed and make will error-stop. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103213 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/WritingAnLLVMBackend.html')
-rw-r--r--docs/WritingAnLLVMBackend.html2561
1 files changed, 0 insertions, 2561 deletions
diff --git a/docs/WritingAnLLVMBackend.html b/docs/WritingAnLLVMBackend.html
deleted file mode 100644
index f49875c204..0000000000
--- a/docs/WritingAnLLVMBackend.html
+++ /dev/null
@@ -1,2561 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-<html>
-<head>
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <title>Writing an LLVM Compiler Backend</title>
- <link rel="stylesheet" href="llvm.css" type="text/css">
-</head>
-
-<body>
-
-<div class="doc_title">
- Writing an LLVM Compiler Backend
-</div>
-
-<ol>
- <li><a href="#intro">Introduction</a>
- <ul>
- <li><a href="#Audience">Audience</a></li>
- <li><a href="#Prerequisite">Prerequisite Reading</a></li>
- <li><a href="#Basic">Basic Steps</a></li>
- <li><a href="#Preliminaries">Preliminaries</a></li>
- </ul>
- <li><a href="#TargetMachine">Target Machine</a></li>
- <li><a href="#TargetRegistration">Target Registration</a></li>
- <li><a href="#RegisterSet">Register Set and Register Classes</a>
- <ul>
- <li><a href="#RegisterDef">Defining a Register</a></li>
- <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
- <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
- </ul></li>
- <li><a href="#InstructionSet">Instruction Set</a>
- <ul>
- <li><a href="#operandMapping">Instruction Operand Mapping</a></li>
- <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
- <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
- </ul></li>
- <li><a href="#InstructionSelector">Instruction Selector</a>
- <ul>
- <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a>
- <ul>
- <li><a href="#promote">Promote</a></li>
- <li><a href="#expand">Expand</a></li>
- <li><a href="#custom">Custom</a></li>
- <li><a href="#legal">Legal</a></li>
- </ul></li>
- <li><a href="#callingConventions">Calling Conventions</a></li>
- </ul></li>
- <li><a href="#assemblyPrinter">Assembly Printer</a></li>
- <li><a href="#subtargetSupport">Subtarget Support</a></li>
- <li><a href="#jitSupport">JIT Support</a>
- <ul>
- <li><a href="#mce">Machine Code Emitter</a></li>
- <li><a href="#targetJITInfo">Target JIT Info</a></li>
- </ul></li>
-</ol>
-
-<div class="doc_author">
- <p>Written by <a href="http://www.woo.com">Mason Woo</a> and
- <a href="http://misha.brukman.net">Misha Brukman</a></p>
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="intro">Introduction</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-This document describes techniques for writing compiler backends that convert
-the LLVM Intermediate Representation (IR) to code for a specified machine or
-other languages. Code intended for a specific machine can take the form of
-either assembly code or binary code (usable for a JIT compiler).
-</p>
-
-<p>
-The backend of LLVM features a target-independent code generator that may create
-output for several types of target CPUs &mdash; including X86, PowerPC, Alpha,
-and SPARC. The backend may also be used to generate code targeted at SPUs of the
-Cell processor or GPUs to support the execution of compute kernels.
-</p>
-
-<p>
-The document focuses on existing examples found in subdirectories
-of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this
-document focuses on the example of creating a static compiler (one that emits
-text assembly) for a SPARC target, because SPARC has fairly standard
-characteristics, such as a RISC instruction set and straightforward calling
-conventions.
-</p>
-
-</div>
-
-<div class="doc_subsection">
- <a name="Audience">Audience</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The audience for this document is anyone who needs to write an LLVM backend to
-generate code for a specific hardware or software target.
-</p>
-
-</div>
-
-<div class="doc_subsection">
- <a name="Prerequisite">Prerequisite Reading</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-These essential documents must be read before reading this document:
-</p>
-
-<ul>
-<li><i><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference
- Manual</a></i> &mdash; a reference manual for the LLVM assembly language.</li>
-
-<li><i><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM
- Target-Independent Code Generator</a></i> &mdash; a guide to the components
- (classes and code generation algorithms) for translating the LLVM internal
- representation into machine code for a specified target. Pay particular
- attention to the descriptions of code generation stages: Instruction
- Selection, Scheduling and Formation, SSA-based Optimization, Register
- Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
- and Code Emission.</li>
-
-<li><i><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen
- Fundamentals</a></i> &mdash;a document that describes the TableGen
- (<tt>tblgen</tt>) application that manages domain-specific information to
- support LLVM code generation. TableGen processes input from a target
- description file (<tt>.td</tt> suffix) and generates C++ code that can be
- used for code generation.</li>
-
-<li><i><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM
- Pass</a></i> &mdash; The assembly printer is a <tt>FunctionPass</tt>, as are
- several SelectionDAG processing steps.</li>
-</ul>
-
-<p>
-To follow the SPARC examples in this document, have a copy of
-<i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
-Manual, Version 8</a></i> for reference. For details about the ARM instruction
-set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture
-Reference Manual</a></i>. For more about the GNU Assembler format
-(<tt>GAS</tt>), see
-<i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>,
-especially for the assembly printer. <i>Using As</i> contains a list of target
-machine dependent features.
-</p>
-
-</div>
-
-<div class="doc_subsection">
- <a name="Basic">Basic Steps</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-To write a compiler backend for LLVM that converts the LLVM IR to code for a
-specified target (machine or other language), follow these steps:
-</p>
-
-<ul>
-<li>Create a subclass of the TargetMachine class that describes characteristics
- of your target machine. Copy existing examples of specific TargetMachine
- class and header files; for example, start with
- <tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but
- change the file names for your target. Similarly, change code that
- references "Sparc" to reference your target. </li>
-
-<li>Describe the register set of the target. Use TableGen to generate code for
- register definition, register aliases, and register classes from a
- target-specific <tt>RegisterInfo.td</tt> input file. You should also write
- additional code for a subclass of the TargetRegisterInfo class that
- represents the class register file data used for register allocation and
- also describes the interactions between registers.</li>
-
-<li>Describe the instruction set of the target. Use TableGen to generate code
- for target-specific instructions from target-specific versions of
- <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should
- write additional code for a subclass of the TargetInstrInfo class to
- represent machine instructions supported by the target machine. </li>
-
-<li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
- Graph (DAG) representation of instructions to native target-specific
- instructions. Use TableGen to generate code that matches patterns and
- selects instructions based on additional information in a target-specific
- version of <tt>TargetInstrInfo.td</tt>. Write code
- for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target,
- to perform pattern matching and DAG-to-DAG instruction selection. Also write
- code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and
- data types that are not supported natively in a SelectionDAG. </li>
-
-<li>Write code for an assembly printer that converts LLVM IR to a GAS format for
- your target machine. You should add assembly strings to the instructions
- defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You
- should also write code for a subclass of AsmPrinter that performs the
- LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li>
-
-<li>Optionally, add support for subtargets (i.e., variants with different
- capabilities). You should also write code for a subclass of the
- TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt>
- and <tt>-mattr=</tt> command-line options.</li>
-
-<li>Optionally, add JIT support and create a machine code emitter (subclass of
- TargetJITInfo) that is used to emit binary code directly into memory. </li>
-</ul>
-
-<p>
-In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and
-then implement them later. Initially, you may not know which private members
-that the class will need and which components will need to be subclassed.
-</p>
-
-</div>
-
-<div class="doc_subsection">
- <a name="Preliminaries">Preliminaries</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-To actually create your compiler backend, you need to create and modify a few
-files. The absolute minimum is discussed here. But to actually use the LLVM
-target-independent code generator, you must perform the steps described in
-the <a href="http://www.llvm.org/docs/CodeGenerator.html">LLVM
-Target-Independent Code Generator</a> document.
-</p>
-
-<p>
-First, you should create a subdirectory under <tt>lib/Target</tt> to hold all
-the files related to your target. If your target is called "Dummy," create the
-directory <tt>lib/Target/Dummy</tt>.
-</p>
-
-<p>
-In this new
-directory, create a <tt>Makefile</tt>. It is easiest to copy a
-<tt>Makefile</tt> of another target and modify it. It should at least contain
-the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then
-include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
-named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you
-can split the library into <tt>LLVMDummyCodeGen</tt>
-and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a
-subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC
-target).
-</p>
-
-<p>
-Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>.
-Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a
-lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>.
-</p>
-
-<p>
-To make your target actually do something, you need to implement a subclass of
-<tt>TargetMachine</tt>. This implementation should typically be in the file
-<tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in
-the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's
-target independent code generator, you should do what all current machine
-backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a
-target from scratch, create a subclass of <tt>TargetMachine</tt>.)
-</p>
-
-<p>
-To get LLVM to actually build and link your target, you need to add it to
-the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure
-script to know about your target when parsing the <tt>--enable-targets</tt>
-option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your
-target to the lists there (some creativity required), and then
-reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
-regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="TargetMachine">Target Machine</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-<tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented
-with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt>
-class should be specialized by a concrete target class that implements the
-various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of
-<tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The
-<tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also
-processes numerous command-line options.
-</p>
-
-<p>
-To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>,
-start by copying an existing <tt>TargetMachine</tt> class and header. You
-should name the files that you create to reflect your specific target. For
-instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
-<tt>SparcTargetMachine.cpp</tt>.
-</p>
-
-<p>
-For a target machine <tt>XXX</tt>, the implementation of
-<tt>XXXTargetMachine</tt> must have access methods to obtain objects that
-represent target components. These methods are named <tt>get*Info</tt>, and are
-intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set
-(<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and
-similar information. <tt>XXXTargetMachine</tt> must also implement the
-<tt>getTargetData</tt> method to access an object with target-specific data
-characteristics, such as data type size and alignment requirements.
-</p>
-
-<p>
-For instance, for the SPARC target, the header file
-<tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt>
-and <tt>getTargetData</tt> methods that simply return a class member.
-</p>
-
-<div class="doc_code">
-<pre>
-namespace llvm {
-
-class Module;
-
-class SparcTargetMachine : public LLVMTargetMachine {
- const TargetData DataLayout; // Calculates type size &amp; alignment
- SparcSubtarget Subtarget;
- SparcInstrInfo InstrInfo;
- TargetFrameInfo FrameInfo;
-
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
-public:
- SparcTargetMachine(const Module &amp;M, const std::string &amp;FS);
-
- virtual const SparcInstrInfo *getInstrInfo() const {return &amp;InstrInfo; }
- virtual const TargetFrameInfo *getFrameInfo() const {return &amp;FrameInfo; }
- virtual const TargetSubtarget *getSubtargetImpl() const{return &amp;Subtarget; }
- virtual const TargetRegisterInfo *getRegisterInfo() const {
- return &amp;InstrInfo.getRegisterInfo();
- }
- virtual const TargetData *getTargetData() const { return &amp;DataLayout; }
- static unsigned getModuleMatchQuality(const Module &amp;M);
-
- // Pass Pipeline Configuration
- virtual bool addInstSelector(PassManagerBase &amp;PM, bool Fast);
- virtual bool addPreEmitPass(PassManagerBase &amp;PM, bool Fast);
-};
-
-} // end namespace llvm
-</pre>
-</div>
-
-</div>
-
-
-<div class="doc_text">
-
-<ul>
-<li><tt>getInstrInfo()</tt></li>
-<li><tt>getRegisterInfo()</tt></li>
-<li><tt>getFrameInfo()</tt></li>
-<li><tt>getTargetData()</tt></li>
-<li><tt>getSubtargetImpl()</tt></li>
-</ul>
-
-<p>For some targets, you also need to support the following methods:</p>
-
-<ul>
-<li><tt>getTargetLowering()</tt></li>
-<li><tt>getJITInfo()</tt></li>
-</ul>
-
-<p>
-In addition, the <tt>XXXTargetMachine</tt> constructor should specify a
-<tt>TargetDescription</tt> string that determines the data layout for the target
-machine, including characteristics such as pointer size, alignment, and
-endianness. For example, the constructor for SparcTargetMachine contains the
-following:
-</p>
-
-<div class="doc_code">
-<pre>
-SparcTargetMachine::SparcTargetMachine(const Module &amp;M, const std::string &amp;FS)
- : DataLayout("E-p:32:32-f128:128:128"),
- Subtarget(M, FS), InstrInfo(Subtarget),
- FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
-}
-</pre>
-</div>
-
-</div>
-
-<div class="doc_text">
-
-<p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p>
-
-<ul>
-<li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data
- model. a lower-case "<tt>e</tt>" indicates little-endian.</li>
-
-<li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
- preferred alignment. If only two figures follow "<tt>p:</tt>", then the
- first value is pointer size, and the second value is both ABI and preferred
- alignment.</li>
-
-<li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>",
- "<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point,
- vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are
- followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed
- by three values: the first indicates the size of a long double, then ABI
- alignment, and then ABI preferred alignment.</li>
-</ul>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="TargetRegistration">Target Registration</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-You must also register your target with the <tt>TargetRegistry</tt>, which is
-what other LLVM tools use to be able to lookup and use your target at
-runtime. The <tt>TargetRegistry</tt> can be used directly, but for most targets
-there are helper templates which should take care of the work for you.</p>
-
-<p>
-All targets should declare a global <tt>Target</tt> object which is used to
-represent the target during registration. Then, in the target's TargetInfo
-library, the target should define that object and use
-the <tt>RegisterTarget</tt> template to register the target. For example, the Sparc registration code looks like this:
-</p>
-
-<div class="doc_code">
-<pre>
-Target llvm::TheSparcTarget;
-
-extern "C" void LLVMInitializeSparcTargetInfo() {
- RegisterTarget&lt;Triple::sparc, /*HasJIT=*/false&gt;
- X(TheSparcTarget, "sparc", "Sparc");
-}
-</pre>
-</div>
-
-<p>
-This allows the <tt>TargetRegistry</tt> to look up the target by name or by
-target triple. In addition, most targets will also register additional features
-which are available in separate libraries. These registration steps are
-separate, because some clients may wish to only link in some parts of the target
--- the JIT code generator does not require the use of the assembler printer, for
-example. Here is an example of registering the Sparc assembly printer:
-</p>
-
-<div class="doc_code">
-<pre>
-extern "C" void LLVMInitializeSparcAsmPrinter() {
- RegisterAsmPrinter&lt;SparcAsmPrinter&gt; X(TheSparcTarget);
-}
-</pre>
-</div>
-
-<p>
-For more information, see
-"<a href="/doxygen/TargetRegistry_8h-source.html">llvm/Target/TargetRegistry.h</a>".
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="RegisterSet">Register Set and Register Classes</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-You should describe a concrete target-specific class that represents the
-register file of a target machine. This class is called <tt>XXXRegisterInfo</tt>
-(where <tt>XXX</tt> identifies the target) and represents the class register
-file data that is used for register allocation. It also describes the
-interactions between registers.
-</p>
-
-<p>
-You also need to define register classes to categorize related registers. A
-register class should be added for groups of registers that are all treated the
-same way for some instruction. Typical examples are register classes for
-integer, floating-point, or vector registers. A register allocator allows an
-instruction to use any register in a specified register class to perform the
-instruction in a similar manner. Register classes allocate virtual registers to
-instructions from these sets, and register classes let the target-independent
-register allocator automatically choose the actual registers.
-</p>
-
-<p>
-Much of the code for registers, including register definition, register aliases,
-and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt>
-input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
-<tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the
-implementation of <tt>XXXRegisterInfo</tt> requires hand-coding.
-</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="RegisterDef">Defining a Register</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
-for a target machine. The <tt>Register</tt> class (specified
-in <tt>Target.td</tt>) is used to define an object for each register. The
-specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The
-basic <tt>Register</tt> object does not have any subregisters and does not
-specify any aliases.
-</p>
-
-<div class="doc_code">
-<pre>
-class Register&lt;string n&gt; {
- string Namespace = "";
- string AsmName = n;
- string Name = n;
- int SpillSize = 0;
- int SpillAlignment = 0;
- list&lt;Register&gt; Aliases = [];
- list&lt;Register&gt; SubRegs = [];
- list&lt;int&gt; DwarfNumbers = [];
-}
-</pre>
-</div>
-
-<p>
-For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
-definitions that utilize the Register class, such as:
-</p>
-
-<div class="doc_code">
-<pre>
-def AL : Register&lt;"AL"&gt;, DwarfRegNum&lt;[0, 0, 0]&gt;;
-</pre>
-</div>
-
-<p>
-This defines the register <tt>AL</tt> and assigns it values (with
-<tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug
-information writer to identify a register. For register
-<tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3
-different modes: the first element is for X86-64, the second for exception
-handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number
-that indicates the gcc number is undefined, and -2 indicates the register number
-is invalid for this mode.
-</p>
-
-<p>
-From the previously described line in the <tt>X86RegisterInfo.td</tt> file,
-TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:
-</p>
-
-<div class="doc_code">
-<pre>
-static const unsigned GR8[] = { X86::AL, ... };
-
-const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
-
-const TargetRegisterDesc RegisterDescriptors[] = {
- ...
-{ "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
-</pre>
-</div>
-
-<p>
-From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt>
-object for each register. <tt>TargetRegisterDesc</tt> is defined in
-<tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:
-</p>
-
-<div class="doc_code">
-<pre>
-struct TargetRegisterDesc {
- const char *AsmName; // Assembly language name for the register
- const char *Name; // Printable name for the reg (for debugging)
- const unsigned *AliasSet; // Register Alias Set
- const unsigned *SubRegs; // Sub-register set
- const unsigned *ImmSubRegs; // Immediate sub-register set
- const unsigned *SuperRegs; // Super-register set
-};</pre>
-</div>
-
-<p>
-TableGen uses the entire target description file (<tt>.td</tt>) to determine
-text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of
-<tt>TargetRegisterDesc</tt>) and the relationships of other registers to the
-defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this
-example, other definitions establish the registers "<tt>AX</tt>",
-"<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen
-generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias
-set.
-</p>
-
-<p>
-The <tt>Register</tt> class is commonly used as a base class for more complex
-classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the
-<tt>RegisterWithSubRegs</tt> class that is used to define registers that need to
-specify subregisters in the <tt>SubRegs</tt> list, as shown here:
-</p>
-
-<div class="doc_code">
-<pre>
-class RegisterWithSubRegs&lt;string n,
-list&lt;Register&gt; subregs&gt; : Register&lt;n&gt; {
- let SubRegs = subregs;
-}
-</pre>
-</div>
-
-<p>
-In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for
-SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>,
-<tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID
-numbers, which is a feature common to these subclasses. Note the use of
-'<tt>let</tt>' expressions to override values that are initially defined in a
-superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class).
-</p>
-
-<div class="doc_code">
-<pre>
-class SparcReg&lt;string n&gt; : Register&lt;n&gt; {
- field bits&lt;5&gt; Num;
- let Namespace = "SP";
-}
-// Ri - 32-bit integer registers
-class Ri&lt;bits&lt;5&gt; num, string n&gt; :
-SparcReg&lt;n&gt; {
- let Num = num;
-}
-// Rf - 32-bit floating-point registers
-class Rf&lt;bits&lt;5&gt; num, string n&gt; :
-SparcReg&lt;n&gt; {
- let Num = num;
-}
-// Rd - Slots in the FP register file for 64-bit
-floating-point values.
-class Rd&lt;bits&lt;5&gt; num, string n,
-list&lt;Register&gt; subregs&gt; : SparcReg&lt;n&gt; {
- let Num = num;
- let SubRegs = subregs;
-}
-</pre>
-</div>
-
-<p>
-In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that
-utilize these subclasses of <tt>Register</tt>, such as:
-</p>
-
-<div class="doc_code">
-<pre>
-def G0 : Ri&lt; 0, "G0"&gt;,
-DwarfRegNum&lt;[0]&gt;;
-def G1 : Ri&lt; 1, "G1"&gt;, DwarfRegNum&lt;[1]&gt;;
-...
-def F0 : Rf&lt; 0, "F0"&gt;,
-DwarfRegNum&lt;[32]&gt;;
-def F1 : Rf&lt; 1, "F1"&gt;,
-DwarfRegNum&lt;[33]&gt;;
-...
-def D0 : Rd&lt; 0, "F0", [F0, F1]&gt;,
-DwarfRegNum&lt;[32]&gt;;
-def D1 : Rd&lt; 2, "F2", [F2, F3]&gt;,
-DwarfRegNum&lt;[34]&gt;;
-</pre>
-</div>
-
-<p>
-The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are
-double-precision floating-point registers that are aliases for pairs of
-single-precision floating-point sub-registers. In addition to aliases, the
-sub-register and super-register relationships of the defined register are in
-fields of a register's TargetRegisterDesc.
-</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="RegisterClassDef">Defining a Register Class</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to
-define an object that represents a group of related registers and also defines
-the default allocation order of the registers. A target description file
-<tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register
-classes using the following class:
-</p>
-
-<div class="doc_code">
-<pre>
-class RegisterClass&lt;string namespace,
-list&lt;ValueType&gt; regTypes, int alignment,
- list&lt;Register&gt; regList&gt; {
- string Namespace = namespace;
- list&lt;ValueType&gt; RegTypes = regTypes;
- int Size = 0; // spill size, in bits; zero lets tblgen pick the size
- int Alignment = alignment;
-
- // CopyCost is the cost of copying a value between two registers
- // default value 1 means a single instruction
- // A negative value means copying is extremely expensive or impossible
- int CopyCost = 1;
- list&lt;Register&gt; MemberList = regList;
-
- // for register classes that are subregisters of this class
- list&lt;RegisterClass&gt; SubRegClassList = [];
-
- code MethodProtos = [{}]; // to insert arbitrary code
- code MethodBodies = [{}];
-}
-</pre>
-</div>
-
-<p>To define a RegisterClass, use the following 4 arguments:</p>
-
-<ul>
-<li>The first argument of the definition is the name of the namespace.</li>
-
-<li>The second argument is a list of <tt>ValueType</tt> register type values
- that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined
- values include integer types (such as <tt>i16</tt>, <tt>i32</tt>,
- and <tt>i1</tt> for Boolean), floating-point types
- (<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt>
- for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt>
- must have the same <tt>ValueType</tt>, but some registers may store vector
- data in different configurations. For example a register that can process a
- 128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit
- integers, 4 32-bit integers, and so on. </li>
-
-<li>The third argument of the <tt>RegisterClass</tt> definition specifies the
- alignment required of the registers when they are stored or loaded to
- memory.</li>
-
-<li>The final argument, <tt>regList</tt>, specifies which registers are in this
- class. If an <tt>allocation_order_*</tt> method is not specified,
- then <tt>regList</tt> also defines the order of allocation used by the
- register allocator.</li>
-</ul>
-
-<p>
-In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
-<tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register
-classes, the first argument defines the namespace with the string
-'<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision
-floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines
-a group of 16 double-precision registers
-(<tt>D0-D15</tt>). For <tt>IntRegs</tt>, the <tt>MethodProtos</tt>
-and <tt>MethodBodies</tt> methods are used by TableGen to insert the specified
-code into generated output.
-</p>
-
-<div class="doc_code">
-<pre>
-def FPRegs : RegisterClass&lt;"SP", [f32], 32,
- [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15,
- F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]&gt;;
-
-def DFPRegs : RegisterClass&lt;"SP", [f64], 64,
- [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]&gt;;
-&nbsp;
-def IntRegs : RegisterClass&lt;"SP", [i32], 32,
- [L0, L1, L2, L3, L4, L5, L6, L7,
- I0, I1, I2, I3, I4, I5,
- O0, O1, O2, O3, O4, O5, O7,
- G1,
- // Non-allocatable regs:
- G2, G3, G4,
- O6, // stack ptr
- I6, // frame ptr
- I7, // return address
- G0, // constant zero
- G5, G6, G7 // reserved for kernel
- ]&gt; {
- let MethodProtos = [{
- iterator allocation_order_end(const MachineFunction &amp;MF) const;
- }];
- let MethodBodies = [{
- IntRegsClass::iterator
- IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
- return end() - 10 // Don't allocate special registers
- -1;
- }
- }];
-}
-</pre>
-</div>
-
-<p>
-Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files
-that are intended for inclusion in other source code that you write.
-<tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>,
-which should be included in the header file for the implementation of the SPARC
-register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
-<tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
-<tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its
-base. It also specifies types, based upon the defined register
-classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>.
-</p>
-
-<p>
-<tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>,
-which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC
-register implementation. The code below shows only the generated integer
-registers and associated register classes. The order of registers
-in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in
-the target description file. Take special note of the use
-of <tt>MethodBodies</tt> in <tt>SparcRegisterInfo.td</tt> to create code in
-<tt>SparcGenRegisterInfo.inc</tt>. <tt>MethodProtos</tt> generates similar code
-in <tt>SparcGenRegisterInfo.h.inc</tt>.
-</p>
-
-<div class="doc_code">
-<pre> // IntRegs Register Class...
- static const unsigned IntRegs[] = {
- SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
- SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
- SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
- SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
- SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
- SP::G6, SP::G7,
- };
-
- // IntRegsVTs Register Class Value Types...
- static const MVT::ValueType IntRegsVTs[] = {
- MVT::i32, MVT::Other
- };
-
-namespace SP { // Register class instances
- DFPRegsClass&nbsp;&nbsp;&nbsp; DFPRegsRegClass;
- FPRegsClass&nbsp;&nbsp;&nbsp;&nbsp; FPRegsRegClass;
- IntRegsClass&nbsp;&nbsp;&nbsp; IntRegsRegClass;
-...
- // IntRegs Sub-register Classess...
- static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
- NULL
- };
-...
- // IntRegs Super-register Classess...
- static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
- NULL
- };
-...
- // IntRegs Register Class sub-classes...
- static const TargetRegisterClass* const IntRegsSubclasses [] = {
- NULL
- };
-...
- // IntRegs Register Class super-classes...
- static const TargetRegisterClass* const IntRegsSuperclasses [] = {
- NULL
- };
-...
- IntRegsClass::iterator
- IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
- return end()-10 // Don't allocate special registers
- -1;
- }
-
- IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
- IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
- IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
-}
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="implementRegister">Implement a subclass of</a>
- <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which
-implements the interface described in <tt>TargetRegisterInfo.h</tt>. These
-functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless
-overridden. Here is a list of functions that are overridden for the SPARC
-implementation in <tt>SparcRegisterInfo.cpp</tt>:
-</p>
-
-<ul>
-<li><tt>getCalleeSavedRegs</tt> &mdash; Returns a list of callee-saved registers
- in the order of the desired callee-save stack frame offset.</li>
-
-<li><tt>getCalleeSavedRegClasses</tt> &mdash; Returns a list of preferred
- register classes with which to spill each callee saved register.</li>
-
-<li><tt>getReservedRegs</tt> &mdash; Returns a bitset indexed by physical
- register numbers, indicating if a particular register is unavailable.</li>
-
-<li><tt>hasFP</tt> &mdash; Return a Boolean indicating if a function should have
- a dedicated frame pointer register.</li>
-
-<li><tt>eliminateCallFramePseudoInstr</tt> &mdash; If call frame setup or
- destroy pseudo instructions are used, this can be called to eliminate
- them.</li>
-
-<li><tt>eliminateFrameIndex</tt> &mdash; Eliminate abstract frame indices from
- instructions that may use them.</li>
-
-<li><tt>emitPrologue</tt> &mdash; Insert prologue code into the function.</li>
-
-<li><tt>emitEpilogue</tt> &mdash; Insert epilogue code into the function.</li>
-</ul>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="InstructionSet">Instruction Set</a>
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_text">
-
-<p>
-During the early stages of code generation, the LLVM IR code is converted to a
-<tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class
-containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type
-requirements, and operation properties. For example, is an operation
-commutative, does an operation load from memory. The various operation node
-types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
-file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace).
-</p>
-
-<p>
-TableGen uses the following target description (<tt>.td</tt>) input files to
-generate much of the code for instruction definition:
-</p>
-
-<ul>
-<li><tt>Target.td</tt> &mdash; Where the <tt>Instruction</tt>, <tt>Operand</tt>,
- <tt>InstrInfo</tt>, and other fundamental classes are defined.</li>
-
-<li><tt>TargetSelectionDAG.td</tt>&mdash; Used by <tt>SelectionDAG</tt>
- instruction selection generators, contains <tt>SDTC*</tt> classes (selection
- DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as
- <tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>,
- <tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>,
- <tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li>
-
-<li><tt>XXXInstrFormats.td</tt> &mdash; Patterns for definitions of
- target-specific instructions.</li>
-
-<li><tt>XXXInstrInfo.td</tt> &mdash; Target-specific definitions of instruction
- templates, condition codes, and instructions of an instruction set. For
- architecture modifications, a different file name may be used. For example,
- for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and
- for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li>
-</ul>
-
-<p>
-There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the
-name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt>
-input files, but its contents are only directly important for subtargets.
-</p>
-
-<p>
-You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that
-represents machine instructions supported by a target machine.
-<tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects,
-each of which describes one instruction. An instruction descriptor defines:</p>
-
-<ul>
-<li>Opcode mnemonic</li>
-
-<li>Number of operands</li>
-
-<li>List of implicit register definitions and uses</li>
-
-<li>Target-independent properties (such as memory access, is commutable)</li>
-
-<li>Target-specific flags </li>
-</ul>
-
-<p>
-The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base
-for more complex instruction classes.
-</p>
-
-<div class="doc_code">
-<pre>class Instruction {
- string Namespace = "";
- dag OutOperandList; // An dag containing the MI def operand list.
- dag InOperandList; // An dag containing the MI use operand list.
- string AsmString = ""; // The .s format to print the instruction with.
- list&lt;dag&gt; Pattern; // Set to the DAG pattern for this instruction
- list&lt;Register&gt; Uses = [];
- list&lt;Register&gt; Defs = [];
- list&lt;Predicate&gt; Predicates = []; // predicates turned into isel match code
- ... remainder not shown for space ...
-}
-</pre>
-</div>
-
-<p>
-A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object
-representing a target-specific instruction that is defined
-in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent
-instructions from the architecture manual of the target machine (such as the
-SPARC Architecture Manual for the SPARC target).
-</p>
-
-<p>
-A single instruction from the architecture manual is often modeled as multiple
-target instructions, depending upon its operands. For example, a manual might
-describe an add instruction that takes a register or an immediate operand. An
-LLVM target could model this with two instructions named <tt>ADDri</tt> and
-<tt>ADDrr</tt>.
-</p>
-
-<p>
-You should define a class for each instruction category and define each opcode
-as a subclass of the category with appropriate parameters such as the fixed
-binary encoding of opcodes and extended opcodes. You should map the register
-bits to the bits of the instruction in which they are encoded (for the
-JIT). Also you should specify how the instruction should be printed when the
-automatic assembly printer is used.
-</p>
-
-<p>
-As is described in the SPARC Architecture Manual, Version 8, there are three
-major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt>
-instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set
-high bits of a register) instructions. Format 3 is for other instructions.
-</p>
-
-<p>
-Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>.
-<tt>InstSP</tt> is a base class for other instruction classes. Additional base
-classes are specified for more precise formats: for example
-in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>,
-and <tt>F2_2</tt> is for branches. There are three other base
-classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for
-register/immediate operations, and <tt>F3_3</tt> for floating-point
-operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
-synthetic SPARC instructions.
-</p>
-
-<p>
-<tt>SparcInstrInfo.td</tt> largely consists of operand and instruction
-definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following
-target description file entry, <tt>LDrr</tt>, defines the Load Integer
-instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a
-register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the
-operation value for this category of operation. The second parameter
-(<tt>000000<sub>2</sub></tt>) is the specific operation value
-for <tt>LD</tt>/Load Word. The third parameter is the output destination, which
-is a register operand and defined in the <tt>Register</tt> target description
-file (<tt>IntRegs</tt>).
-</p>
-
-<div class="doc_code">
-<pre>def LDrr : F3_1 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
- "ld [$addr], $dst",
- [(set IntRegs:$dst, (load ADDRrr:$addr))]&gt;;
-</pre>
-</div>
-
-<p>
-The fourth parameter is the input source, which uses the address
-operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>:
-</p>
-
-<div class="doc_code">
-<pre>def MEMrr : Operand&lt;i32&gt; {
- let PrintMethod = "printMemOperand";
- let MIOperandInfo = (ops IntRegs, IntRegs);
-}
-</pre>
-</div>
-
-<p>
-The fifth parameter is a string that is used by the assembly printer and can be
-left as an empty string until the assembly printer interface is implemented. The
-sixth and final parameter is the pattern used to match the instruction during
-the SelectionDAG Select Phase described in
-(<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM
-Target-Independent Code Generator</a>). This parameter is detailed in the next
-section, <a href="#InstructionSelector">Instruction Selector</a>.
-</p>
-
-<p>
-Instruction class definitions are not overloaded for different operand types, so
-separate versions of instructions are needed for register, memory, or immediate
-value operands. For example, to perform a Load Integer instruction for a Word
-from an immediate operand to a register, the following instruction class is
-defined:
-</p>
-
-<div class="doc_code">
-<pre>def LDri : F3_2 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
- "ld [$addr], $dst",
- [(set IntRegs:$dst, (load ADDRri:$addr))]&gt;;
-</pre>
-</div>
-
-<p>
-Writing these definitions for so many similar instructions can involve a lot of
-cut and paste. In td files, the <tt>multiclass</tt> directive enables the
-creation of templates to define several instruction classes at once (using
-the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the
-<tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction
-classes each time <tt>F3_12</tt> is invoked:
-</p>
-
-<div class="doc_code">
-<pre>multiclass F3_12 &lt;string OpcStr, bits&lt;6&gt; Op3Val, SDNode OpNode&gt; {
- def rr : F3_1 &lt;2, Op3Val,
- (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- !strconcat(OpcStr, " $b, $c, $dst"),
- [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]&gt;;
- def ri : F3_2 &lt;2, Op3Val,
- (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
- !strconcat(OpcStr, " $b, $c, $dst"),
- [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]&gt;;
-}
-</pre>
-</div>
-
-<p>
-So when the <tt>defm</tt> directive is used for the <tt>XOR</tt>
-and <tt>ADD</tt> instructions, as seen below, it creates four instruction
-objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>.
-</p>
-
-<div class="doc_code">
-<pre>
-defm XOR : F3_12&lt;"xor", 0b000011, xor&gt;;
-defm ADD : F3_12&lt;"add", 0b000000, add&gt;;
-</pre>
-</div>
-
-<p>
-<tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that
-are referenced by branch instructions. The following definitions
-in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition
-code. For example, the 10<sup>th</sup> bit represents the 'greater than'
-condition for integers, and the 22<sup>nd</sup> bit represents the 'greater
-than' condition for floats.
-</p>
-
-<div class="doc_code">
-<pre>
-def ICC_NE : ICC_VAL&lt; 9&gt;; // Not Equal
-def ICC_E : ICC_VAL&lt; 1&gt;; // Equal
-def ICC_G : ICC_VAL&lt;10&gt;; // Greater
-...
-def FCC_U : FCC_VAL&lt;23&gt;; // Unordered
-def FCC_G : FCC_VAL&lt;22&gt;; // Greater
-def FCC_UG : FCC_VAL&lt;21&gt;; // Unordered or Greater
-...
-</pre>
-</div>
-
-<p>
-(Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC
-condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt>
-correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e.,
-<tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)
-</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="operandMapping">Instruction Operand Mapping</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The code generator backend maps instruction operands to fields in the
-instruction. Operands are assigned to unbound fields in the instruction in the
-order they are defined. Fields are bound when they are assigned a value. For
-example, the Sparc target defines the <tt>XNORrr</tt> instruction as
-a <tt>F3_1</tt> format instruction having three operands.
-</p>
-
-<div class="doc_code">
-<pre>
-def XNORrr : F3_1&lt;2, 0b000111,
- (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- "xnor $b, $c, $dst",
- [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]&gt;;
-</pre>
-</div>
-
-<p>
-The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class
-for <tt>F3_1</tt> is <tt>InstSP</tt>.
-</p>
-
-<div class="doc_code">
-<pre>
-class InstSP&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt; : Instruction {
- field bits&lt;32&gt; Inst;
- let Namespace = "SP";
- bits&lt;2&gt; op;
- let Inst{31-30} = op;
- dag OutOperandList = outs;
- dag InOperandList = ins;
- let AsmString = asmstr;
- let Pattern = pattern;
-}
-</pre>
-</div>
-
-<p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p>
-
-<div class="doc_code">
-<pre>
-class F3&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt;
- : InstSP&lt;outs, ins, asmstr, pattern&gt; {
- bits&lt;5&gt; rd;
- bits&lt;6&gt; op3;
- bits&lt;5&gt; rs1;
- let op{1} = 1; // Op = 2 or 3
- let Inst{29-25} = rd;
- let Inst{24-19} = op3;
- let Inst{18-14} = rs1;
-}
-</pre>
-</div>
-
-<p>
-<tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>,
-<tt>op3</tt>, and <tt>rs1</tt> fields. <tt>F3</tt> format instructions will
-bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields.
-</p>
-
-<div class="doc_code">
-<pre>
-class F3_1&lt;bits&lt;2&gt; opVal, bits&lt;6&gt; op3val, dag outs, dag ins,
- string asmstr, list&lt;dag&gt; pattern&gt; : F3&lt;outs, ins, asmstr, pattern&gt; {
- bits&lt;8&gt; asi = 0; // asi not currently used
- bits&lt;5&gt; rs2;
- let op = opVal;
- let op3 = op3val;
- let Inst{13} = 0; // i field = 0
- let Inst{12-5} = asi; // address space identifier
- let Inst{4-0} = rs2;
-}
-</pre>
-</div>
-
-<p>
-<tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt>
-fields. <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>,
-<tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt>
-instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to
-the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively.
-</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="implementInstr">Implement a subclass of </a>
- <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which
-implements the interface described in <tt>TargetInstrInfo.h</tt>. These
-functions return <tt>0</tt> or a Boolean or they assert, unless
-overridden. Here's a list of functions that are overridden for the SPARC
-implementation in <tt>SparcInstrInfo.cpp</tt>:
-</p>
-
-<ul>
-<li><tt>isMoveInstr</tt> &mdash; Return true if the instruction is a register to
- register move; false, otherwise.</li>
-
-<li><tt>isLoadFromStackSlot</tt> &mdash; If the specified machine instruction is
- a direct load from a stack slot, return the register number of the
- destination and the <tt>FrameIndex</tt> of the stack slot.</li>
-
-<li><tt>isStoreToStackSlot</tt> &mdash; If the specified machine instruction is
- a direct store to a stack slot, return the register number of the
- destination and the <tt>FrameIndex</tt> of the stack slot.</li>
-
-<li><tt>copyRegToReg</tt> &mdash; Copy values between a pair of registers.</li>
-
-<li><tt>storeRegToStackSlot</tt> &mdash; Store a register value to a stack
- slot.</li>
-
-<li><tt>loadRegFromStackSlot</tt> &mdash; Load a register value from a stack
- slot.</li>
-
-<li><tt>storeRegToAddr</tt> &mdash; Store a register value to memory.</li>
-
-<li><tt>loadRegFromAddr</tt> &mdash; Load a register value from memory.</li>
-
-<li><tt>foldMemoryOperand</tt> &mdash; Attempt to combine instructions of any
- load or store instruction for the specified operand(s).</li>
-</ul>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="branchFolding">Branch Folding and If Conversion</a>
-</div>
-<div class="doc_text">
-
-<p>
-Performance can be improved by combining instructions or by eliminating
-instructions that are never reached. The <tt>AnalyzeBranch</tt> method
-in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions
-and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of
-a machine basic block (MBB) for opportunities for improvement, such as branch
-folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt>
-machine function passes (see the source files <tt>BranchFolding.cpp</tt> and
-<tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
-<tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
-instructions.
-</p>
-
-<p>
-Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can
-be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
-SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target
-implementation is shown below.
-</p>
-
-<p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
-
-<ul>
-<li><tt>MachineBasicBlock &amp;MBB</tt> &mdash; The incoming block to be
- examined.</li>
-
-<li><tt>MachineBasicBlock *&amp;TBB</tt> &mdash; A destination block that is
- returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is
- the destination.</li>
-
-<li><tt>MachineBasicBlock *&amp;FBB</tt> &mdash; For a conditional branch that
- evaluates to false, <tt>FBB</tt> is returned as the destination.</li>
-
-<li><tt>std::vector&lt;MachineOperand&gt; &amp;Cond</tt> &mdash; List of
- operands to evaluate a condition for a conditional branch.</li>
-</ul>
-
-<p>
-In the simplest case, if a block ends without a branch, then it falls through to
-the successor block. No destination blocks are specified for either <tt>TBB</tt>
-or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of
-the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the
-function parameters and the code for the simplest case.
-</p>
-
-<div class="doc_code">
-<pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &amp;MBB,
- MachineBasicBlock *&amp;TBB, MachineBasicBlock *&amp;FBB,
- std::vector&lt;MachineOperand&gt; &amp;Cond) const
-{
- MachineBasicBlock::iterator I = MBB.end();
- if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
- return false;
-</pre>
-</div>
-
-<p>
-If a block ends with a single unconditional branch instruction, then
-<tt>AnalyzeBranch</tt> (shown below) should return the destination of that
-branch in the <tt>TBB</tt> parameter.
-</p>
-
-<div class="doc_code">
-<pre>
- if (LastOpc == ARM::B || LastOpc == ARM::tB) {
- TBB = LastInst-&gt;getOperand(0).getMBB();
- return false;
- }
-</pre>
-</div>
-
-<p>
-If a block ends with two unconditional branches, then the second branch is never
-reached. In that situation, as shown below, remove the last branch instruction
-and return the penultimate branch in the <tt>TBB</tt> parameter.
-</p>
-
-<div class="doc_code">
-<pre>
- if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &amp;&amp;
- (LastOpc == ARM::B || LastOpc == ARM::tB)) {
- TBB = SecondLastInst-&gt;getOperand(0).getMBB();
- I = LastInst;
- I-&gt;eraseFromParent();
- return false;
- }
-</pre>
-</div>
-
-<p>
-A block may end with a single conditional branch instruction that falls through
-to successor block if the condition evaluates to false. In that case,
-<tt>AnalyzeBranch</tt> (shown below) should return the destination of that
-conditional branch in the <tt>TBB</tt> parameter and a list of operands in
-the <tt>Cond</tt> parameter to evaluate the condition.
-</p>
-
-<div class="doc_code">
-<pre>
- if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
- // Block ends with fall-through condbranch.
- TBB = LastInst-&gt;getOperand(0).getMBB();
- Cond.push_back(LastInst-&gt;getOperand(1));
- Cond.push_back(LastInst-&gt;getOperand(2));
- return false;
- }
-</pre>
-</div>
-
-<p>
-If a block ends with both a conditional branch and an ensuing unconditional
-branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional
-branch destination (assuming it corresponds to a conditional evaluation of
-'<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch
-destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of
-'<tt>false</tt>'). A list of operands to evaluate the condition should be
-returned in the <tt>Cond</tt> parameter.
-</p>
-
-<div class="doc_code">
-<pre>
- unsigned SecondLastOpc = SecondLastInst-&gt;getOpcode();
-
- if ((SecondLastOpc == ARM::Bcc &amp;&amp; LastOpc == ARM::B) ||
- (SecondLastOpc == ARM::tBcc &amp;&amp; LastOpc == ARM::tB)) {
- TBB = SecondLastInst-&gt;getOperand(0).getMBB();
- Cond.push_back(SecondLastInst-&gt;getOperand(1));
- Cond.push_back(SecondLastInst-&gt;getOperand(2));
- FBB = LastInst-&gt;getOperand(0).getMBB();
- return false;
- }
-</pre>
-</div>
-
-<p>
-For the last two cases (ending with a single conditional branch or ending with
-one conditional and one unconditional branch), the operands returned in
-the <tt>Cond</tt> parameter can be passed to methods of other instructions to
-create new branches or perform other operations. An implementation
-of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt>
-and <tt>InsertBranch</tt> to manage subsequent operations.
-</p>
-
-<p>
-<tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
-<tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
-do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
-return true if it encounters a terminator it cannot handle, such as an indirect
-branch.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="InstructionSelector">Instruction Selector</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes
-of the <tt>SelectionDAG</tt> ideally represent native target
-instructions. During code generation, instruction selection passes are performed
-to convert non-native DAG instructions into native target-specific
-instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to
-match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
-may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG
-operations for branch instructions. Later, the code in
-<tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not
-supported natively (legalizes) in a <tt>SelectionDAG</tt>.
-</p>
-
-<p>
-TableGen generates code for instruction selection using the following target
-description input files:
-</p>
-
-<ul>
-<li><tt>XXXInstrInfo.td</tt> &mdash; Contains definitions of instructions in a
- target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which
- is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li>
-
-<li><tt>XXXCallingConv.td</tt> &mdash; Contains the calling and return value
- conventions for the target architecture, and it generates
- <tt>XXXGenCallingConv.inc</tt>, which is included in
- <tt>XXXISelLowering.cpp</tt>.</li>
-</ul>
-
-<p>
-The implementation of an instruction selection pass must include a header that
-declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In
-<tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction
-selection pass into the queue of passes to run.
-</p>
-
-<p>
-The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the
-contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific
-processing phases, use the command line options for <tt>llc</tt>, described
-at <a href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
-SelectionDAG Instruction Selection Process</a>.
-</p>
-
-<p>
-To describe instruction selector behavior, you should add patterns for lowering
-LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction
-definitions in <tt>XXXInstrInfo.td</tt>. For example, in
-<tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and
-the last parameter describes a pattern with the store DAG operator.
-</p>
-
-<div class="doc_code">
-<pre>
-def STrr : F3_1&lt; 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
- "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]&gt;;
-</pre>
-</div>
-
-<p>
-<tt>ADDRrr</tt> is a memory mode that is also defined in
-<tt>SparcInstrInfo.td</tt>:
-</p>
-
-<div class="doc_code">
-<pre>
-def ADDRrr : ComplexPattern&lt;i32, 2, "SelectADDRrr", [], []&gt;;
-</pre>
-</div>
-
-<p>
-The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a
-function defined in an implementation of the Instructor Selector (such
-as <tt>SparcISelDAGToDAG.cpp</tt>).
-</p>
-
-<p>
-In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is
-defined below:
-</p>
-
-<div class="doc_code">
-<pre>
-def store : PatFrag&lt;(ops node:$val, node:$ptr),
- (st node:$val, node:$ptr), [{
- if (StoreSDNode *ST = dyn_cast&lt;StoreSDNode&gt;(N))
- return !ST-&gt;isTruncatingStore() &amp;&amp;
- ST-&gt;getAddressingMode() == ISD::UNINDEXED;
- return false;
-}]&gt;;
-</pre>
-</div>
-
-<p>
-<tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
-<tt>SelectCode</tt> method that is used to call the appropriate processing
-method for an instruction. In this example, <tt>SelectCode</tt>
-calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode.
-</p>
-
-<div class="doc_code">
-<pre>
-SDNode *SelectCode(SDValue N) {
- ...
- MVT::ValueType NVT = N.getNode()-&gt;getValueType(0);
- switch (N.getOpcode()) {
- case ISD::STORE: {
- switch (NVT) {
- default:
- return Select_ISD_STORE(N);
- break;
- }
- break;
- }
- ...
-</pre>
-</div>
-
-<p>
-The pattern for <tt>STrr</tt> is matched, so elsewhere in
-<tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for
-<tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated
-in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
-instruction.
-</p>
-
-<div class="doc_code">
-<pre>
-SDNode *Select_ISD_STORE(const SDValue &amp;N) {
- SDValue Chain = N.getOperand(0);
- if (Predicate_store(N.getNode())) {
- SDValue N1 = N.getOperand(1);
- SDValue N2 = N.getOperand(2);
- SDValue CPTmp0;
- SDValue CPTmp1;
-
- // Pattern: (st:void IntRegs:i32:$src,
- // ADDRrr:i32:$addr)&lt;&lt;P:Predicate_store&gt;&gt;
- // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
- // Pattern complexity = 13 cost = 1 size = 0
- if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &amp;&amp;
- N1.getNode()-&gt;getValueType(0) == MVT::i32 &amp;&amp;
- N2.getNode()-&gt;getValueType(0) == MVT::i32) {
- return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
- }
-...
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The Legalize phase converts a DAG to use types and operations that are natively
-supported by the target. For natively unsupported types and operations, you need
-to add code to the target-specific XXXTargetLowering implementation to convert
-unsupported types and operations to supported ones.
-</p>
-
-<p>
-In the constructor for the <tt>XXXTargetLowering</tt> class, first use the
-<tt>addRegisterClass</tt> method to specify which types are supports and which
-register classes are associated with them. The code for the register classes are
-generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed
-in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the
-constructor for the SparcTargetLowering class (in
-<tt>SparcISelLowering.cpp</tt>) starts with the following code:
-</p>
-
-<div class="doc_code">
-<pre>
-addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
-addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
-addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
-</pre>
-</div>
-
-<p>
-You should examine the node types in the <tt>ISD</tt> namespace
-(<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which
-operations the target natively supports. For operations that do <b>not</b> have
-native support, add a callback to the constructor for the XXXTargetLowering
-class, so the instruction selection process knows what to do. The TargetLowering
-class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are:
-</p>
-
-<ul>
-<li><tt>setOperationAction</tt> &mdash; General operation.</li>
-
-<li><tt>setLoadExtAction</tt> &mdash; Load with extension.</li>
-
-<li><tt>setTruncStoreAction</tt> &mdash; Truncating store.</li>
-
-<li><tt>setIndexedLoadAction</tt> &mdash; Indexed load.</li>
-
-<li><tt>setIndexedStoreAction</tt> &mdash; Indexed store.</li>
-
-<li><tt>setConvertAction</tt> &mdash; Type conversion.</li>
-
-<li><tt>setCondCodeAction</tt> &mdash; Support for a given condition code.</li>
-</ul>
-
-<p>
-Note: on older releases, <tt>setLoadXAction</tt> is used instead
-of <tt>setLoadExtAction</tt>. Also, on older releases,
-<tt>setCondCodeAction</tt> may not be supported. Examine your release
-to see what methods are specifically supported.
-</p>
-
-<p>
-These callbacks are used to determine that an operation does or does not work
-with a specified type (or types). And in all cases, the third parameter is
-a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>,
-<tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
-contains examples of all four <tt>LegalAction</tt> values.
-</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
- <a name="promote">Promote</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-For an operation without native support for a given type, the specified type may
-be promoted to a larger type that is supported. For example, SPARC does not
-support a sign-extending load for Boolean values (<tt>i1</tt> type), so
-in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>,
-changes <tt>i1</tt> type values to a large type before loading.
-</p>
-
-<div class="doc_code">
-<pre>
-setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
-</pre>
-</div>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
- <a name="expand">Expand</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-For a type without native support, a value may need to be broken down further,
-rather than promoted. For an operation without native support, a combination of
-other operations may be used to similar effect. In SPARC, the floating-point
-sine and cosine trig operations are supported by expansion to other operations,
-as indicated by the third parameter, <tt>Expand</tt>, to
-<tt>setOperationAction</tt>:
-</p>
-
-<div class="doc_code">
-<pre>
-setOperationAction(ISD::FSIN, MVT::f32, Expand);
-setOperationAction(ISD::FCOS, MVT::f32, Expand);
-</pre>
-</div>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
- <a name="custom">Custom</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-For some operations, simple type promotion or operation expansion may be
-insufficient. In some cases, a special intrinsic function must be implemented.
-</p>
-
-<p>
-For example, a constant value may require special treatment, or an operation may
-require spilling and restoring registers in the stack and working with register
-allocators.
-</p>
-
-<p>
-As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
-conversion from a floating point value to a signed integer, first the
-<tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third
-parameter:
-</p>
-
-<div class="doc_code">
-<pre>
-setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
-</pre>
-</div>
-
-<p>
-In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a
-case statement should be added to indicate what function to call. In the
-following code, an <tt>FP_TO_SINT</tt> opcode will call
-the <tt>LowerFP_TO_SINT</tt> method:
-</p>
-
-<div class="doc_code">
-<pre>
-SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &amp;DAG) {
- switch (Op.getOpcode()) {
- case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
- ...
- }
-}
-</pre>
-</div>
-
-<p>
-Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
-register to convert the floating-point value to an integer.
-</p>
-
-<div class="doc_code">
-<pre>
-static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &amp;DAG) {
- assert(Op.getValueType() == MVT::i32);
- Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
- return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
-}
-</pre>
-</div>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
- <a name="legal">Legal</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
-operation <b>is</b> natively supported. <tt>Legal</tt> represents the default
-condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action
-for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is
-natively supported only for SPARC v9. The following code enables
-the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations.
-</p>
-
-<div class="doc_code">
-<pre>
-setOperationAction(ISD::CTPOP, MVT::i32, Expand);
-...
-if (TM.getSubtarget&lt;SparcSubtarget&gt;().isV9())
- setOperationAction(ISD::CTPOP, MVT::i32, Legal);
- case ISD::SETULT: return SPCC::ICC_CS;
- case ISD::SETULE: return SPCC::ICC_LEU;
- case ISD::SETUGT: return SPCC::ICC_GU;
- case ISD::SETUGE: return SPCC::ICC_CC;
- }
-}
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="callingConventions">Calling Conventions</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
-uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
-<tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target
-descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header
-file <tt>XXXGenCallingConv.inc</tt>, which is typically included
-in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
-<tt>TargetCallingConv.td</tt> to specify:
-</p>
-
-<ul>
-<li>The order of parameter allocation.</li>
-
-<li>Where parameters and return values are placed (that is, on the stack or in
- registers).</li>
-
-<li>Which registers may be used.</li>
-
-<li>Whether the caller or callee unwinds the stack.</li>
-</ul>
-
-<p>
-The following example demonstrates the use of the <tt>CCIfType</tt> and
-<tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true
-(that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then
-the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns
-the argument value to the first available register: either <tt>R0</tt>
-or <tt>R1</tt>.
-</p>
-
-<div class="doc_code">
-<pre>
-CCIfType&lt;[f32,f64], CCAssignToReg&lt;[R0, R1]&gt;&gt;
-</pre>
-</div>
-
-<p>
-<tt>SparcCallingConv.td</tt> contains definitions for a target-specific
-return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling
-convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt>
-(shown below) indicates which registers are used for specified scalar return
-types. A single-precision float is returned to register <tt>F0</tt>, and a
-double-precision float goes to register <tt>D0</tt>. A 32-bit integer is
-returned in register <tt>I0</tt> or <tt>I1</tt>.
-</p>
-
-<div class="doc_code">
-<pre>
-def RetCC_Sparc32 : CallingConv&lt;[
- CCIfType&lt;[i32], CCAssignToReg&lt;[I0, I1]&gt;&gt;,
- CCIfType&lt;[f32], CCAssignToReg&lt;[F0]&gt;&gt;,
- CCIfType&lt;[f64], CCAssignToReg&lt;[D0]&gt;&gt;
-]&gt;;
-</pre>
-</div>
-
-<p>
-The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces
-<tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the
-specified size and alignment. In the example below, the first parameter, 4,
-indicates the size of the slot, and the second parameter, also 4, indicates the
-stack alignment along 4-byte units. (Special cases: if size is zero, then the
-ABI size is used; if alignment is zero, then the ABI alignment is used.)
-</p>
-
-<div class="doc_code">
-<pre>
-def CC_Sparc32 : CallingConv&lt;[
- // All arguments get passed in integer registers if there is space.
- CCIfType&lt;[i32, f32, f64], CCAssignToReg&lt;[I0, I1, I2, I3, I4, I5]&gt;&gt;,
- CCAssignToStack&lt;4, 4&gt;
-]&gt;;
-</pre>
-</div>
-
-<p>
-<tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a
-specified sub-calling convention, and, if a match is found, it is invoked. In
-the following example (in <tt>X86CallingConv.td</tt>), the definition of
-<tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value
-is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>,
-the <tt>RetCC_X86Common</tt> is invoked.
-</p>
-
-<div class="doc_code">
-<pre>
-def RetCC_X86_32_C : CallingConv&lt;[
- CCIfType&lt;[f32], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
- CCIfType&lt;[f64], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
- CCDelegateTo&lt;RetCC_X86Common&gt;
-]&gt;;
-</pre>
-</div>
-
-<p>
-<tt>CCIfCC</tt> is an interface that attempts to match the given name to the
-current calling convention. If the name identifies the current calling
-convention, then a specified action is invoked. In the following example (in
-<tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use,
-then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling
-convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked.
-</p>
-
-<div class="doc_code">
-<pre>
-def RetCC_X86_32 : CallingConv&lt;[
- CCIfCC&lt;"CallingConv::Fast", CCDelegateTo&lt;RetCC_X86_32_Fast&gt;&gt;,
- CCIfCC&lt;"CallingConv::X86_SSECall", CCDelegateTo&lt;RetCC_X86_32_SSE&gt;&gt;,
- CCDelegateTo&lt;RetCC_X86_32_C&gt;
-]&gt;;
-</pre>
-</div>
-
-<p>Other calling convention interfaces include:</p>
-
-<ul>
-<li><tt>CCIf &lt;predicate, action&gt;</tt> &mdash; If the predicate matches,
- apply the action.</li>
-
-<li><tt>CCIfInReg &lt;action&gt;</tt> &mdash; If the argument is marked with the
- '<tt>inreg</tt>' attribute, then apply the action.</li>
-
-<li><tt>CCIfNest &lt;action&gt;</tt> &mdash; Inf the argument is marked with the
- '<tt>nest</tt>' attribute, then apply the action.</li>
-
-<li><tt>CCIfNotVarArg &lt;action&gt;</tt> &mdash; If the current function does
- not take a variable number of arguments, apply the action.</li>
-
-<li><tt>CCAssignToRegWithShadow &lt;registerList, shadowList&gt;</tt> &mdash;
- similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li>
-
-<li><tt>CCPassByVal &lt;size, align&gt;</tt> &mdash; Assign value to a stack
- slot with the minimum specified size and alignment.</li>
-
-<li><tt>CCPromoteToType &lt;type&gt;</tt> &mdash; Promote the current value to
- the specified type.</li>
-
-<li><tt>CallingConv &lt;[actions]&gt;</tt> &mdash; Define each calling
- convention that is supported.</li>
-</ul>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="assemblyPrinter">Assembly Printer</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-During the code emission stage, the code generator may utilize an LLVM pass to
-produce assembly output. To do this, you want to implement the code for a
-printer that converts LLVM IR to a GAS-format assembly language for your target
-machine, using the following steps:
-</p>
-
-<ul>
-<li>Define all the assembly strings for your target, adding them to the
- instructions defined in the <tt>XXXInstrInfo.td</tt> file.
- (See <a href="#InstructionSet">Instruction Set</a>.) TableGen will produce
- an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of
- the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
-
-<li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration
- of the <tt>XXXTargetAsmInfo</tt> class (a subclass
- of <tt>TargetAsmInfo</tt>).</li>
-
-<li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
- for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for
- methods.</li>
-
-<li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt>
- class that performs the LLVM-to-assembly conversion.</li>
-</ul>
-
-<p>
-The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the
-<tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>.
-Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of
-<tt>XXXTargetAsmInfo</tt> replacement values that override the default values
-in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>:
-</p>
-
-<div class="doc_code">
-<pre>
-SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &amp;TM) {
- Data16bitsDirective = "\t.half\t";
- Data32bitsDirective = "\t.word\t";
- Data64bitsDirective = 0; // .xword is only supported by V9.
- ZeroDirective = "\t.skip\t";
- CommentString = "!";
- ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
-}
-</pre>
-</div>
-
-<p>
-The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an
-example where the target specific <tt>TargetAsmInfo</tt> class uses an
-overridden methods: <tt>ExpandInlineAsm</tt>.
-</p>
-
-<p>
-A target-specific implementation of AsmPrinter is written in
-<tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that
-converts the LLVM to printable assembly. The implementation must include the
-following headers that have declarations for the <tt>AsmPrinter</tt> and
-<tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a
-subclass of <tt>FunctionPass</tt>.
-</p>
-
-<div class="doc_code">
-<pre>
-#include "llvm/CodeGen/AsmPrinter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-</pre>
-</div>
-
-<p>
-As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first
-calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In
-<tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process
-variable names.
-</p>
-
-<p>
-In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method
-(declared in <tt>MachineFunctionPass</tt>) must be implemented
-for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>,
-the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
-Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but
-generally do the following to process each machine function:
-</p>
-
-<ul>
-<li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li>
-
-<li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants
- which have been spilled to memory.</li>
-
-<li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current
- function.</li>
-
-<li>Print out the label for the current function.</li>
-
-<li>Print out the code for the function, including basic block labels and the
- assembly for the instruction (using <tt>printInstruction</tt>)</li>
-</ul>
-
-<p>
-The <tt>XXXAsmPrinter</tt> implementation must also include the code generated
-by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
-in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the
-<tt>printInstruction</tt> method that may call these methods:
-</p>
-
-<ul>
-<li><tt>printOperand</tt></li>
-
-<li><tt>printMemOperand</tt></li>
-
-<li><tt>printCCOperand (for conditional statements)</tt></li>
-
-<li><tt>printDataDirective</tt></li>
-
-<li><tt>printDeclare</tt></li>
-
-<li><tt>printImplicitDef</tt></li>
-
-<li><tt>printInlineAsm</tt></li>
-</ul>
-
-<p>
-The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
-<tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are
-generally adequate for printing assembly and do not need to be
-overridden.
-</p>
-
-<p>
-The <tt>printOperand</tt> method is implemented with a long switch/case
-statement for the type of operand: register, immediate, basic block, external
-symbol, global address, constant pool index, or jump table index. For an
-instruction with a memory address operand, the <tt>printMemOperand</tt> method
-should be implemented to generate the proper output. Similarly,
-<tt>printCCOperand</tt> should be used to print a conditional operand.
-</p>
-
-<p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and
-it should be called to shut down the assembly printer. During
-<tt>doFinalization</tt>, global variables and constants are printed to
-output.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="subtargetSupport">Subtarget Support</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-Subtarget support is used to inform the code generation process of instruction
-set variations for a given chip set. For example, the LLVM SPARC implementation
-provided covers three major versions of the SPARC microprocessor architecture:
-Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit
-architecture), and the UltraSPARC architecture. V8 has 16 double-precision
-floating-point registers that are also usable as either 32 single-precision or 8
-quad-precision registers. V8 is also purely big-endian. V9 has 32
-double-precision floating-point registers that are also usable as 16
-quad-precision registers, but cannot be used as single-precision registers. The
-UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
-extensions.
-</p>
-
-<p>
-If subtarget support is needed, you should implement a target-specific
-XXXSubtarget class for your architecture. This class should process the
-command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>.
-</p>
-
-<p>
-TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files
-to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown
-below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string
-parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an
-attribute set by the feature, the value of the attribute, and a description of
-the feature. (The fifth parameter is a list of features whose presence is
-implied, and its default value is an empty array.)
-</p>
-
-<div class="doc_code">
-<pre>
-class SubtargetFeature&lt;string n, string a, string v, string d,
- list&lt;SubtargetFeature&gt; i = []&gt; {
- string Name = n;
- string Attribute = a;
- string Value = v;
- string Desc = d;
- list&lt;SubtargetFeature&gt; Implies = i;
-}
-</pre>
-</div>
-
-<p>
-In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
-following features.
-</p>
-
-<div class="doc_code">
-<pre>
-def FeatureV9 : SubtargetFeature&lt;"v9", "IsV9", "true",
- "Enable SPARC-V9 instructions"&gt;;
-def FeatureV8Deprecated : SubtargetFeature&lt;"deprecated-v8",
- "V8DeprecatedInsts", "true",
- "Enable deprecated V8 instructions in V9 mode"&gt;;
-def FeatureVIS : SubtargetFeature&lt;"vis", "IsVIS", "true",
- "Enable UltraSPARC Visual Instruction Set extensions"&gt;;
-</pre>
-</div>
-
-<p>
-Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to
-define particular SPARC processor subtypes that may have the previously
-described features.
-</p>
-
-<div class="doc_code">
-<pre>
-class Proc&lt;string Name, list&lt;SubtargetFeature&gt; Features&gt;
- : Processor&lt;Name, NoItineraries, Features&gt;;
-&nbsp;
-def : Proc&lt;"generic", []&gt;;
-def : Proc&lt;"v8", []&gt;;
-def : Proc&lt;"supersparc", []&gt;;
-def : Proc&lt;"sparclite", []&gt;;
-def : Proc&lt;"f934", []&gt;;
-def : Proc&lt;"hypersparc", []&gt;;
-def : Proc&lt;"sparclite86x", []&gt;;
-def : Proc&lt;"sparclet", []&gt;;
-def : Proc&lt;"tsc701", []&gt;;
-def : Proc&lt;"v9", [FeatureV9]&gt;;
-def : Proc&lt;"ultrasparc", [FeatureV9, FeatureV8Deprecated]&gt;;
-def : Proc&lt;"ultrasparc3", [FeatureV9, FeatureV8Deprecated]&gt;;
-def : Proc&lt;"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]&gt;;
-</pre>
-</div>
-
-<p>
-From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
-SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
-constants to represent the CPU features and CPU subtypes, and the
-ParseSubtargetFeatures method that parses the features string that sets
-specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file
-should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific
-implementation of the XXXSubtarget method should follow this pseudocode:
-</p>
-
-<div class="doc_code">
-<pre>
-XXXSubtarget::XXXSubtarget(const Module &amp;M, const std::string &amp;FS) {
- // Set the default features
- // Determine default and user specified characteristics of the CPU
- // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
- // Perform any additional operations
-}
-</pre>
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="jitSupport">JIT Support</a>
-</div>
-<!-- *********************************************************************** -->
-
-<div class="doc_text">
-
-<p>
-The implementation of a target machine optionally includes a Just-In-Time (JIT)
-code generator that emits machine code and auxiliary structures as binary output
-that can be written directly to memory. To do this, implement JIT code
-generation by performing the following steps:
-</p>
-
-<ul>
-<li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
- pass that transforms target-machine instructions into relocatable machine
- code.</li>
-
-<li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for
- target-specific code-generation activities, such as emitting machine code
- and stubs.</li>
-
-<li>Modify <tt>XXXTargetMachine</tt> so that it provides a
- <tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li>
-</ul>
-
-<p>
-There are several different approaches to writing the JIT support code. For
-instance, TableGen and target descriptor files may be used for creating a JIT
-code generator, but are not mandatory. For the Alpha and PowerPC target
-machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
-contains the binary coding of machine instructions and the
-<tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT
-implementations do not.
-</p>
-
-<p>
-Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
-<tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the
-<tt>MachineCodeEmitter</tt> class containing code for several callback functions
-that write data (in bytes, words, strings, etc.) to the output stream.
-</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="mce">Machine Code Emitter</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class
-is implemented as a function pass (subclass
-of <tt>MachineFunctionPass</tt>). The target-specific implementation
-of <tt>runOnMachineFunction</tt> (invoked by
-<tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the
-<tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each
-instruction and emit binary code. <tt>emitInstruction</tt> is largely
-implemented with case statements on the instruction types defined in
-<tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>,
-the <tt>emitInstruction</tt> method is built around the following switch/case
-statements:
-</p>
-
-<div class="doc_code">
-<pre>
-switch (Desc-&gt;TSFlags &amp; X86::FormMask) {
-case X86II::Pseudo: // for not yet implemented instructions
- ... // or pseudo-instructions
- break;
-case X86II::RawFrm: // for instructions with a fixed opcode value
- ...
- break;
-case X86II::AddRegFrm: // for instructions that have one register operand
- ... // added to their opcode
- break;
-case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
- ... // to specify a destination (register)
- break;
-case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
- ... // to specify a destination (memory)
- break;
-case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
- ... // to specify a source (register)
- break;
-case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
- ... // to specify a source (memory)
- break;
-case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
-case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
-case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
-case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
- ...
- break;
-case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
-case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
-case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
-case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
- ...
- break;
-case X86II::MRMInitReg: // for instructions whose source and
- ... // destination are the same register
- break;
-}
-</pre>
-</div>
-
-<p>
-The implementations of these case statements often first emit the opcode and
-then get the operand(s). Then depending upon the operand, helper methods may be
-called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
-for the <tt>X86II::AddRegFrm</tt> case, the first data emitted
-(by <tt>emitByte</tt>) is the opcode added to the register operand. Then an
-object representing the machine operand, <tt>MO1</tt>, is extracted. The helper
-methods such as <tt>isImmediate</tt>,
-<tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and
-<tt>isJumpTableIndex</tt> determine the operand
-type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
-as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>,
-<tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
-and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.)
-</p>
-
-<div class="doc_code">
-<pre>
-case X86II::AddRegFrm:
- MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
-
- if (CurOp != NumOps) {
- const MachineOperand &amp;MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86InstrInfo::sizeOfImm(Desc);
- if (MO1.isImmediate())
- emitConstant(MO1.getImm(), Size);
- else {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64ri)
- rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
- if (MO1.isGlobalAddress()) {
- bool NeedStub = isa&lt;Function&gt;(MO1.getGlobal());
- bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- NeedStub, isLazy);
- } else if (MO1.isExternalSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isConstantPoolIndex())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJumpTableIndex())
- emitJumpTableAddress(MO1.getIndex(), rt);
- }
- }
- break;
-</pre>
-</div>
-
-<p>
-In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the
-variable <tt>rt</tt>, which is a RelocationType enum that may be used to
-relocate addresses (for example, a global address with a PIC base offset). The
-<tt>RelocationType</tt> enum for that target is defined in the short
-target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by
-the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite
-addresses for referenced global symbols.
-</p>
-
-<p>
-For example, <tt>X86Relocations.h</tt> specifies the following relocation types
-for the X86 addresses. In all four cases, the relocated value is added to the
-value already in memory. For <tt>reloc_pcrel_word</tt>
-and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment.
-</p>
-
-<div class="doc_code">
-<pre>
-enum RelocationType {
- reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
- reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
- reloc_absolute_word = 2, // absolute relocation; no additional adjustment
- reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
-};
-</pre>
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<div class="doc_subsection">
- <a name="targetJITInfo">Target JIT Info</a>
-</div>
-
-<div class="doc_text">
-
-<p>
-<tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific
-code-generation activities, such as emitting machine code and stubs. At minimum,
-a target-specific version of <tt>XXXJITInfo</tt> implements the following:
-</p>
-
-<ul>
-<li><tt>getLazyResolverFunction</tt> &mdash; Initializes the JIT, gives the
- target a function that is used for compilation.</li>
-
-<li><tt>emitFunctionStub</tt> &mdash; Returns a native function with a specified
- address for a callback function.</li>
-
-<li><tt>relocate</tt> &mdash; Changes the addresses of referenced globals, based
- on relocation types.</li>
-
-<li>Callback function that are wrappers to a function stub that is used when the
- real target is not initially known.</li>
-</ul>
-
-<p>
-<tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the
-incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the
-callback function that will be used a function wrapper. For the Alpha target
-(in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt>
-implementation is simply:
-</p>
-
-<div class="doc_code">
-<pre>
-TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
- JITCompilerFn F) {
- JITCompilerFunction = F;
- return AlphaCompilationCallback;
-}
-</pre>
-</div>
-
-<p>
-For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a
-little more complication, because it returns a different callback function for
-processors with SSE instructions and XMM registers.
-</p>
-
-<p>
-The callback function initially saves and later restores the callee register
-values, incoming arguments, and frame and return address. The callback function
-needs low-level access to the registers or stack, so it is typically implemented
-with assembler.
-</p>
-
-</div>
-
-<!-- *********************************************************************** -->
-
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
-
- <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
- <a href="http://llvm.org">The LLVM Compiler Infrastructure</a>
- <br>
- Last modified: $Date$
-</address>
-
-</body>
-</html>