summaryrefslogtreecommitdiff
path: root/docs/tutorial/OCamlLangImpl6.rst
diff options
context:
space:
mode:
authorSean Silva <silvas@purdue.edu>2012-12-05 00:26:32 +0000
committerSean Silva <silvas@purdue.edu>2012-12-05 00:26:32 +0000
commitee47edfd8e2dd048522ebd47305aeefbe9d8729c (patch)
tree1149ccaddfcba655771ab114e383a2cae3b6b200 /docs/tutorial/OCamlLangImpl6.rst
parent4e5448053163e0d9c2107b240ccdb5a95c107b07 (diff)
downloadllvm-ee47edfd8e2dd048522ebd47305aeefbe9d8729c.tar.gz
llvm-ee47edfd8e2dd048522ebd47305aeefbe9d8729c.tar.bz2
llvm-ee47edfd8e2dd048522ebd47305aeefbe9d8729c.tar.xz
docs: Sphinxify `docs/tutorial/`
Sorry for the massive commit, but I just wanted to knock this one down and it is really straightforward. There are still a couple trivial (i.e. not related to the content) things left to fix: - Use of raw HTML links where :doc:`...` and :ref:`...` could be used instead. If you are a newbie and want to help fix this it would make for some good bite-sized patches; more experienced developers should be focusing on adding new content (to this tutorial or elsewhere, but please _do not_ waste your time on formatting when there is such dire need for documentation (see docs/SphinxQuickstartTemplate.rst to get started writing)). - Highlighting of the kaleidoscope code blocks (currently left as bare `::`). I will be working on writing a custom Pygments highlighter for this, mostly as training for maintaining the `llvm` code-block's lexer in-tree. I want to do this because I am extremely unhappy with how it just "gives up" on the slightest deviation from the expected syntax and leaves the whole code-block un-highlighted. More generally I am looking at writing some Sphinx extensions and keeping them in-tree as well, to support common use cases that currently have no good solution (like "monospace text inside a link"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/tutorial/OCamlLangImpl6.rst')
-rw-r--r--docs/tutorial/OCamlLangImpl6.rst1444
1 files changed, 1444 insertions, 0 deletions
diff --git a/docs/tutorial/OCamlLangImpl6.rst b/docs/tutorial/OCamlLangImpl6.rst
new file mode 100644
index 0000000000..7665647736
--- /dev/null
+++ b/docs/tutorial/OCamlLangImpl6.rst
@@ -0,0 +1,1444 @@
+============================================================
+Kaleidoscope: Extending the Language: User-defined Operators
+============================================================
+
+.. contents::
+ :local:
+
+Written by `Chris Lattner <mailto:sabre@nondot.org>`_ and `Erick
+Tryzelaar <mailto:idadesub@users.sourceforge.net>`_
+
+Chapter 6 Introduction
+======================
+
+Welcome to Chapter 6 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. At this point in our tutorial, we now
+have a fully functional language that is fairly minimal, but also
+useful. There is still one big problem with it, however. Our language
+doesn't have many useful operators (like division, logical negation, or
+even any comparisons besides less-than).
+
+This chapter of the tutorial takes a wild digression into adding
+user-defined operators to the simple and beautiful Kaleidoscope
+language. This digression now gives us a simple and ugly language in
+some ways, but also a powerful one at the same time. One of the great
+things about creating your own language is that you get to decide what
+is good or bad. In this tutorial we'll assume that it is okay to use
+this as a way to show some interesting parsing techniques.
+
+At the end of this tutorial, we'll run through an example Kaleidoscope
+application that `renders the Mandelbrot set <#example>`_. This gives an
+example of what you can build with Kaleidoscope and its feature set.
+
+User-defined Operators: the Idea
+================================
+
+The "operator overloading" that we will add to Kaleidoscope is more
+general than languages like C++. In C++, you are only allowed to
+redefine existing operators: you can't programatically change the
+grammar, introduce new operators, change precedence levels, etc. In this
+chapter, we will add this capability to Kaleidoscope, which will let the
+user round out the set of operators that are supported.
+
+The point of going into user-defined operators in a tutorial like this
+is to show the power and flexibility of using a hand-written parser.
+Thus far, the parser we have been implementing uses recursive descent
+for most parts of the grammar and operator precedence parsing for the
+expressions. See `Chapter 2 <OCamlLangImpl2.html>`_ for details. Without
+using operator precedence parsing, it would be very difficult to allow
+the programmer to introduce new operators into the grammar: the grammar
+is dynamically extensible as the JIT runs.
+
+The two specific features we'll add are programmable unary operators
+(right now, Kaleidoscope has no unary operators at all) as well as
+binary operators. An example of this is:
+
+::
+
+ # Logical unary not.
+ def unary!(v)
+ if v then
+ 0
+ else
+ 1;
+
+ # Define > with the same precedence as <.
+ def binary> 10 (LHS RHS)
+ RHS < LHS;
+
+ # Binary "logical or", (note that it does not "short circuit")
+ def binary| 5 (LHS RHS)
+ if LHS then
+ 1
+ else if RHS then
+ 1
+ else
+ 0;
+
+ # Define = with slightly lower precedence than relationals.
+ def binary= 9 (LHS RHS)
+ !(LHS < RHS | LHS > RHS);
+
+Many languages aspire to being able to implement their standard runtime
+library in the language itself. In Kaleidoscope, we can implement
+significant parts of the language in the library!
+
+We will break down implementation of these features into two parts:
+implementing support for user-defined binary operators and adding unary
+operators.
+
+User-defined Binary Operators
+=============================
+
+Adding support for user-defined binary operators is pretty simple with
+our current framework. We'll first add support for the unary/binary
+keywords:
+
+.. code-block:: ocaml
+
+ type token =
+ ...
+ (* operators *)
+ | Binary | Unary
+
+ ...
+
+ and lex_ident buffer = parser
+ ...
+ | "for" -> [< 'Token.For; stream >]
+ | "in" -> [< 'Token.In; stream >]
+ | "binary" -> [< 'Token.Binary; stream >]
+ | "unary" -> [< 'Token.Unary; stream >]
+
+This just adds lexer support for the unary and binary keywords, like we
+did in `previous chapters <OCamlLangImpl5.html#iflexer>`_. One nice
+thing about our current AST, is that we represent binary operators with
+full generalisation by using their ASCII code as the opcode. For our
+extended operators, we'll use this same representation, so we don't need
+any new AST or parser support.
+
+On the other hand, we have to be able to represent the definitions of
+these new operators, in the "def binary\| 5" part of the function
+definition. In our grammar so far, the "name" for the function
+definition is parsed as the "prototype" production and into the
+``Ast.Prototype`` AST node. To represent our new user-defined operators
+as prototypes, we have to extend the ``Ast.Prototype`` AST node like
+this:
+
+.. code-block:: ocaml
+
+ (* proto - This type represents the "prototype" for a function, which captures
+ * its name, and its argument names (thus implicitly the number of arguments the
+ * function takes). *)
+ type proto =
+ | Prototype of string * string array
+ | BinOpPrototype of string * string array * int
+
+Basically, in addition to knowing a name for the prototype, we now keep
+track of whether it was an operator, and if it was, what precedence
+level the operator is at. The precedence is only used for binary
+operators (as you'll see below, it just doesn't apply for unary
+operators). Now that we have a way to represent the prototype for a
+user-defined operator, we need to parse it:
+
+.. code-block:: ocaml
+
+ (* prototype
+ * ::= id '(' id* ')'
+ * ::= binary LETTER number? (id, id)
+ * ::= unary LETTER number? (id) *)
+ let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+ | [< >] -> accumulator
+ in
+ let parse_operator = parser
+ | [< 'Token.Unary >] -> "unary", 1
+ | [< 'Token.Binary >] -> "binary", 2
+ in
+ let parse_binary_precedence = parser
+ | [< 'Token.Number n >] -> int_of_float n
+ | [< >] -> 30
+ in
+ parser
+ | [< 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ | [< (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)
+ | [< >] ->
+ raise (Stream.Error "expected function name in prototype")
+
+This is all fairly straightforward parsing code, and we have already
+seen a lot of similar code in the past. One interesting part about the
+code above is the couple lines that set up ``name`` for binary
+operators. This builds names like "binary@" for a newly defined "@"
+operator. This then takes advantage of the fact that symbol names in the
+LLVM symbol table are allowed to have any character in them, including
+embedded nul characters.
+
+The next interesting thing to add, is codegen support for these binary
+operators. Given our current structure, this is a simple addition of a
+default case for our existing binary operator node:
+
+.. code-block:: ocaml
+
+ let codegen_expr = function
+ ...
+ | Ast.Binary (op, lhs, rhs) ->
+ let lhs_val = codegen_expr lhs in
+ let rhs_val = codegen_expr rhs in
+ begin
+ match op with
+ | '+' -> build_add lhs_val rhs_val "addtmp" builder
+ | '-' -> build_sub lhs_val rhs_val "subtmp" builder
+ | '*' -> build_mul lhs_val rhs_val "multmp" builder
+ | '<' ->
+ (* Convert bool 0/1 to double 0.0 or 1.0 *)
+ let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+ build_uitofp i double_type "booltmp" builder
+ | _ ->
+ (* If it wasn't a builtin binary operator, it must be a user defined
+ * one. Emit a call to it. *)
+ let callee = "binary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -> callee
+ | None -> raise (Error "binary operator not found!")
+ in
+ build_call callee [|lhs_val; rhs_val|] "binop" builder
+ end
+
+As you can see above, the new code is actually really simple. It just
+does a lookup for the appropriate operator in the symbol table and
+generates a function call to it. Since user-defined operators are just
+built as normal functions (because the "prototype" boils down to a
+function with the right name) everything falls into place.
+
+The final piece of code we are missing, is a bit of top level magic:
+
+.. code-block:: ocaml
+
+ let codegen_func the_fpm = function
+ | Ast.Function (proto, body) ->
+ Hashtbl.clear named_values;
+ let the_function = codegen_proto proto in
+
+ (* If this is an operator, install it. *)
+ begin match proto with
+ | Ast.BinOpPrototype (name, args, prec) ->
+ let op = name.[String.length name - 1] in
+ Hashtbl.add Parser.binop_precedence op prec;
+ | _ -> ()
+ end;
+
+ (* Create a new basic block to start insertion into. *)
+ let bb = append_block context "entry" the_function in
+ position_at_end bb builder;
+ ...
+
+Basically, before codegening a function, if it is a user-defined
+operator, we register it in the precedence table. This allows the binary
+operator parsing logic we already have in place to handle it. Since we
+are working on a fully-general operator precedence parser, this is all
+we need to do to "extend the grammar".
+
+Now we have useful user-defined binary operators. This builds a lot on
+the previous framework we built for other operators. Adding unary
+operators is a bit more challenging, because we don't have any framework
+for it yet - lets see what it takes.
+
+User-defined Unary Operators
+============================
+
+Since we don't currently support unary operators in the Kaleidoscope
+language, we'll need to add everything to support them. Above, we added
+simple support for the 'unary' keyword to the lexer. In addition to
+that, we need an AST node:
+
+.. code-block:: ocaml
+
+ type expr =
+ ...
+ (* variant for a unary operator. *)
+ | Unary of char * expr
+ ...
+
+This AST node is very simple and obvious by now. It directly mirrors the
+binary operator AST node, except that it only has one child. With this,
+we need to add the parsing logic. Parsing a unary operator is pretty
+simple: we'll add a new function to do it:
+
+.. code-block:: ocaml
+
+ (* unary
+ * ::= primary
+ * ::= '!' unary *)
+ and parse_unary = parser
+ (* If this is a unary operator, read it. *)
+ | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
+ Ast.Unary (op, operand)
+
+ (* If the current token is not an operator, it must be a primary expr. *)
+ | [< stream >] -> parse_primary stream
+
+The grammar we add is pretty straightforward here. If we see a unary
+operator when parsing a primary operator, we eat the operator as a
+prefix and parse the remaining piece as another unary operator. This
+allows us to handle multiple unary operators (e.g. "!!x"). Note that
+unary operators can't have ambiguous parses like binary operators can,
+so there is no need for precedence information.
+
+The problem with this function, is that we need to call ParseUnary from
+somewhere. To do this, we change previous callers of ParsePrimary to
+call ``parse_unary`` instead:
+
+.. code-block:: ocaml
+
+ (* binoprhs
+ * ::= ('+' primary)* *)
+ and parse_bin_rhs expr_prec lhs stream =
+ ...
+ (* Parse the unary expression after the binary operator. *)
+ let rhs = parse_unary stream in
+ ...
+
+ ...
+
+ (* expression
+ * ::= primary binoprhs *)
+ and parse_expr = parser
+ | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream
+
+With these two simple changes, we are now able to parse unary operators
+and build the AST for them. Next up, we need to add parser support for
+prototypes, to parse the unary operator prototype. We extend the binary
+operator code above with:
+
+.. code-block:: ocaml
+
+ (* prototype
+ * ::= id '(' id* ')'
+ * ::= binary LETTER number? (id, id)
+ * ::= unary LETTER number? (id) *)
+ let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+ | [< >] -> accumulator
+ in
+ let parse_operator = parser
+ | [< 'Token.Unary >] -> "unary", 1
+ | [< 'Token.Binary >] -> "binary", 2
+ in
+ let parse_binary_precedence = parser
+ | [< 'Token.Number n >] -> int_of_float n
+ | [< >] -> 30
+ in
+ parser
+ | [< 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ | [< (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)
+ | [< >] ->
+ raise (Stream.Error "expected function name in prototype")
+
+As with binary operators, we name unary operators with a name that
+includes the operator character. This assists us at code generation
+time. Speaking of, the final piece we need to add is codegen support for
+unary operators. It looks like this:
+
+.. code-block:: ocaml
+
+ let rec codegen_expr = function
+ ...
+ | Ast.Unary (op, operand) ->
+ let operand = codegen_expr operand in
+ let callee = "unary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -> callee
+ | None -> raise (Error "unknown unary operator")
+ in
+ build_call callee [|operand|] "unop" builder
+
+This code is similar to, but simpler than, the code for binary
+operators. It is simpler primarily because it doesn't need to handle any
+predefined operators.
+
+Kicking the Tires
+=================
+
+It is somewhat hard to believe, but with a few simple extensions we've
+covered in the last chapters, we have grown a real-ish language. With
+this, we can do a lot of interesting things, including I/O, math, and a
+bunch of other things. For example, we can now add a nice sequencing
+operator (printd is defined to print out the specified value and a
+newline):
+
+::
+
+ ready> extern printd(x);
+ Read extern: declare double @printd(double)
+ ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
+ ..
+ ready> printd(123) : printd(456) : printd(789);
+ 123.000000
+ 456.000000
+ 789.000000
+ Evaluated to 0.000000
+
+We can also define a bunch of other "primitive" operations, such as:
+
+::
+
+ # Logical unary not.
+ def unary!(v)
+ if v then
+ 0
+ else
+ 1;
+
+ # Unary negate.
+ def unary-(v)
+ 0-v;
+
+ # Define > with the same precedence as <.
+ def binary> 10 (LHS RHS)
+ RHS < LHS;
+
+ # Binary logical or, which does not short circuit.
+ def binary| 5 (LHS RHS)
+ if LHS then
+ 1
+ else if RHS then
+ 1
+ else
+ 0;
+
+ # Binary logical and, which does not short circuit.
+ def binary& 6 (LHS RHS)
+ if !LHS then
+ 0
+ else
+ !!RHS;
+
+ # Define = with slightly lower precedence than relationals.
+ def binary = 9 (LHS RHS)
+ !(LHS < RHS | LHS > RHS);
+
+Given the previous if/then/else support, we can also define interesting
+functions for I/O. For example, the following prints out a character
+whose "density" reflects the value passed in: the lower the value, the
+denser the character:
+
+::
+
+ ready>
+
+ extern putchard(char)
+ def printdensity(d)
+ if d > 8 then
+ putchard(32) # ' '
+ else if d > 4 then
+ putchard(46) # '.'
+ else if d > 2 then
+ putchard(43) # '+'
+ else
+ putchard(42); # '*'
+ ...
+ ready> printdensity(1): printdensity(2): printdensity(3) :
+ printdensity(4): printdensity(5): printdensity(9): putchard(10);
+ *++..
+ Evaluated to 0.000000
+
+Based on these simple primitive operations, we can start to define more
+interesting things. For example, here's a little function that solves
+for the number of iterations it takes a function in the complex plane to
+converge:
+
+::
+
+ # determine whether the specific location diverges.
+ # Solve for z = z^2 + c in the complex plane.
+ def mandleconverger(real imag iters creal cimag)
+ if iters > 255 | (real*real + imag*imag > 4) then
+ iters
+ else
+ mandleconverger(real*real - imag*imag + creal,
+ 2*real*imag + cimag,
+ iters+1, creal, cimag);
+
+ # return the number of iterations required for the iteration to escape
+ def mandleconverge(real imag)
+ mandleconverger(real, imag, 0, real, imag);
+
+This "z = z\ :sup:`2`\ + c" function is a beautiful little creature
+that is the basis for computation of the `Mandelbrot
+Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our
+``mandelconverge`` function returns the number of iterations that it
+takes for a complex orbit to escape, saturating to 255. This is not a
+very useful function by itself, but if you plot its value over a
+two-dimensional plane, you can see the Mandelbrot set. Given that we are
+limited to using putchard here, our amazing graphical output is limited,
+but we can whip together something using the density plotter above:
+
+::
+
+ # compute and plot the mandlebrot set with the specified 2 dimensional range
+ # info.
+ def mandelhelp(xmin xmax xstep ymin ymax ystep)
+ for y = ymin, y < ymax, ystep in (
+ (for x = xmin, x < xmax, xstep in
+ printdensity(mandleconverge(x,y)))
+ : putchard(10)
+ )
+
+ # mandel - This is a convenient helper function for plotting the mandelbrot set
+ # from the specified position with the specified Magnification.
+ def mandel(realstart imagstart realmag imagmag)
+ mandelhelp(realstart, realstart+realmag*78, realmag,
+ imagstart, imagstart+imagmag*40, imagmag);
+
+Given this, we can try plotting out the mandlebrot set! Lets try it out:
+
+::
+
+ ready> mandel(-2.3, -1.3, 0.05, 0.07);
+ *******************************+++++++++++*************************************
+ *************************+++++++++++++++++++++++*******************************
+ **********************+++++++++++++++++++++++++++++****************************
+ *******************+++++++++++++++++++++.. ...++++++++*************************
+ *****************++++++++++++++++++++++.... ...+++++++++***********************
+ ***************+++++++++++++++++++++++..... ...+++++++++*********************
+ **************+++++++++++++++++++++++.... ....+++++++++********************
+ *************++++++++++++++++++++++...... .....++++++++*******************
+ ************+++++++++++++++++++++....... .......+++++++******************
+ ***********+++++++++++++++++++.... ... .+++++++*****************
+ **********+++++++++++++++++....... .+++++++****************
+ *********++++++++++++++........... ...+++++++***************
+ ********++++++++++++............ ...++++++++**************
+ ********++++++++++... .......... .++++++++**************
+ *******+++++++++..... .+++++++++*************
+ *******++++++++...... ..+++++++++*************
+ *******++++++....... ..+++++++++*************
+ *******+++++...... ..+++++++++*************
+ *******.... .... ...+++++++++*************
+ *******.... . ...+++++++++*************
+ *******+++++...... ...+++++++++*************
+ *******++++++....... ..+++++++++*************
+ *******++++++++...... .+++++++++*************
+ *******+++++++++..... ..+++++++++*************
+ ********++++++++++... .......... .++++++++**************
+ ********++++++++++++............ ...++++++++**************
+ *********++++++++++++++.......... ...+++++++***************
+ **********++++++++++++++++........ .+++++++****************
+ **********++++++++++++++++++++.... ... ..+++++++****************
+ ***********++++++++++++++++++++++....... .......++++++++*****************
+ ************+++++++++++++++++++++++...... ......++++++++******************
+ **************+++++++++++++++++++++++.... ....++++++++********************
+ ***************+++++++++++++++++++++++..... ...+++++++++*********************
+ *****************++++++++++++++++++++++.... ...++++++++***********************
+ *******************+++++++++++++++++++++......++++++++*************************
+ *********************++++++++++++++++++++++.++++++++***************************
+ *************************+++++++++++++++++++++++*******************************
+ ******************************+++++++++++++************************************
+ *******************************************************************************
+ *******************************************************************************
+ *******************************************************************************
+ Evaluated to 0.000000
+ ready> mandel(-2, -1, 0.02, 0.04);
+ **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
+ ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
+ *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
+ *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
+ ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
+ **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
+ ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
+ ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
+ **********++++++++++++++++++++++++++++++++++++++++++++++.............
+ ********+++++++++++++++++++++++++++++++++++++++++++..................
+ *******+++++++++++++++++++++++++++++++++++++++.......................
+ ******+++++++++++++++++++++++++++++++++++...........................
+ *****++++++++++++++++++++++++++++++++............................
+ *****++++++++++++++++++++++++++++...............................
+ ****++++++++++++++++++++++++++...... .........................
+ ***++++++++++++++++++++++++......... ...... ...........
+ ***++++++++++++++++++++++............
+ **+++++++++++++++++++++..............
+ **+++++++++++++++++++................
+ *++++++++++++++++++.................
+ *++++++++++++++++............ ...
+ *++++++++++++++..............
+ *+++....++++................
+ *.......... ...........
+ *
+ *.......... ...........
+ *+++....++++................
+ *++++++++++++++..............
+ *++++++++++++++++............ ...
+ *++++++++++++++++++.................
+ **+++++++++++++++++++................
+ **+++++++++++++++++++++..............
+ ***++++++++++++++++++++++............
+ ***++++++++++++++++++++++++......... ...... ...........
+ ****++++++++++++++++++++++++++...... .........................
+ *****++++++++++++++++++++++++++++...............................
+ *****++++++++++++++++++++++++++++++++............................
+ ******+++++++++++++++++++++++++++++++++++...........................
+ *******+++++++++++++++++++++++++++++++++++++++.......................
+ ********+++++++++++++++++++++++++++++++++++++++++++..................
+ Evaluated to 0.000000
+ ready> mandel(-0.9, -1.4, 0.02, 0.03);
+ *******************************************************************************
+ *******************************************************************************
+ *******************************************************************************
+ **********+++++++++++++++++++++************************************************
+ *+++++++++++++++++++++++++++++++++++++++***************************************
+ +++++++++++++++++++++++++++++++++++++++++++++**********************************
+ ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
+ ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
+ +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+ +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
+ +++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
+ ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
+ +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
+ ++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
+ ++++++++++++++++++++++++............. .......++++++++++++++++++++++******
+ +++++++++++++++++++++++............. ........+++++++++++++++++++++++****
+ ++++++++++++++++++++++........... ..........++++++++++++++++++++++***
+ ++++++++++++++++++++........... .........++++++++++++++++++++++*
+ ++++++++++++++++++............ ...........++++++++++++++++++++
+ ++++++++++++++++............... .............++++++++++++++++++
+ ++++++++++++++................. ...............++++++++++++++++
+ ++++++++++++.................. .................++++++++++++++
+ +++++++++.................. .................+++++++++++++
+ ++++++........ . ......... ..++++++++++++
+ ++............ ...... ....++++++++++
+ .............. ...++++++++++
+ .............. ....+++++++++
+ .............. .....++++++++
+ ............. ......++++++++
+ ........... .......++++++++
+ ......... ........+++++++
+ ......... ........+++++++
+ ......... ....+++++++
+ ........ ...+++++++
+ ....... ...+++++++
+ ....+++++++
+ .....+++++++
+ ....+++++++
+ ....+++++++
+ ....+++++++
+ Evaluated to 0.000000
+ ready> ^D
+
+At this point, you may be starting to realize that Kaleidoscope is a
+real and powerful language. It may not be self-similar :), but it can be
+used to plot things that are!
+
+With this, we conclude the "adding user-defined operators" chapter of
+the tutorial. We have successfully augmented our language, adding the
+ability to extend the language in the library, and we have shown how
+this can be used to build a simple but interesting end-user application
+in Kaleidoscope. At this point, Kaleidoscope can build a variety of
+applications that are functional and can call functions with
+side-effects, but it can't actually define and mutate a variable itself.
+
+Strikingly, variable mutation is an important feature of some languages,
+and it is not at all obvious how to `add support for mutable
+variables <OCamlLangImpl7.html>`_ without having to add an "SSA
+construction" phase to your front-end. In the next chapter, we will
+describe how you can add variable mutation without building SSA in your
+front-end.
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the if/then/else and for expressions.. To build this example, use:
+
+.. code-block:: bash
+
+ # Compile
+ ocamlbuild toy.byte
+ # Run
+ ./toy.byte
+
+Here is the code:
+
+\_tags:
+ ::
+
+ <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
+ <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
+ <*.{byte,native}>: use_llvm_executionengine, use_llvm_target
+ <*.{byte,native}>: use_llvm_scalar_opts, use_bindings
+
+myocamlbuild.ml:
+ .. code-block:: ocaml
+
+ open Ocamlbuild_plugin;;
+
+ ocaml_lib ~extern:true "llvm";;
+ ocaml_lib ~extern:true "llvm_analysis";;
+ ocaml_lib ~extern:true "llvm_executionengine";;
+ ocaml_lib ~extern:true "llvm_target";;
+ ocaml_lib ~extern:true "llvm_scalar_opts";;
+
+ flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
+ dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
+
+token.ml:
+ .. code-block:: ocaml
+
+ (*===----------------------------------------------------------------------===
+ * Lexer Tokens
+ *===----------------------------------------------------------------------===*)
+
+ (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
+ * these others for known things. *)
+ type token =
+ (* commands *)
+ | Def | Extern
+
+ (* primary *)
+ | Ident of string | Number of float
+
+ (* unknown *)
+ | Kwd of char
+
+ (* control *)
+ | If | Then | Else
+ | For | In
+
+ (* operators *)
+ | Binary | Unary
+
+lexer.ml:
+ .. code-block:: ocaml
+
+ (*===----------------------------------------------------------------------===
+ * Lexer
+ *===----------------------------------------------------------------------===*)
+
+ let rec lex = parser
+ (* Skip any whitespace. *)
+ | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
+
+ (* identifier: [a-zA-Z][a-zA-Z0-9] *)
+ | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+
+ (* number: [0-9.]+ *)
+ | [< ' ('0' .. '9' as c); stream >] ->
+ let buffer = Buffer.create 1 in
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+
+ (* Comment until end of line. *)
+ | [< ' ('#'); stream >] ->
+ lex_comment stream
+
+ (* Otherwise, just return the character as its ascii value. *)
+ | [< 'c; stream >] ->
+ [< 'Token.Kwd c; lex stream >]
+
+ (* end of stream. *)
+ | [< >] -> [< >]
+
+ and lex_number buffer = parser
+ | [< ' ('0' .. '9' | '.' as c); stream >] ->
+ Buffer.add_char buffer c;
+ lex_number buffer stream
+ | [< stream=lex >] ->
+ [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
+
+ and lex_ident buffer = parser
+ | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
+ Buffer.add_char buffer c;
+ lex_ident buffer stream
+ | [< stream=lex >] ->
+ match Buffer.contents buffer with
+ | "def" -> [< 'Token.Def; stream >]
+ | "extern" -> [< 'Token.Extern; stream >]
+ | "if" -> [< 'Token.If; stream >]
+ | "then" -> [< 'Token.Then; stream >]
+ | "else" -> [< 'Token.Else; stream >]
+ | "for" -> [< 'Token.For; stream >]
+ | "in" -> [< 'Token.In; stream >]
+ | "binary" -> [< 'Token.Binary; stream >]
+ | "unary" -> [< 'Token.Unary; stream >]
+ | id -> [< 'Token.Ident id; stream >]
+
+ and lex_comment = parser
+ | [< ' ('\n'); stream=lex >] -> stream
+ | [< 'c; e=lex_comment >] -> e
+ | [< >] -> [< >]
+
+ast.ml:
+ .. code-block:: ocaml
+
+ (*===----------------------------------------------------------------------===
+ * Abstract Syntax Tree (aka Parse Tree)
+ *===----------------------------------------------------------------------===*)
+
+ (* expr - Base type for all expression nodes. *)
+ type expr =
+ (* variant for numeric literals like "1.0". *)
+ | Number of float
+
+ (* variant for referencing a variable, like "a". *)
+ | Variable of string
+
+ (* variant for a unary operator. *)
+ | Unary of char * expr
+
+ (* variant for a binary operator. *)
+ | Binary of char * expr * expr
+
+ (* variant for function calls. *)
+ | Call of string * expr array
+
+ (* variant for if/then/else. *)
+ | If of expr * expr * expr
+
+ (* variant for for/in. *)
+ | For of string * expr * expr * expr option * expr
+
+ (* proto - This type represents the "prototype" for a function, which captures
+ * its name, and its argument names (thus implicitly the number of arguments the
+ * function takes). *)
+ type proto =
+ | Prototype of string * string array
+ | BinOpPrototype of string * string array * int
+
+ (* func - This type represents a function definition itself. *)
+ type func = Function of proto * expr
+
+parser.ml:
+ .. code-block:: ocaml
+
+ (*===---------------------------------------------------------------------===
+ * Parser
+ *===---------------------------------------------------------------------===*)
+
+ (* binop_precedence - This holds the precedence for each binary operator that is
+ * defined *)
+ let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
+
+ (* precedence - Get the precedence of the pending binary operator token. *)
+ let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
+
+ (* primary
+ * ::= identifier
+ * ::= numberexpr
+ * ::= parenexpr
+ * ::= ifexpr
+ * ::= forexpr *)
+ let rec parse_primary = parser
+ (* numberexpr ::= number *)
+ | [< 'Token.Number n >] -> Ast.Number n
+
+ (* parenexpr ::= '(' expression ')' *)
+ | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
+
+ (* identifierexpr
+ * ::= identifier
+ * ::= identifier '(' argumentexpr ')' *)
+ | [< 'Token.Ident id; stream >] ->
+ let rec parse_args accumulator = parser
+ | [< e=parse_expr; stream >] ->
+ begin parser
+ | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
+ | [< >] -> e :: accumulator
+ end stream
+ | [< >] -> accumulator
+ in
+ let rec parse_ident id = parser
+ (* Call. *)
+ | [< 'Token.Kwd '(';
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')'">] ->
+ Ast.Call (id, Array.of_list (List.rev args))
+
+ (* Simple variable ref. *)
+ | [< >] -> Ast.Variable id
+ in
+ parse_ident id stream
+
+ (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
+ | [< 'Token.If; c=parse_expr;
+ 'Token.Then ?? "expected 'then'"; t=parse_expr;
+ 'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
+ Ast.If (c, t, e)
+
+ (* forexpr
+ ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
+ | [< 'Token.For;
+ 'Token.Ident id ?? "expected identifier after for";
+ 'Token.Kwd '=' ?? "expected '=' after for";
+ stream >] ->
+ begin parser
+ | [<
+ start=parse_expr;
+ 'Token.Kwd ',' ?? "expected ',' after for";
+ end_=parse_expr;
+ stream >] ->
+ let step =
+ begin parser
+ | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
+ | [< >] -> None
+ end stream
+ in
+ begin parser
+ | [< 'Token.In; body=parse_expr >] ->
+ Ast.For (id, start, end_, step, body)
+ | [< >] ->
+ raise (Stream.Error "expected 'in' after for")
+ end stream
+ | [< >] ->
+ raise (Stream.Error "expected '=' after for")
+ end stream
+
+ | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
+
+ (* unary
+ * ::= primary
+ * ::= '!' unary *)
+ and parse_unary = parser
+ (* If this is a unary operator, read it. *)
+ | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
+ Ast.Unary (op, operand)
+
+ (* If the current token is not an operator, it must be a primary expr. *)
+ | [< stream >] -> parse_primary stream
+
+ (* binoprhs
+ * ::= ('+' primary)* *)
+ and parse_bin_rhs expr_prec lhs stream =
+ match Stream.peek stream with
+ (* If this is a binop, find its precedence. *)
+ | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
+ let token_prec = precedence c in
+
+ (* If this is a binop that binds at least as tightly as the current binop,
+ * consume it, otherwise we are done. *)
+ if token_prec < expr_prec then lhs else begin
+ (* Eat the binop. *)
+ Stream.junk stream;
+
+ (* Parse the unary expression after the binary operator. *)
+ let rhs = parse_unary stream in
+
+ (* Okay, we know this is a binop. *)
+ let rhs =
+ match Stream.peek stream with
+ | Some (Token.Kwd c2) ->
+ (* If BinOp binds less tightly with rhs than the operator after
+ * rhs, let the pending operator take rhs as its lhs. *)
+ let next_prec = precedence c2 in
+ if token_prec < next_prec
+ then parse_bin_rhs (token_prec + 1) rhs stream
+ else rhs
+ | _ -> rhs
+ in
+
+ (* Merge lhs/rhs. *)
+ let lhs = Ast.Binary (c, lhs, rhs) in
+ parse_bin_rhs expr_prec lhs stream
+ end
+ | _ -> lhs
+
+ (* expression
+ * ::= primary binoprhs *)
+ and parse_expr = parser
+ | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream
+
+ (* prototype
+ * ::= id '(' id* ')'
+ * ::= binary LETTER number? (id, id)
+ * ::= unary LETTER number? (id) *)
+ let parse_prototype =
+ let rec parse_args accumulator = parser
+ | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
+ | [< >] -> accumulator
+ in
+ let parse_operator = parser
+ | [< 'Token.Unary >] -> "unary", 1
+ | [< 'Token.Binary >] -> "binary", 2
+ in
+ let parse_binary_precedence = parser
+ | [< 'Token.Number n >] -> int_of_float n
+ | [< >] -> 30
+ in
+ parser
+ | [< 'Token.Ident id;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+ (* success. *)
+ Ast.Prototype (id, Array.of_list (List.rev args))
+ | [< (prefix, kind)=parse_operator;
+ 'Token.Kwd op ?? "expected an operator";
+ (* Read the precedence if present. *)
+ binary_precedence=parse_binary_precedence;
+ 'Token.Kwd '(' ?? "expected '(' in prototype";
+ args=parse_args [];
+ 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
+ let name = prefix ^ (String.make 1 op) in
+ let args = Array.of_list (List.rev args) in
+
+ (* Verify right number of arguments for operator. *)
+ if Array.length args != kind
+ then raise (Stream.Error "invalid number of operands for operator")
+ else
+ if kind == 1 then
+ Ast.Prototype (name, args)
+ else
+ Ast.BinOpPrototype (name, args, binary_precedence)
+ | [< >] ->
+ raise (Stream.Error "expected function name in prototype")
+
+ (* definition ::= 'def' prototype expression *)
+ let parse_definition = parser
+ | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
+ Ast.Function (p, e)
+
+ (* toplevelexpr ::= expression *)
+ let parse_toplevel = parser
+ | [< e=parse_expr >] ->
+ (* Make an anonymous proto. *)
+ Ast.Function (Ast.Prototype ("", [||]), e)
+
+ (* external ::= 'extern' prototype *)
+ let parse_extern = parser
+ | [< 'Token.Extern; e=parse_prototype >] -> e
+
+codegen.ml:
+ .. code-block:: ocaml
+
+ (*===----------------------------------------------------------------------===
+ * Code Generation
+ *===----------------------------------------------------------------------===*)
+
+ open Llvm
+
+ exception Error of string
+
+ let context = global_context ()
+ let the_module = create_module context "my cool jit"
+ let builder = builder context
+ let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
+ let double_type = double_type context
+
+ let rec codegen_expr = function
+ | Ast.Number n -> const_float double_type n
+ | Ast.Variable name ->
+ (try Hashtbl.find named_values name with
+ | Not_found -> raise (Error "unknown variable name"))
+ | Ast.Unary (op, operand) ->
+ let operand = codegen_expr operand in
+ let callee = "unary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -> callee
+ | None -> raise (Error "unknown unary operator")
+ in
+ build_call callee [|operand|] "unop" builder
+ | Ast.Binary (op, lhs, rhs) ->
+ let lhs_val = codegen_expr lhs in
+ let rhs_val = codegen_expr rhs in
+ begin
+ match op with
+ | '+' -> build_add lhs_val rhs_val "addtmp" builder
+ | '-' -> build_sub lhs_val rhs_val "subtmp" builder
+ | '*' -> build_mul lhs_val rhs_val "multmp" builder
+ | '<' ->
+ (* Convert bool 0/1 to double 0.0 or 1.0 *)
+ let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
+ build_uitofp i double_type "booltmp" builder
+ | _ ->
+ (* If it wasn't a builtin binary operator, it must be a user defined
+ * one. Emit a call to it. *)
+ let callee = "binary" ^ (String.make 1 op) in
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -> callee
+ | None -> raise (Error "binary operator not found!")
+ in
+ build_call callee [|lhs_val; rhs_val|] "binop" builder
+ end
+ | Ast.Call (callee, args) ->
+ (* Look up the name in the module table. *)
+ let callee =
+ match lookup_function callee the_module with
+ | Some callee -> callee
+ | None -> raise (Error "unknown function referenced")
+ in
+ let params = params callee in
+
+ (* If argument mismatch error. *)
+ if Array.length params == Array.length args then () else
+ raise (Error "incorrect # arguments passed");
+ let args = Array.map codegen_expr args in
+ build_call callee args "calltmp" builder
+ | Ast.If (cond, then_, else_) ->
+ let cond = codegen_expr cond in
+
+ (* Convert condition to a bool by comparing equal to 0.0 *)
+ let zero = const_float double_type 0.0 in
+ let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
+
+ (* Grab the first block so that we might later add the conditional branch
+ * to it at the end of the function. *)
+ let start_bb = insertion_block builder in
+ let the_function = block_parent start_bb in
+
+ let then_bb = append_block context "then" the_function in
+
+ (* Emit 'then' value. *)
+ position_at_end then_bb builder;
+ let then_val = codegen_expr then_ in
+
+ (* Codegen of 'then' can change the current block, update then_bb for the
+ * phi. We create a new name because one is used for the phi node, and the
+ * other is used for the conditional branch. *)
+ let new_then_bb = insertion_block builder in
+
+ (* Emit 'else' value. *)
+ let else_bb = append_block context "else" the_function in
+ position_at_end else_bb builder;
+ let else_val = codegen_expr else_ in
+
+ (* Codegen of 'else' can change the current block, update else_bb for the
+ * phi. *)
+ let new_else_bb = insertion_block builder in
+
+ (* Emit merge block. *)
+ let merge_bb = append_block context "ifcont" the_function in
+ position_at_end merge_bb builder;
+ let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
+ let phi = build_phi incoming "iftmp" builder in
+
+ (* Return to the start block to add the conditional branch. *)
+ position_at_end start_bb builder;
+ ignore (build_cond_br cond_val then_bb else_bb builder);
+
+ (* Set a unconditional branch at the end of the 'then' block and the
+ * 'else' block to the 'merge' block. *)
+ position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
+ position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
+
+ (* Finally, set the builder to the end of the merge block. *)
+ position_at_end merge_bb builder;
+
+ phi
+ | Ast.For (var_name, start, end_, step, body) ->
+ (* Emit the start code first, without 'variable' in scope. *)
+ let start_val = codegen_expr start in
+
+ (* Make the new basic block for the loop header, inserting after current
+ * block. *)
+ let preheader_bb = insertion_block builder in
+ let the_function = block_parent preheader_bb in
+ let loop_bb = append_block context "loop" the_function in
+
+ (* Insert an explicit fall through from the current block to the
+ * loop_bb. *)
+ ignore (build_br loop_bb builder);
+
+ (* Start insertion in loop_bb. *)
+ position_at_end loop_bb builder;
+
+ (* Start the PHI node with an entry for start. *)
+ let variable = build_phi [(start_val, preheader_bb)] var_name builder in
+
+ (* Within the loop, the variable is defined equal to the PHI node. If it
+ * shadows an existing variable, we have to restore it, so save it
+ * now. *)
+ let old_val =
+ try Some (Hashtbl.find named_values var_name) with Not_found -> None
+ in
+ Hashtbl.add named_values var_name variable;
+
+ (* Emit the body of the loop. This, like any other expr, can change the
+ * current BB. Note that we ignore the value computed by the body, but
+ * don't allow an error *)
+ ignore (codegen_expr body);
+
+ (* Emit the step value. *)
+ let step_val =
+ match step with
+ | Some step -> codegen_expr step
+ (* If not specified, use 1.0. *)
+ | None -> const_float double_type 1.0
+ in
+
+ let next_var = build_add variable step_val "nextvar" builder in
+
+ (* Compute the end condition. *)
+ let end_cond = codegen_expr end_ in
+
+ (* Convert condition to a bool by comparing equal to 0.0. *)
+ let zero = const_float double_type 0.0 in
+ let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
+
+ (* Create the "after loop" block and insert it. *)
+ let loop_end_bb = insertion_block builder in
+ let after_bb = append_block context "afterloop" the_function in
+
+ (* Insert the conditional branch into the end of loop_end_bb. *)
+ ignore (build_cond_br end_cond loop_bb after_bb builder);
+
+ (* Any new code will be inserted in after_bb. *)
+ position_at_end after_bb builder;
+
+ (* Add a new entry to the PHI node for the backedge. *)
+ add_incoming (next_var, loop_end_bb) variable;
+
+ (* Restore the unshadowed variable. *)
+ begin match old_val with
+ | Some old_val -> Hashtbl.add named_values var_name old_val
+ | None -> ()
+ end;
+
+ (* for expr always returns 0.0. *)
+ const_null double_type
+
+ let codegen_proto = function
+ | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
+ (* Make the function type: double(double,double) etc. *)
+ let doubles = Array.make (Array.length args) double_type in
+ let ft = function_type double_type doubles in
+ let f =
+ match lookup_function name the_module with
+ | None -> declare_function name ft the_module
+
+ (* If 'f' conflicted, there was already something named 'name'. If it
+ * has a body, don't allow redefinition or reextern. *)
+ | Some f ->
+ (* If 'f' already has a body, reject this. *)
+ if block_begin f <> At_end f then
+ raise (Error "redefinition of function");
+
+ (* If 'f' took a different number of arguments, reject. *)
+ if element_type (type_of f) <> ft then
+ raise (Error "redefinition of function with different # args");
+ f
+ in
+
+ (* Set names for all arguments. *)
+ Array.iteri (fun i a ->
+ let n = args.(i) in
+ set_value_name n a;
+ Hashtbl.add named_values n a;
+ ) (params f);
+ f
+
+ let codegen_func the_fpm = function
+ | Ast.Function (proto, body) ->
+ Hashtbl.clear named_values;
+ let the_function = codegen_proto proto in
+
+ (* If this is an operator, install it. *)
+ begin match proto with
+ | Ast.BinOpPrototype (name, args, prec) ->
+ let op = name.[String.length name - 1] in
+ Hashtbl.add Parser.binop_precedence op prec;
+ | _ -> ()
+ end;
+
+ (* Create a new basic block to start insertion into. *)
+ let bb = append_block context "entry" the_function in
+ position_at_end bb builder;
+
+ try
+ let ret_val = codegen_expr body in
+
+ (* Finish off the function. *)
+ let _ = build_ret ret_val builder in
+
+ (* Validate the generated code, checking for consistency. *)
+ Llvm_analysis.assert_valid_function the_function;
+
+ (* Optimize the function. *)
+ let _ = PassManager.run_function the_function the_fpm in
+
+ the_function
+ with e ->
+ delete_function the_function;
+ raise e
+
+toplevel.ml:
+ .. code-block:: ocaml
+
+ (*===----------------------------------------------------------------------===
+ * Top-Level parsing and JIT Driver
+ *===----------------------------------------------------------------------===*)
+
+ open Llvm
+ open Llvm_executionengine
+
+ (* top ::= definition | external | expression | ';' *)
+ let rec main_loop the_fpm the_execution_engine stream =
+ match Stream.peek stream with
+ | None -> ()
+
+ (* ignore top-level semicolons. *)
+ | Some (Token.Kwd ';') ->
+ Stream.junk stream;
+ main_loop the_fpm the_execution_engine stream
+
+ | Some token ->
+ begin
+ try match token with
+ | Token.Def ->
+ let e = Parser.parse_definition stream in
+ print_endline "parsed a function definition.";
+ dump_value (Codegen.codegen_func the_fpm e);
+ | Token.Extern ->
+ let e = Parser.parse_extern stream in
+ print_endline "parsed an extern.";
+ dump_value (Codegen.codegen_proto e);
+ | _ ->
+ (* Evaluate a top-level expression into an anonymous function. *)
+ let e = Parser.parse_toplevel stream in
+ print_endline "parsed a top-level expr";
+ let the_function = Codegen.codegen_func the_fpm e in
+ dump_value the_function;
+
+ (* JIT the function, returning a function pointer. *)
+ let result = ExecutionEngine.run_function the_function [||]
+ the_execution_engine in
+
+ print_string "Evaluated to ";
+ print_float (GenericValue.as_float Codegen.double_type result);
+ print_newline ();
+ with Stream.Error s | Codegen.Error s ->
+ (* Skip token for error recovery. *)
+ Stream.junk stream;
+ print_endline s;
+ end;
+ print_string "ready> "; flush stdout;
+ main_loop the_fpm the_execution_engine stream
+
+toy.ml:
+ .. code-block:: ocaml
+
+ (*===----------------------------------------------------------------------===
+ * Main driver code.
+ *===----------------------------------------------------------------------===*)
+
+ open Llvm
+ open Llvm_executionengine
+ open Llvm_target
+ open Llvm_scalar_opts
+
+ let main () =
+ ignore (initialize_native_target ());
+
+ (* Install standard binary operators.
+ * 1 is the lowest precedence. *)
+ Hashtbl.add Parser.binop_precedence '<' 10;
+ Hashtbl.add Parser.binop_precedence '+' 20;
+ Hashtbl.add Parser.binop_precedence '-' 20;
+ Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
+
+ (* Prime the first token. *)
+ print_string "ready> "; flush stdout;
+ let stream = Lexer.lex (Stream.of_channel stdin) in
+
+ (* Create the JIT. *)
+ let the_execution_engine = ExecutionEngine.create Codegen.the_module in
+ let the_fpm = PassManager.create_function Codegen.the_module in
+
+ (* Set up the optimizer pipeline. Start with registering info about how the
+ * target lays out data structures. *)
+ DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
+
+ (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
+ add_instruction_combination the_fpm;
+
+ (* reassociate expressions. *)
+ add_reassociation the_fpm;
+
+ (* Eliminate Common SubExpressions. *)
+ add_gvn the_fpm;
+
+ (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
+ add_cfg_simplification the_fpm;
+
+ ignore (PassManager.initialize the_fpm);
+
+ (* Run the main "interpreter loop" now. *)
+ Toplevel.main_loop the_fpm the_execution_engine stream;
+
+ (* Print out all the generated code. *)
+ dump_module Codegen.the_module
+ ;;
+
+ main ()
+
+bindings.c
+ .. code-block:: c
+
+ #include <stdio.h>
+
+ /* putchard - putchar that takes a double and returns 0. */
+ extern double putchard(double X) {
+ putchar((char)X);
+ return 0;
+ }
+
+ /* printd - printf that takes a double prints it as "%f\n", returning 0. */
+ extern double printd(double X) {
+ printf("%f\n", X);
+ return 0;
+ }
+
+`Next: Extending the language: mutable variables / SSA
+construction <OCamlLangImpl7.html>`_
+