summaryrefslogtreecommitdiff
path: root/docs
diff options
context:
space:
mode:
authorEli Friedman <eli.friedman@gmail.com>2011-10-26 00:36:41 +0000
committerEli Friedman <eli.friedman@gmail.com>2011-10-26 00:36:41 +0000
commit5289142cc84c0e2df25d455c1d741bdd0e8b9b1e (patch)
tree30addd7a9aef3952923311c16c994c6745906106 /docs
parentcf62b371a970d109fa373e2fc2f5a024cdadcf42 (diff)
downloadllvm-5289142cc84c0e2df25d455c1d741bdd0e8b9b1e.tar.gz
llvm-5289142cc84c0e2df25d455c1d741bdd0e8b9b1e.tar.bz2
llvm-5289142cc84c0e2df25d455c1d741bdd0e8b9b1e.tar.xz
Remove dead atomic intrinsics from LangRef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142994 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs')
-rw-r--r--docs/LangRef.html514
1 files changed, 0 insertions, 514 deletions
diff --git a/docs/LangRef.html b/docs/LangRef.html
index 3aad800d2a..f937ae6ef9 100644
--- a/docs/LangRef.html
+++ b/docs/LangRef.html
@@ -281,23 +281,6 @@
<li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
</ol>
</li>
- <li><a href="#int_atomics">Atomic intrinsics</a>
- <ol>
- <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
- <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
- <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
- <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
- <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
- <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
- <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
- <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
- <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
- <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
- <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
- <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
- <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
- </ol>
- </li>
<li><a href="#int_memorymarkers">Memory Use Markers</a>
<ol>
<li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
@@ -7812,503 +7795,6 @@ LLVM</a>.</p>
<!-- ======================================================================= -->
<h3>
- <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
-</h3>
-
-<div>
-
-<p>These intrinsic functions expand the "universal IR" of LLVM to represent
- hardware constructs for atomic operations and memory synchronization. This
- provides an interface to the hardware, not an interface to the programmer. It
- is aimed at a low enough level to allow any programming models or APIs
- (Application Programming Interfaces) which need atomic behaviors to map
- cleanly onto it. It is also modeled primarily on hardware behavior. Just as
- hardware provides a "universal IR" for source languages, it also provides a
- starting point for developing a "universal" atomic operation and
- synchronization IR.</p>
-
-<p>These do <em>not</em> form an API such as high-level threading libraries,
- software transaction memory systems, atomic primitives, and intrinsic
- functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
- application libraries. The hardware interface provided by LLVM should allow
- a clean implementation of all of these APIs and parallel programming models.
- No one model or paradigm should be selected above others unless the hardware
- itself ubiquitously does so.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
-</h4>
-
-<div>
-<h5>Syntax:</h5>
-<pre>
- declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
- specific pairs of memory access types.</p>
-
-<h5>Arguments:</h5>
-<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
- The first four arguments enables a specific barrier as listed below. The
- fifth argument specifies that the barrier applies to io or device or uncached
- memory.</p>
-
-<ul>
- <li><tt>ll</tt>: load-load barrier</li>
- <li><tt>ls</tt>: load-store barrier</li>
- <li><tt>sl</tt>: store-load barrier</li>
- <li><tt>ss</tt>: store-store barrier</li>
- <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
-</ul>
-
-<h5>Semantics:</h5>
-<p>This intrinsic causes the system to enforce some ordering constraints upon
- the loads and stores of the program. This barrier does not
- indicate <em>when</em> any events will occur, it only enforces
- an <em>order</em> in which they occur. For any of the specified pairs of load
- and store operations (f.ex. load-load, or store-load), all of the first
- operations preceding the barrier will complete before any of the second
- operations succeeding the barrier begin. Specifically the semantics for each
- pairing is as follows:</p>
-
-<ul>
- <li><tt>ll</tt>: All loads before the barrier must complete before any load
- after the barrier begins.</li>
- <li><tt>ls</tt>: All loads before the barrier must complete before any
- store after the barrier begins.</li>
- <li><tt>ss</tt>: All stores before the barrier must complete before any
- store after the barrier begins.</li>
- <li><tt>sl</tt>: All stores before the barrier must complete before any
- load after the barrier begins.</li>
-</ul>
-
-<p>These semantics are applied with a logical "and" behavior when more than one
- is enabled in a single memory barrier intrinsic.</p>
-
-<p>Backends may implement stronger barriers than those requested when they do
- not support as fine grained a barrier as requested. Some architectures do
- not need all types of barriers and on such architectures, these become
- noops.</p>
-
-<h5>Example:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 4, %ptr
-
-%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
- call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
- <i>; guarantee the above finishes</i>
- store i32 8, %ptr <i>; before this begins</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
- any integer bit width and for different address spaces. Not all targets
- support all bit widths however.</p>
-
-<pre>
- declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
- declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
- declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
- declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This loads a value in memory and compares it to a given value. If they are
- equal, it stores a new value into the memory.</p>
-
-<h5>Arguments:</h5>
-<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
- as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
- same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
- this integer type. While any bit width integer may be used, targets may only
- lower representations they support in hardware.</p>
-
-<h5>Semantics:</h5>
-<p>This entire intrinsic must be executed atomically. It first loads the value
- in memory pointed to by <tt>ptr</tt> and compares it with the
- value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
- memory. The loaded value is yielded in all cases. This provides the
- equivalent of an atomic compare-and-swap operation within the SSA
- framework.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 4, %ptr
-
-%val1 = add i32 4, 4
-%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
- <i>; yields {i32}:result1 = 4</i>
-%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
-%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
-
-%val2 = add i32 1, 1
-%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
- <i>; yields {i32}:result2 = 8</i>
-%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
-
-%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-<h5>Syntax:</h5>
-
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
- integer bit width. Not all targets support all bit widths however.</p>
-
-<pre>
- declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
- declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
- declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
- declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
- the value from memory. It then stores the value in <tt>val</tt> in the memory
- at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
- the <tt>val</tt> argument and the result must be integers of the same bit
- width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
- integer type. The targets may only lower integer representations they
- support.</p>
-
-<h5>Semantics:</h5>
-<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
- stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
- equivalent of an atomic swap operation within the SSA framework.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 4, %ptr
-
-%val1 = add i32 4, 4
-%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
- <i>; yields {i32}:result1 = 4</i>
-%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
-%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
-
-%val2 = add i32 1, 1
-%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
- <i>; yields {i32}:result2 = 8</i>
-
-%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
-%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
- any integer bit width. Not all targets support all bit widths however.</p>
-
-<pre>
- declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
- at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>The intrinsic takes two arguments, the first a pointer to an integer value
- and the second an integer value. The result is also an integer value. These
- integer types can have any bit width, but they must all have the same bit
- width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>This intrinsic does a series of operations atomically. It first loads the
- value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
- to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 4, %ptr
-%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
- <i>; yields {i32}:result1 = 4</i>
-%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
- <i>; yields {i32}:result2 = 8</i>
-%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
- <i>; yields {i32}:result3 = 10</i>
-%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
- any integer bit width and for different address spaces. Not all targets
- support all bit widths however.</p>
-
-<pre>
- declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
- <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>The intrinsic takes two arguments, the first a pointer to an integer value
- and the second an integer value. The result is also an integer value. These
- integer types can have any bit width, but they must all have the same bit
- width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>This intrinsic does a series of operations atomically. It first loads the
- value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
- result to <tt>ptr</tt>. It yields the original value stored
- at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 8, %ptr
-%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
- <i>; yields {i32}:result1 = 8</i>
-%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
- <i>; yields {i32}:result2 = 4</i>
-%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
- <i>; yields {i32}:result3 = 2</i>
-%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_atomic_load_and">
- '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
- </a>
- <br>
- <a name="int_atomic_load_nand">
- '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
- </a>
- <br>
- <a name="int_atomic_load_or">
- '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
- </a>
- <br>
- <a name="int_atomic_load_xor">
- '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
- </a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>These are overloaded intrinsics. You can
- use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
- <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
- bit width and for different address spaces. Not all targets support all bit
- widths however.</p>
-
-<pre>
- declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
- declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
- declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
- declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
- the value stored in memory at <tt>ptr</tt>. It yields the original value
- at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>These intrinsics take two arguments, the first a pointer to an integer value
- and the second an integer value. The result is also an integer value. These
- integer types can have any bit width, but they must all have the same bit
- width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>These intrinsics does a series of operations atomically. They first load the
- value stored at <tt>ptr</tt>. They then do the bitwise
- operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
- original value stored at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 0x0F0F, %ptr
-%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
- <i>; yields {i32}:result0 = 0x0F0F</i>
-%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
- <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
-%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
- <i>; yields {i32}:result2 = 0xF0</i>
-%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
- <i>; yields {i32}:result3 = FF</i>
-%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
-</pre>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="int_atomic_load_max">
- '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
- </a>
- <br>
- <a name="int_atomic_load_min">
- '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
- </a>
- <br>
- <a name="int_atomic_load_umax">
- '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
- </a>
- <br>
- <a name="int_atomic_load_umin">
- '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
- </a>
-</h4>
-
-<div>
-
-<h5>Syntax:</h5>
-<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
- <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
- <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
- address spaces. Not all targets support all bit widths however.</p>
-
-<pre>
- declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
- declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
- declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<pre>
- declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
- declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
- declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
- declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
-</pre>
-
-<h5>Overview:</h5>
-<p>These intrinsics takes the signed or unsigned minimum or maximum of
- <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
- original value at <tt>ptr</tt>.</p>
-
-<h5>Arguments:</h5>
-<p>These intrinsics take two arguments, the first a pointer to an integer value
- and the second an integer value. The result is also an integer value. These
- integer types can have any bit width, but they must all have the same bit
- width. The targets may only lower integer representations they support.</p>
-
-<h5>Semantics:</h5>
-<p>These intrinsics does a series of operations atomically. They first load the
- value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
- max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
- yield the original value stored at <tt>ptr</tt>.</p>
-
-<h5>Examples:</h5>
-<pre>
-%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
-%ptr = bitcast i8* %mallocP to i32*
- store i32 7, %ptr
-%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
- <i>; yields {i32}:result0 = 7</i>
-%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
- <i>; yields {i32}:result1 = -2</i>
-%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
- <i>; yields {i32}:result2 = 8</i>
-%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
- <i>; yields {i32}:result3 = 8</i>
-%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
-</pre>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
<a name="int_memorymarkers">Memory Use Markers</a>
</h3>