summaryrefslogtreecommitdiff
path: root/include/llvm/Support
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2014-03-04 11:08:18 +0000
committerChandler Carruth <chandlerc@gmail.com>2014-03-04 11:08:18 +0000
commitdf3d8e8b4dabcf0437a78a001f91208d264c2387 (patch)
tree685ca3e02cf6a311734dce4776a6cfd9f33f37e0 /include/llvm/Support
parent4bbfbdf7d7a3c4dbdd2d7bb190ef8a0a8246c218 (diff)
downloadllvm-df3d8e8b4dabcf0437a78a001f91208d264c2387.tar.gz
llvm-df3d8e8b4dabcf0437a78a001f91208d264c2387.tar.bz2
llvm-df3d8e8b4dabcf0437a78a001f91208d264c2387.tar.xz
[Modules] Move the LLVM IR pattern match header into the IR library, it
obviously is coupled to the IR. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202818 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include/llvm/Support')
-rw-r--r--include/llvm/Support/PatternMatch.h1211
1 files changed, 0 insertions, 1211 deletions
diff --git a/include/llvm/Support/PatternMatch.h b/include/llvm/Support/PatternMatch.h
deleted file mode 100644
index 9daba794d2..0000000000
--- a/include/llvm/Support/PatternMatch.h
+++ /dev/null
@@ -1,1211 +0,0 @@
-//===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file provides a simple and efficient mechanism for performing general
-// tree-based pattern matches on the LLVM IR. The power of these routines is
-// that it allows you to write concise patterns that are expressive and easy to
-// understand. The other major advantage of this is that it allows you to
-// trivially capture/bind elements in the pattern to variables. For example,
-// you can do something like this:
-//
-// Value *Exp = ...
-// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
-// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
-// m_And(m_Value(Y), m_ConstantInt(C2))))) {
-// ... Pattern is matched and variables are bound ...
-// }
-//
-// This is primarily useful to things like the instruction combiner, but can
-// also be useful for static analysis tools or code generators.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_SUPPORT_PATTERNMATCH_H
-#define LLVM_SUPPORT_PATTERNMATCH_H
-
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Operator.h"
-
-namespace llvm {
-namespace PatternMatch {
-
-template<typename Val, typename Pattern>
-bool match(Val *V, const Pattern &P) {
- return const_cast<Pattern&>(P).match(V);
-}
-
-
-template<typename SubPattern_t>
-struct OneUse_match {
- SubPattern_t SubPattern;
-
- OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- return V->hasOneUse() && SubPattern.match(V);
- }
-};
-
-template<typename T>
-inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
-
-
-template<typename Class>
-struct class_match {
- template<typename ITy>
- bool match(ITy *V) { return isa<Class>(V); }
-};
-
-/// m_Value() - Match an arbitrary value and ignore it.
-inline class_match<Value> m_Value() { return class_match<Value>(); }
-/// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
-inline class_match<ConstantInt> m_ConstantInt() {
- return class_match<ConstantInt>();
-}
-/// m_Undef() - Match an arbitrary undef constant.
-inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
-
-inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
-
-/// Matching combinators
-template<typename LTy, typename RTy>
-struct match_combine_or {
- LTy L;
- RTy R;
-
- match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
-
- template<typename ITy>
- bool match(ITy *V) {
- if (L.match(V))
- return true;
- if (R.match(V))
- return true;
- return false;
- }
-};
-
-template<typename LTy, typename RTy>
-struct match_combine_and {
- LTy L;
- RTy R;
-
- match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
-
- template<typename ITy>
- bool match(ITy *V) {
- if (L.match(V))
- if (R.match(V))
- return true;
- return false;
- }
-};
-
-/// Combine two pattern matchers matching L || R
-template<typename LTy, typename RTy>
-inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
- return match_combine_or<LTy, RTy>(L, R);
-}
-
-/// Combine two pattern matchers matching L && R
-template<typename LTy, typename RTy>
-inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
- return match_combine_and<LTy, RTy>(L, R);
-}
-
-struct match_zero {
- template<typename ITy>
- bool match(ITy *V) {
- if (const Constant *C = dyn_cast<Constant>(V))
- return C->isNullValue();
- return false;
- }
-};
-
-/// m_Zero() - Match an arbitrary zero/null constant. This includes
-/// zero_initializer for vectors and ConstantPointerNull for pointers.
-inline match_zero m_Zero() { return match_zero(); }
-
-struct match_neg_zero {
- template<typename ITy>
- bool match(ITy *V) {
- if (const Constant *C = dyn_cast<Constant>(V))
- return C->isNegativeZeroValue();
- return false;
- }
-};
-
-/// m_NegZero() - Match an arbitrary zero/null constant. This includes
-/// zero_initializer for vectors and ConstantPointerNull for pointers. For
-/// floating point constants, this will match negative zero but not positive
-/// zero
-inline match_neg_zero m_NegZero() { return match_neg_zero(); }
-
-/// m_AnyZero() - Match an arbitrary zero/null constant. This includes
-/// zero_initializer for vectors and ConstantPointerNull for pointers. For
-/// floating point constants, this will match negative zero and positive zero
-inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
- return m_CombineOr(m_Zero(), m_NegZero());
-}
-
-struct apint_match {
- const APInt *&Res;
- apint_match(const APInt *&R) : Res(R) {}
- template<typename ITy>
- bool match(ITy *V) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const Constant *C = dyn_cast<Constant>(V))
- if (ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
-};
-
-/// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
-/// specified pointer to the contained APInt.
-inline apint_match m_APInt(const APInt *&Res) { return Res; }
-
-
-template<int64_t Val>
-struct constantint_match {
- template<typename ITy>
- bool match(ITy *V) {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- const APInt &CIV = CI->getValue();
- if (Val >= 0)
- return CIV == static_cast<uint64_t>(Val);
- // If Val is negative, and CI is shorter than it, truncate to the right
- // number of bits. If it is larger, then we have to sign extend. Just
- // compare their negated values.
- return -CIV == -Val;
- }
- return false;
- }
-};
-
-/// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
-template<int64_t Val>
-inline constantint_match<Val> m_ConstantInt() {
- return constantint_match<Val>();
-}
-
-/// cst_pred_ty - This helper class is used to match scalar and vector constants
-/// that satisfy a specified predicate.
-template<typename Predicate>
-struct cst_pred_ty : public Predicate {
- template<typename ITy>
- bool match(ITy *V) {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return this->isValue(CI->getValue());
- if (V->getType()->isVectorTy())
- if (const Constant *C = dyn_cast<Constant>(V))
- if (const ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
- return this->isValue(CI->getValue());
- return false;
- }
-};
-
-/// api_pred_ty - This helper class is used to match scalar and vector constants
-/// that satisfy a specified predicate, and bind them to an APInt.
-template<typename Predicate>
-struct api_pred_ty : public Predicate {
- const APInt *&Res;
- api_pred_ty(const APInt *&R) : Res(R) {}
- template<typename ITy>
- bool match(ITy *V) {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const Constant *C = dyn_cast<Constant>(V))
- if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
-
- return false;
- }
-};
-
-
-struct is_one {
- bool isValue(const APInt &C) { return C == 1; }
-};
-
-/// m_One() - Match an integer 1 or a vector with all elements equal to 1.
-inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
-inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
-
-struct is_all_ones {
- bool isValue(const APInt &C) { return C.isAllOnesValue(); }
-};
-
-/// m_AllOnes() - Match an integer or vector with all bits set to true.
-inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
-inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
-
-struct is_sign_bit {
- bool isValue(const APInt &C) { return C.isSignBit(); }
-};
-
-/// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
-inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
-inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
-
-struct is_power2 {
- bool isValue(const APInt &C) { return C.isPowerOf2(); }
-};
-
-/// m_Power2() - Match an integer or vector power of 2.
-inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
-inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
-
-template<typename Class>
-struct bind_ty {
- Class *&VR;
- bind_ty(Class *&V) : VR(V) {}
-
- template<typename ITy>
- bool match(ITy *V) {
- if (Class *CV = dyn_cast<Class>(V)) {
- VR = CV;
- return true;
- }
- return false;
- }
-};
-
-/// m_Value - Match a value, capturing it if we match.
-inline bind_ty<Value> m_Value(Value *&V) { return V; }
-
-/// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
-inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
-
-/// m_Constant - Match a Constant, capturing the value if we match.
-inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
-
-/// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
-inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
-
-/// specificval_ty - Match a specified Value*.
-struct specificval_ty {
- const Value *Val;
- specificval_ty(const Value *V) : Val(V) {}
-
- template<typename ITy>
- bool match(ITy *V) {
- return V == Val;
- }
-};
-
-/// m_Specific - Match if we have a specific specified value.
-inline specificval_ty m_Specific(const Value *V) { return V; }
-
-/// Match a specified floating point value or vector of all elements of that
-/// value.
-struct specific_fpval {
- double Val;
- specific_fpval(double V) : Val(V) {}
-
- template<typename ITy>
- bool match(ITy *V) {
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
- return CFP->isExactlyValue(Val);
- if (V->getType()->isVectorTy())
- if (const Constant *C = dyn_cast<Constant>(V))
- if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
- return CFP->isExactlyValue(Val);
- return false;
- }
-};
-
-/// Match a specific floating point value or vector with all elements equal to
-/// the value.
-inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
-
-/// Match a float 1.0 or vector with all elements equal to 1.0.
-inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
-
-struct bind_const_intval_ty {
- uint64_t &VR;
- bind_const_intval_ty(uint64_t &V) : VR(V) {}
-
- template<typename ITy>
- bool match(ITy *V) {
- if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
- if (CV->getBitWidth() <= 64) {
- VR = CV->getZExtValue();
- return true;
- }
- return false;
- }
-};
-
-/// m_ConstantInt - Match a ConstantInt and bind to its value. This does not
-/// match ConstantInts wider than 64-bits.
-inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
-
-//===----------------------------------------------------------------------===//
-// Matchers for specific binary operators.
-//
-
-template<typename LHS_t, typename RHS_t, unsigned Opcode>
-struct BinaryOp_match {
- LHS_t L;
- RHS_t R;
-
- BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- BinaryOperator *I = cast<BinaryOperator>(V);
- return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
- }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
- R.match(CE->getOperand(1));
- return false;
- }
-};
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::Add>
-m_Add(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
-m_FAdd(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::Sub>
-m_Sub(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::FSub>
-m_FSub(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::Mul>
-m_Mul(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::FMul>
-m_FMul(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
-m_UDiv(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
-m_SDiv(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
-m_FDiv(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::URem>
-m_URem(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::SRem>
-m_SRem(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::FRem>
-m_FRem(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::And>
-m_And(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::Or>
-m_Or(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::Xor>
-m_Xor(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::Shl>
-m_Shl(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::LShr>
-m_LShr(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline BinaryOp_match<LHS, RHS, Instruction::AShr>
-m_AShr(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
-}
-
-template<typename LHS_t, typename RHS_t, unsigned Opcode, unsigned WrapFlags = 0>
-struct OverflowingBinaryOp_match {
- LHS_t L;
- RHS_t R;
-
- OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (OverflowingBinaryOperator *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
- if (Op->getOpcode() != Opcode)
- return false;
- if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
- !Op->hasNoUnsignedWrap())
- return false;
- if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
- !Op->hasNoSignedWrap())
- return false;
- return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
- }
- return false;
- }
-};
-
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>
-m_NSWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
-}
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>
-m_NSWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
-}
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>
-m_NSWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
-}
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>
-m_NSWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
-}
-
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>
-m_NUWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
-}
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>
-m_NUWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
-}
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>
-m_NUWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
-}
-template <typename LHS, typename RHS>
-inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>
-m_NUWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
-}
-
-//===----------------------------------------------------------------------===//
-// Class that matches two different binary ops.
-//
-template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
-struct BinOp2_match {
- LHS_t L;
- RHS_t R;
-
- BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opc1 ||
- V->getValueID() == Value::InstructionVal + Opc2) {
- BinaryOperator *I = cast<BinaryOperator>(V);
- return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
- }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
- L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
- return false;
- }
-};
-
-/// m_Shr - Matches LShr or AShr.
-template<typename LHS, typename RHS>
-inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
-m_Shr(const LHS &L, const RHS &R) {
- return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
-}
-
-/// m_LogicalShift - Matches LShr or Shl.
-template<typename LHS, typename RHS>
-inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
-m_LogicalShift(const LHS &L, const RHS &R) {
- return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
-}
-
-/// m_IDiv - Matches UDiv and SDiv.
-template<typename LHS, typename RHS>
-inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
-m_IDiv(const LHS &L, const RHS &R) {
- return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
-}
-
-//===----------------------------------------------------------------------===//
-// Class that matches exact binary ops.
-//
-template<typename SubPattern_t>
-struct Exact_match {
- SubPattern_t SubPattern;
-
- Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
- return PEO->isExact() && SubPattern.match(V);
- return false;
- }
-};
-
-template<typename T>
-inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
-
-//===----------------------------------------------------------------------===//
-// Matchers for CmpInst classes
-//
-
-template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
-struct CmpClass_match {
- PredicateTy &Predicate;
- LHS_t L;
- RHS_t R;
-
- CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
- : Predicate(Pred), L(LHS), R(RHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (Class *I = dyn_cast<Class>(V))
- if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
- Predicate = I->getPredicate();
- return true;
- }
- return false;
- }
-};
-
-template<typename LHS, typename RHS>
-inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
-m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS,
- ICmpInst, ICmpInst::Predicate>(Pred, L, R);
-}
-
-template<typename LHS, typename RHS>
-inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
-m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS,
- FCmpInst, FCmpInst::Predicate>(Pred, L, R);
-}
-
-//===----------------------------------------------------------------------===//
-// Matchers for SelectInst classes
-//
-
-template<typename Cond_t, typename LHS_t, typename RHS_t>
-struct SelectClass_match {
- Cond_t C;
- LHS_t L;
- RHS_t R;
-
- SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
- const RHS_t &RHS)
- : C(Cond), L(LHS), R(RHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (SelectInst *I = dyn_cast<SelectInst>(V))
- return C.match(I->getOperand(0)) &&
- L.match(I->getOperand(1)) &&
- R.match(I->getOperand(2));
- return false;
- }
-};
-
-template<typename Cond, typename LHS, typename RHS>
-inline SelectClass_match<Cond, LHS, RHS>
-m_Select(const Cond &C, const LHS &L, const RHS &R) {
- return SelectClass_match<Cond, LHS, RHS>(C, L, R);
-}
-
-/// m_SelectCst - This matches a select of two constants, e.g.:
-/// m_SelectCst<-1, 0>(m_Value(V))
-template<int64_t L, int64_t R, typename Cond>
-inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
-m_SelectCst(const Cond &C) {
- return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
-}
-
-
-//===----------------------------------------------------------------------===//
-// Matchers for CastInst classes
-//
-
-template<typename Op_t, unsigned Opcode>
-struct CastClass_match {
- Op_t Op;
-
- CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (Operator *O = dyn_cast<Operator>(V))
- return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
- return false;
- }
-};
-
-/// m_BitCast
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::BitCast>
-m_BitCast(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::BitCast>(Op);
-}
-
-/// m_PtrToInt
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::PtrToInt>
-m_PtrToInt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
-}
-
-/// m_Trunc
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::Trunc>
-m_Trunc(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::Trunc>(Op);
-}
-
-/// m_SExt
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::SExt>
-m_SExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SExt>(Op);
-}
-
-/// m_ZExt
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::ZExt>
-m_ZExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::ZExt>(Op);
-}
-
-/// m_UIToFP
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::UIToFP>
-m_UIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::UIToFP>(Op);
-}
-
-/// m_SIToFP
-template<typename OpTy>
-inline CastClass_match<OpTy, Instruction::SIToFP>
-m_SIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SIToFP>(Op);
-}
-
-//===----------------------------------------------------------------------===//
-// Matchers for unary operators
-//
-
-template<typename LHS_t>
-struct not_match {
- LHS_t L;
-
- not_match(const LHS_t &LHS) : L(LHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (Operator *O = dyn_cast<Operator>(V))
- if (O->getOpcode() == Instruction::Xor)
- return matchIfNot(O->getOperand(0), O->getOperand(1));
- return false;
- }
-private:
- bool matchIfNot(Value *LHS, Value *RHS) {
- return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
- // FIXME: Remove CV.
- isa<ConstantVector>(RHS)) &&
- cast<Constant>(RHS)->isAllOnesValue() &&
- L.match(LHS);
- }
-};
-
-template<typename LHS>
-inline not_match<LHS> m_Not(const LHS &L) { return L; }
-
-
-template<typename LHS_t>
-struct neg_match {
- LHS_t L;
-
- neg_match(const LHS_t &LHS) : L(LHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (Operator *O = dyn_cast<Operator>(V))
- if (O->getOpcode() == Instruction::Sub)
- return matchIfNeg(O->getOperand(0), O->getOperand(1));
- return false;
- }
-private:
- bool matchIfNeg(Value *LHS, Value *RHS) {
- return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
- isa<ConstantAggregateZero>(LHS)) &&
- L.match(RHS);
- }
-};
-
-/// m_Neg - Match an integer negate.
-template<typename LHS>
-inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
-
-
-template<typename LHS_t>
-struct fneg_match {
- LHS_t L;
-
- fneg_match(const LHS_t &LHS) : L(LHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (Operator *O = dyn_cast<Operator>(V))
- if (O->getOpcode() == Instruction::FSub)
- return matchIfFNeg(O->getOperand(0), O->getOperand(1));
- return false;
- }
-private:
- bool matchIfFNeg(Value *LHS, Value *RHS) {
- if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
- return C->isNegativeZeroValue() && L.match(RHS);
- return false;
- }
-};
-
-/// m_FNeg - Match a floating point negate.
-template<typename LHS>
-inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
-
-
-//===----------------------------------------------------------------------===//
-// Matchers for control flow.
-//
-
-struct br_match {
- BasicBlock *&Succ;
- br_match(BasicBlock *&Succ)
- : Succ(Succ) {
- }
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (BranchInst *BI = dyn_cast<BranchInst>(V))
- if (BI->isUnconditional()) {
- Succ = BI->getSuccessor(0);
- return true;
- }
- return false;
- }
-};
-
-inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
-
-template<typename Cond_t>
-struct brc_match {
- Cond_t Cond;
- BasicBlock *&T, *&F;
- brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
- : Cond(C), T(t), F(f) {
- }
-
- template<typename OpTy>
- bool match(OpTy *V) {
- if (BranchInst *BI = dyn_cast<BranchInst>(V))
- if (BI->isConditional() && Cond.match(BI->getCondition())) {
- T = BI->getSuccessor(0);
- F = BI->getSuccessor(1);
- return true;
- }
- return false;
- }
-};
-
-template<typename Cond_t>
-inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
- return brc_match<Cond_t>(C, T, F);
-}
-
-
-//===----------------------------------------------------------------------===//
-// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
-//
-
-template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
-struct MaxMin_match {
- LHS_t L;
- RHS_t R;
-
- MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
- : L(LHS), R(RHS) {}
-
- template<typename OpTy>
- bool match(OpTy *V) {
- // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return false;
- CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
- if (!Cmp)
- return false;
- // At this point we have a select conditioned on a comparison. Check that
- // it is the values returned by the select that are being compared.
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- if ((TrueVal != LHS || FalseVal != RHS) &&
- (TrueVal != RHS || FalseVal != LHS))
- return false;
- typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
- Cmp->getPredicate() : Cmp->getSwappedPredicate();
- // Does "(x pred y) ? x : y" represent the desired max/min operation?
- if (!Pred_t::match(Pred))
- return false;
- // It does! Bind the operands.
- return L.match(LHS) && R.match(RHS);
- }
-};
-
-/// smax_pred_ty - Helper class for identifying signed max predicates.
-struct smax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
- }
-};
-
-/// smin_pred_ty - Helper class for identifying signed min predicates.
-struct smin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
- }
-};
-
-/// umax_pred_ty - Helper class for identifying unsigned max predicates.
-struct umax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
- }
-};
-
-/// umin_pred_ty - Helper class for identifying unsigned min predicates.
-struct umin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
- }
-};
-
-/// ofmax_pred_ty - Helper class for identifying ordered max predicates.
-struct ofmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
- }
-};
-
-/// ofmin_pred_ty - Helper class for identifying ordered min predicates.
-struct ofmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
- }
-};
-
-/// ufmax_pred_ty - Helper class for identifying unordered max predicates.
-struct ufmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
- }
-};
-
-/// ufmin_pred_ty - Helper class for identifying unordered min predicates.
-struct ufmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
- }
-};
-
-template<typename LHS, typename RHS>
-inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
-m_SMax(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
-m_SMin(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
-m_UMax(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
-}
-
-template<typename LHS, typename RHS>
-inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
-m_UMin(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
-}
-
-/// \brief Match an 'ordered' floating point maximum function.
-/// Floating point has one special value 'NaN'. Therefore, there is no total
-/// order. However, if we can ignore the 'NaN' value (for example, because of a
-/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
-/// semantics. In the presence of 'NaN' we have to preserve the original
-/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
-///
-/// max(L, R) iff L and R are not NaN
-/// m_OrdFMax(L, R) = R iff L or R are NaN
-template<typename LHS, typename RHS>
-inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
-m_OrdFMax(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
-}
-
-/// \brief Match an 'ordered' floating point minimum function.
-/// Floating point has one special value 'NaN'. Therefore, there is no total
-/// order. However, if we can ignore the 'NaN' value (for example, because of a
-/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
-/// semantics. In the presence of 'NaN' we have to preserve the original
-/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
-///
-/// max(L, R) iff L and R are not NaN
-/// m_OrdFMin(L, R) = R iff L or R are NaN
-template<typename LHS, typename RHS>
-inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
-m_OrdFMin(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
-}
-
-/// \brief Match an 'unordered' floating point maximum function.
-/// Floating point has one special value 'NaN'. Therefore, there is no total
-/// order. However, if we can ignore the 'NaN' value (for example, because of a
-/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
-/// semantics. In the presence of 'NaN' we have to preserve the original
-/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
-///
-/// max(L, R) iff L and R are not NaN
-/// m_UnordFMin(L, R) = L iff L or R are NaN
-template<typename LHS, typename RHS>
-inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
-m_UnordFMax(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
-}
-
-/// \brief Match an 'unordered' floating point minimum function.
-/// Floating point has one special value 'NaN'. Therefore, there is no total
-/// order. However, if we can ignore the 'NaN' value (for example, because of a
-/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
-/// semantics. In the presence of 'NaN' we have to preserve the original
-/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
-///
-/// max(L, R) iff L and R are not NaN
-/// m_UnordFMin(L, R) = L iff L or R are NaN
-template<typename LHS, typename RHS>
-inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
-m_UnordFMin(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
-}
-
-template<typename Opnd_t>
-struct Argument_match {
- unsigned OpI;
- Opnd_t Val;
- Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
-
- template<typename OpTy>
- bool match(OpTy *V) {
- CallSite CS(V);
- return CS.isCall() && Val.match(CS.getArgument(OpI));
- }
-};
-
-/// Match an argument
-template<unsigned OpI, typename Opnd_t>
-inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
- return Argument_match<Opnd_t>(OpI, Op);
-}
-
-/// Intrinsic matchers.
-struct IntrinsicID_match {
- unsigned ID;
- IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) { }
-
- template<typename OpTy>
- bool match(OpTy *V) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
- return II && II->getIntrinsicID() == ID;
- }
-};
-
-/// Intrinsic matches are combinations of ID matchers, and argument
-/// matchers. Higher arity matcher are defined recursively in terms of and-ing
-/// them with lower arity matchers. Here's some convenient typedefs for up to
-/// several arguments, and more can be added as needed
-template <typename T0 = void, typename T1 = void, typename T2 = void,
- typename T3 = void, typename T4 = void, typename T5 = void,
- typename T6 = void, typename T7 = void, typename T8 = void,
- typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
-template <typename T0>
-struct m_Intrinsic_Ty<T0> {
- typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
-};
-template <typename T0, typename T1>
-struct m_Intrinsic_Ty<T0, T1> {
- typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
- Argument_match<T1> > Ty;
-};
-template <typename T0, typename T1, typename T2>
-struct m_Intrinsic_Ty<T0, T1, T2> {
- typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
- Argument_match<T2> > Ty;
-};
-template <typename T0, typename T1, typename T2, typename T3>
-struct m_Intrinsic_Ty<T0, T1, T2, T3> {
- typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
- Argument_match<T3> > Ty;
-};
-
-/// Match intrinsic calls like this:
-/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
-template <Intrinsic::ID IntrID>
-inline IntrinsicID_match
-m_Intrinsic() { return IntrinsicID_match(IntrID); }
-
-template<Intrinsic::ID IntrID, typename T0>
-inline typename m_Intrinsic_Ty<T0>::Ty
-m_Intrinsic(const T0 &Op0) {
- return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
-}
-
-template<Intrinsic::ID IntrID, typename T0, typename T1>
-inline typename m_Intrinsic_Ty<T0, T1>::Ty
-m_Intrinsic(const T0 &Op0, const T1 &Op1) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
-}
-
-template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
-inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
-m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
-}
-
-template<Intrinsic::ID IntrID, typename T0, typename T1, typename T2, typename T3>
-inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
-m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
-}
-
-// Helper intrinsic matching specializations
-template<typename Opnd0>
-inline typename m_Intrinsic_Ty<Opnd0>::Ty
-m_BSwap(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::bswap>(Op0);
-}
-
-} // end namespace PatternMatch
-} // end namespace llvm
-
-#endif