summaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorDuncan P. N. Exon Smith <dexonsmith@apple.com>2014-04-18 02:17:43 +0000
committerDuncan P. N. Exon Smith <dexonsmith@apple.com>2014-04-18 02:17:43 +0000
commitc7a3b95c0f3e0aabc61e39ac635c340387765f30 (patch)
treebd550e9fbffccf595912dcfab5e35ee000744d71 /include
parent2359d30af6f0f4d4881000e55d915c5d2b203319 (diff)
downloadllvm-c7a3b95c0f3e0aabc61e39ac635c340387765f30.tar.gz
llvm-c7a3b95c0f3e0aabc61e39ac635c340387765f30.tar.bz2
llvm-c7a3b95c0f3e0aabc61e39ac635c340387765f30.tar.xz
Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"
This reverts commits r206548, r206549 and r206549. There are some unit tests failing that aren't failing locally [1], so reverting until I have time to investigate. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206556 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include')
-rw-r--r--include/llvm/Analysis/BlockFrequencyInfoImpl.h1889
1 files changed, 283 insertions, 1606 deletions
diff --git a/include/llvm/Analysis/BlockFrequencyInfoImpl.h b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
index 66d27b7e4a..f891afdf55 100644
--- a/include/llvm/Analysis/BlockFrequencyInfoImpl.h
+++ b/include/llvm/Analysis/BlockFrequencyInfoImpl.h
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
-// Shared implementation of BlockFrequency for IR and Machine Instructions.
+// Shared implementation of BlockFrequencyInfo for IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//
@@ -16,6 +16,8 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
@@ -24,1699 +26,374 @@
#include <string>
#include <vector>
-//===----------------------------------------------------------------------===//
-//
-// PositiveFloat definition.
-//
-// TODO: Make this private to BlockFrequencyInfoImpl or delete.
-//
-//===----------------------------------------------------------------------===//
namespace llvm {
-class PositiveFloatBase {
-public:
- static const int MaxExponent = 16383;
- static const int MinExponent = -16382;
- static const int DefaultPrecision = 10;
-
- static void dump(uint64_t D, int16_t E, int Width);
- static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static std::string toString(uint64_t D, int16_t E, int Width,
- unsigned Precision);
- static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
- static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
-
- static std::pair<uint64_t, bool> splitSigned(int64_t N) {
- if (N >= 0)
- return std::make_pair(N, false);
- if (N == INT64_MIN)
- return std::make_pair(uint64_t(N) + 1, true);
- return std::make_pair(-N, true);
- }
- static int64_t joinSigned(uint64_t U, bool IsNeg) {
- if (U > INT64_MAX)
- return IsNeg ? INT64_MIN : INT64_MAX;
- return IsNeg ? -int16_t(U) : U;
- }
- static int32_t extractLg(const std::pair<int32_t, int> &Lg) {
- return Lg.first;
- }
- static int32_t extractLgFloor(const std::pair<int32_t, int> &Lg) {
- return Lg.first - (Lg.second > 0);
- }
- static int32_t extractLgCeiling(const std::pair<int32_t, int> &Lg) {
- return Lg.first + (Lg.second < 0);
- }
- static uint64_t getDiff(int16_t L, int16_t R) {
- assert(L <= R && "arguments in wrong order");
- return (uint64_t)R - (uint64_t)L;
- }
-
- static std::pair<uint64_t, int16_t> divide64(uint64_t L, uint64_t R);
- static std::pair<uint64_t, int16_t> multiply64(uint64_t L, uint64_t R);
-
- static int compare(uint64_t L, uint64_t R, int Shift) {
- assert(Shift >= 0);
- assert(Shift < 64);
-
- uint64_t L_adjusted = L >> Shift;
- if (L_adjusted < R)
- return -1;
- if (L_adjusted > R)
- return 1;
+class BranchProbabilityInfo;
+class BlockFrequencyInfo;
+class MachineBranchProbabilityInfo;
+class MachineBlockFrequencyInfo;
- return L > L_adjusted << Shift ? 1 : 0;
- }
+namespace bfi_detail {
+template <class BlockT> struct TypeMap {};
+template <> struct TypeMap<BasicBlock> {
+ typedef BasicBlock BlockT;
+ typedef Function FunctionT;
+ typedef BranchProbabilityInfo BranchProbabilityInfoT;
};
-
-/// \brief Simple representation of a positive floating point.
-///
-/// PositiveFloat is a positive floating point number. It uses simple
-/// saturation arithmetic, and every operation is well-defined for every value.
-///
-/// The number is split into a signed exponent and unsigned digits. The number
-/// represented is \c getDigits()*2^getExponent(). In this way, the digits are
-/// much like the mantissa in the x87 long double, but there is no canonical
-/// form, so the same number can be represented by many bit representations
-/// (it's always in "denormal" mode).
-///
-/// PositiveFloat is templated on the underlying integer type for digits, which
-/// is expected to be one of uint64_t, uint32_t, uint16_t or uint8_t.
-///
-/// Unlike builtin floating point types, PositiveFloat is portable.
-///
-/// Unlike APFloat, PositiveFloat does not model architecture floating point
-/// behaviour (this should make it a little faster), and implements most
-/// operators (this makes it usable).
-///
-/// PositiveFloat is totally ordered. However, there is no canonical form, so
-/// there are multiple representations of most scalars. E.g.:
-///
-/// PositiveFloat(8u, 0) == PositiveFloat(4u, 1)
-/// PositiveFloat(4u, 1) == PositiveFloat(2u, 2)
-/// PositiveFloat(2u, 2) == PositiveFloat(1u, 3)
-///
-/// PositiveFloat implements most arithmetic operations. Precision is kept
-/// where possible. Uses simple saturation arithmetic, so that operations
-/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
-/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
-/// Any other division by 0.0 is defined to be getLargest().
-///
-/// As a convenience for modifying the exponent, left and right shifting are
-/// both implemented, and both interpret negative shifts as positive shifts in
-/// the opposite direction.
-///
-/// Future work might extract most of the implementation into a base class
-/// (e.g., \c Float) that has an \c IsSigned template parameter. The initial
-/// use case for this only needed positive semantics, but it wouldn't take much
-/// work to extend.
-///
-/// Exponents are limited to the range accepted by x87 long double. This makes
-/// it trivial to add functionality to convert to APFloat (this is already
-/// relied on for the implementation of printing).
-template <class DigitsT> class PositiveFloat : PositiveFloatBase {
-public:
- static_assert(!std::numeric_limits<DigitsT>::is_signed,
- "only unsigned floats supported");
-
- typedef DigitsT DigitsType;
-
-private:
- typedef std::numeric_limits<DigitsType> DigitsLimits;
-
- static const int Width = sizeof(DigitsType) * 8;
- static_assert(Width <= 64, "invalid integer width for digits");
-
-private:
- DigitsType Digits;
- int16_t Exponent;
-
-public:
- PositiveFloat() : Digits(0), Exponent(0) {}
-
- PositiveFloat(DigitsType Digits, int16_t Exponent)
- : Digits(Digits), Exponent(Exponent) {}
-
-private:
- PositiveFloat(const std::pair<uint64_t, int16_t> &X)
- : Digits(X.first), Exponent(X.second) {}
-
-public:
- static PositiveFloat getZero() { return PositiveFloat(0, 0); }
- static PositiveFloat getOne() { return PositiveFloat(1, 0); }
- static PositiveFloat getLargest() {
- return PositiveFloat(DigitsLimits::max(), MaxExponent);
- }
- static PositiveFloat getFloat(uint64_t N) { return adjustToWidth(N, 0); }
- static PositiveFloat getInverseFloat(uint64_t N) {
- return getFloat(N).invert();
- }
- static PositiveFloat getFraction(DigitsType N, DigitsType D) {
- return getQuotient(N, D);
- }
-
- int16_t getExponent() const { return Exponent; }
- DigitsType getDigits() const { return Digits; }
-
- template <class IntT> IntT toInt() const;
-
- bool isZero() const { return !Digits; }
- bool isLargest() const { return *this == getLargest(); }
- bool isOne() const {
- if (Exponent > 0 || Exponent <= -Width)
- return false;
- return Digits == DigitsType(1) << -Exponent;
- }
-
- /// \brief The log base 2, rounded.
- ///
- /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
- int32_t lg() const { return extractLg(lgImpl()); }
-
- /// \brief The log base 2, rounded towards INT32_MIN.
- ///
- /// Get the lg floor. lg 0 is defined to be INT32_MIN.
- int32_t lgFloor() const { return extractLgFloor(lgImpl()); }
-
- /// \brief The log base 2, rounded towards INT32_MAX.
- ///
- /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
- int32_t lgCeiling() const { return extractLgCeiling(lgImpl()); }
-
- bool operator==(const PositiveFloat &X) const { return compare(X) == 0; }
- bool operator<(const PositiveFloat &X) const { return compare(X) < 0; }
- bool operator!=(const PositiveFloat &X) const { return compare(X) != 0; }
- bool operator>(const PositiveFloat &X) const { return compare(X) > 0; }
- bool operator<=(const PositiveFloat &X) const { return compare(X) <= 0; }
- bool operator>=(const PositiveFloat &X) const { return compare(X) >= 0; }
-
- bool operator!() const { return isZero(); }
-
- /// \brief Convert to a decimal representation in a string.
- ///
- /// Convert to a string. Uses scientific notation for very large/small
- /// numbers. Scientific notation is used roughly for numbers outside of the
- /// range 2^-64 through 2^64.
- ///
- /// \c Precision indicates the number of decimal digits of precision to use;
- /// 0 requests the maximum available.
- ///
- /// As a special case to make debugging easier, if the number is small enough
- /// to convert without scientific notation and has more than \c Precision
- /// digits before the decimal place, it's printed accurately to the first
- /// digit past zero. E.g., assuming 10 digits of precision:
- ///
- /// 98765432198.7654... => 98765432198.8
- /// 8765432198.7654... => 8765432198.8
- /// 765432198.7654... => 765432198.8
- /// 65432198.7654... => 65432198.77
- /// 5432198.7654... => 5432198.765
- std::string toString(unsigned Precision = DefaultPrecision) {
- return PositiveFloatBase::toString(Digits, Exponent, Width, Precision);
- }
-
- /// \brief Print a decimal representation.
- ///
- /// Print a string. See toString for documentation.
- raw_ostream &print(raw_ostream &OS,
- unsigned Precision = DefaultPrecision) const {
- return PositiveFloatBase::print(OS, Digits, Exponent, Width, Precision);
- }
- void dump() const { return PositiveFloatBase::dump(Digits, Exponent, Width); }
-
- PositiveFloat &operator+=(const PositiveFloat &X);
- PositiveFloat &operator-=(const PositiveFloat &X);
- PositiveFloat &operator*=(const PositiveFloat &X);
- PositiveFloat &operator/=(const PositiveFloat &X);
- PositiveFloat &operator<<=(int16_t Shift) { return shiftLeft(Shift); }
- PositiveFloat &operator>>=(int16_t Shift) { return shiftRight(Shift); }
-
-private:
- PositiveFloat &shiftLeft(int32_t Shift);
- PositiveFloat &shiftRight(int32_t Shift);
- PositiveFloat normalizeExponents(PositiveFloat X);
-
-public:
- /// \brief Scale a large number accurately.
- ///
- /// Scale N (multiply it by this). Uses full precision multiplication, even
- /// if Width is smaller than 64, so information is not lost.
- uint64_t scale(uint64_t N) const;
- uint64_t scaleByInverse(uint64_t N) const {
- // TODO: implement directly, rather than relying on inverse. Inverse is
- // expensive.
- return inverse().scale(N);
- }
- int64_t scale(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scale(Unsigned.first), Unsigned.second);
- }
- int64_t scaleByInverse(int64_t N) const {
- std::pair<uint64_t, bool> Unsigned = splitSigned(N);
- return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
- }
-
- int compare(const PositiveFloat &X) const;
- int compareTo(uint64_t N) const {
- PositiveFloat Float = getFloat(N);
- int Compare = compare(Float);
- if (Width == 64 || Compare != 0)
- return Compare;
-
- // Check for precision loss. We know *this == RoundTrip.
- uint64_t RoundTrip = Float.template toInt<uint64_t>();
- return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
- }
- int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
-
- PositiveFloat &invert() { return *this = PositiveFloat::getFloat(1) / *this; }
- PositiveFloat inverse() const { return PositiveFloat(*this).invert(); }
-
-private:
- static PositiveFloat getProduct(DigitsType L, DigitsType R);
- static PositiveFloat getQuotient(DigitsType Dividend, DigitsType Divisor);
-
- std::pair<int32_t, int> lgImpl() const;
- static int countLeadingZerosWidth(DigitsType Digits) {
- if (Width == 64)
- return countLeadingZeros64(Digits);
- if (Width == 32)
- return countLeadingZeros32(Digits);
- return countLeadingZeros32(Digits) + Width - 32;
- }
-
- static PositiveFloat adjustToWidth(uint64_t N, int S) {
- assert(S >= MinExponent);
- assert(S <= MaxExponent);
- if (Width == 64 || N <= DigitsLimits::max())
- return PositiveFloat(N, S);
-
- // Shift right.
- int Shift = 64 - Width - countLeadingZeros64(N);
- DigitsType Shifted = N >> Shift;
-
- // Round.
- assert(S + Shift <= MaxExponent);
- return getRounded(PositiveFloat(Shifted, S + Shift),
- N & UINT64_C(1) << (Shift - 1));
- }
-
- static PositiveFloat getRounded(PositiveFloat P, bool Round) {
- if (!Round)
- return P;
- if (P.Digits == DigitsLimits::max())
- // Careful of overflow in the exponent.
- return PositiveFloat(1, P.Exponent) <<= Width;
- return PositiveFloat(P.Digits + 1, P.Exponent);
- }
+template <> struct TypeMap<MachineBasicBlock> {
+ typedef MachineBasicBlock BlockT;
+ typedef MachineFunction FunctionT;
+ typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
};
-
-template <class DigitsT>
-PositiveFloat<DigitsT> operator+(const PositiveFloat<DigitsT> &L,
- const PositiveFloat<DigitsT> &R) {
- return PositiveFloat<DigitsT>(L) += R;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> operator-(const PositiveFloat<DigitsT> &L,
- const PositiveFloat<DigitsT> &R) {
- return PositiveFloat<DigitsT>(L) -= R;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> operator*(const PositiveFloat<DigitsT> &L,
- const PositiveFloat<DigitsT> &R) {
- return PositiveFloat<DigitsT>(L) *= R;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> operator/(const PositiveFloat<DigitsT> &L,
- const PositiveFloat<DigitsT> &R) {
- return PositiveFloat<DigitsT>(L) /= R;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> operator<<(const PositiveFloat<DigitsT> &F,
- int16_t Shift) {
- return PositiveFloat<DigitsT>(F) <<= Shift;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> operator>>(const PositiveFloat<DigitsT> &F,
- int16_t Shift) {
- return PositiveFloat<DigitsT>(F) >>= Shift;
}
-template <class DigitsT>
-raw_ostream &operator<<(raw_ostream &OS, const PositiveFloat<DigitsT> &X) {
- return X.print(OS, 10);
-}
+/// BlockFrequencyInfoImpl implements block frequency algorithm for IR and
+/// Machine Instructions. Algorithm starts with value ENTRY_FREQ
+/// for the entry block and then propagates frequencies using branch weights
+/// from (Machine)BranchProbabilityInfo. LoopInfo is not required because
+/// algorithm can find "backedges" by itself.
+template <class BT>
+class BlockFrequencyInfoImpl {
+ typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
+ typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
+ typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
+ BranchProbabilityInfoT;
-template <class DigitsT>
-bool operator<(const PositiveFloat<DigitsT> &L, uint64_t R) {
- return L.compareTo(R) < 0;
-}
-template <class DigitsT>
-bool operator>(const PositiveFloat<DigitsT> &L, uint64_t R) {
- return L.compareTo(R) > 0;
-}
-template <class DigitsT>
-bool operator==(const PositiveFloat<DigitsT> &L, uint64_t R) {
- return L.compareTo(R) == 0;
-}
-template <class DigitsT>
-bool operator!=(const PositiveFloat<DigitsT> &L, uint64_t R) {
- return L.compareTo(R) != 0;
-}
-template <class DigitsT>
-bool operator<=(const PositiveFloat<DigitsT> &L, uint64_t R) {
- return L.compareTo(R) <= 0;
-}
-template <class DigitsT>
-bool operator>=(const PositiveFloat<DigitsT> &L, uint64_t R) {
- return L.compareTo(R) >= 0;
-}
+ DenseMap<const BlockT *, BlockFrequency> Freqs;
-template <class DigitsT>
-bool operator<(const PositiveFloat<DigitsT> &L, int64_t R) {
- return L.compareTo(R) < 0;
-}
-template <class DigitsT>
-bool operator>(const PositiveFloat<DigitsT> &L, int64_t R) {
- return L.compareTo(R) > 0;
-}
-template <class DigitsT>
-bool operator==(const PositiveFloat<DigitsT> &L, int64_t R) {
- return L.compareTo(R) == 0;
-}
-template <class DigitsT>
-bool operator!=(const PositiveFloat<DigitsT> &L, int64_t R) {
- return L.compareTo(R) != 0;
-}
-template <class DigitsT>
-bool operator<=(const PositiveFloat<DigitsT> &L, int64_t R) {
- return L.compareTo(R) <= 0;
-}
-template <class DigitsT>
-bool operator>=(const PositiveFloat<DigitsT> &L, int64_t R) {
- return L.compareTo(R) >= 0;
-}
+ BranchProbabilityInfoT *BPI;
-template <class DigitsT>
-bool operator<(const PositiveFloat<DigitsT> &L, uint32_t R) {
- return L.compareTo(uint64_t(R)) < 0;
-}
-template <class DigitsT>
-bool operator>(const PositiveFloat<DigitsT> &L, uint32_t R) {
- return L.compareTo(uint64_t(R)) > 0;
-}
-template <class DigitsT>
-bool operator==(const PositiveFloat<DigitsT> &L, uint32_t R) {
- return L.compareTo(uint64_t(R)) == 0;
-}
-template <class DigitsT>
-bool operator!=(const PositiveFloat<DigitsT> &L, uint32_t R) {
- return L.compareTo(uint64_t(R)) != 0;
-}
-template <class DigitsT>
-bool operator<=(const PositiveFloat<DigitsT> &L, uint32_t R) {
- return L.compareTo(uint64_t(R)) <= 0;
-}
-template <class DigitsT>
-bool operator>=(const PositiveFloat<DigitsT> &L, uint32_t R) {
- return L.compareTo(uint64_t(R)) >= 0;
-}
+ FunctionT *Fn;
-template <class DigitsT>
-bool operator<(const PositiveFloat<DigitsT> &L, int32_t R) {
- return L.compareTo(int64_t(R)) < 0;
-}
-template <class DigitsT>
-bool operator>(const PositiveFloat<DigitsT> &L, int32_t R) {
- return L.compareTo(int64_t(R)) > 0;
-}
-template <class DigitsT>
-bool operator==(const PositiveFloat<DigitsT> &L, int32_t R) {
- return L.compareTo(int64_t(R)) == 0;
-}
-template <class DigitsT>
-bool operator!=(const PositiveFloat<DigitsT> &L, int32_t R) {
- return L.compareTo(int64_t(R)) != 0;
-}
-template <class DigitsT>
-bool operator<=(const PositiveFloat<DigitsT> &L, int32_t R) {
- return L.compareTo(int64_t(R)) <= 0;
-}
-template <class DigitsT>
-bool operator>=(const PositiveFloat<DigitsT> &L, int32_t R) {
- return L.compareTo(int64_t(R)) >= 0;
-}
+ typedef GraphTraits< Inverse<BlockT *> > GT;
-template <class DigitsT>
-bool operator<(uint64_t L, const PositiveFloat<DigitsT> &R) {
- return R > L;
-}
-template <class DigitsT>
-bool operator>(uint64_t L, const PositiveFloat<DigitsT> &R) {
- return R < L;
-}
-template <class DigitsT>
-bool operator==(uint64_t L, const PositiveFloat<DigitsT> &R) {
- return R == L;
-}
-template <class DigitsT>
-bool operator<=(uint64_t L, const PositiveFloat<DigitsT> &R) {
- return R >= L;
-}
-template <class DigitsT>
-bool operator>=(uint64_t L, const PositiveFloat<DigitsT> &R) {
- return R <= L;
-}
-template <class DigitsT>
-bool operator!=(uint64_t L, const PositiveFloat<DigitsT> &R) {
- return R != L;
-}
-template <class DigitsT>
-bool operator<(int64_t L, const PositiveFloat<DigitsT> &R) {
- return R > L;
-}
-template <class DigitsT>
-bool operator>(int64_t L, const PositiveFloat<DigitsT> &R) {
- return R < L;
-}
-template <class DigitsT>
-bool operator==(int64_t L, const PositiveFloat<DigitsT> &R) {
- return R == L;
-}
-template <class DigitsT>
-bool operator<=(int64_t L, const PositiveFloat<DigitsT> &R) {
- return R >= L;
-}
-template <class DigitsT>
-bool operator>=(int64_t L, const PositiveFloat<DigitsT> &R) {
- return R <= L;
-}
-template <class DigitsT>
-bool operator!=(int64_t L, const PositiveFloat<DigitsT> &R) {
- return R != L;
-}
-template <class DigitsT>
-bool operator<(uint32_t L, const PositiveFloat<DigitsT> &R) {
- return R > L;
-}
-template <class DigitsT>
-bool operator>(uint32_t L, const PositiveFloat<DigitsT> &R) {
- return R < L;
-}
-template <class DigitsT>
-bool operator==(uint32_t L, const PositiveFloat<DigitsT> &R) {
- return R == L;
-}
-template <class DigitsT>
-bool operator<=(uint32_t L, const PositiveFloat<DigitsT> &R) {
- return R >= L;
-}
-template <class DigitsT>
-bool operator>=(uint32_t L, const PositiveFloat<DigitsT> &R) {
- return R <= L;
-}
-template <class DigitsT>
-bool operator!=(uint32_t L, const PositiveFloat<DigitsT> &R) {
- return R != L;
-}
-template <class DigitsT>
-bool operator<(int32_t L, const PositiveFloat<DigitsT> &R) {
- return R > L;
-}
-template <class DigitsT>
-bool operator>(int32_t L, const PositiveFloat<DigitsT> &R) {
- return R < L;
-}
-template <class DigitsT>
-bool operator==(int32_t L, const PositiveFloat<DigitsT> &R) {
- return R == L;
-}
-template <class DigitsT>
-bool operator<=(int32_t L, const PositiveFloat<DigitsT> &R) {
- return R >= L;
-}
-template <class DigitsT>
-bool operator>=(int32_t L, const PositiveFloat<DigitsT> &R) {
- return R <= L;
-}
-template <class DigitsT>
-bool operator!=(int32_t L, const PositiveFloat<DigitsT> &R) {
- return R != L;
-}
+ static const uint64_t EntryFreq = 1 << 14;
-template <class DigitsT>
-uint64_t PositiveFloat<DigitsT>::scale(uint64_t N) const {
- if (Width == 64 || N <= DigitsLimits::max())
- return (getFloat(N) * *this).template toInt<uint64_t>();
- std::pair<int32_t, int> Lg = lgImpl();
- if (extractLgFloor(Lg) >= 64)
- return UINT64_MAX;
- if (extractLgCeiling(Lg) <= -64)
- return 0;
-
- uint64_t Result = 0;
- for (int Bit = 0; Bit < 64; Bit += Width) {
- PositiveFloat Digit = getFloat(N & DigitsLimits::max() << Bit);
- Digit *= *this;
-
- uint64_t Sum = Result + (Digit.toInt<uint64_t>() >> Bit);
- if (Sum < Result)
- return UINT64_MAX;
- Result = Sum;
+ std::string getBlockName(BasicBlock *BB) const {
+ return BB->getName().str();
}
- return Result;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getProduct(DigitsType L,
- DigitsType R) {
- // Check for zero.
- if (!L || !R)
- return getZero();
+ std::string getBlockName(MachineBasicBlock *MBB) const {
+ std::string str;
+ raw_string_ostream ss(str);
+ ss << "BB#" << MBB->getNumber();
- // Check for numbers that we can compute with 64-bit math.
- if (Width <= 32)
- return adjustToWidth(uint64_t(L) * uint64_t(R), 0);
-
- // Do the full thing.
- return PositiveFloat(multiply64(L, R));
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> PositiveFloat<DigitsT>::getQuotient(DigitsType Dividend,
- DigitsType Divisor) {
- // Check for zero.
- if (!Dividend)
- return getZero();
- if (!Divisor)
- return getLargest();
-
- if (Width == 64)
- return PositiveFloat(divide64(Dividend, Divisor));
-
- // We can compute this with 64-bit math.
- int Shift = countLeadingZeros64(Dividend);
- uint64_t Shifted = uint64_t(Dividend) << Shift;
- uint64_t Quotient = Shifted / Divisor;
-
- // If Quotient needs to be shifted, then adjustToWidth will round.
- if (Quotient > DigitsLimits::max())
- return adjustToWidth(Quotient, -Shift);
-
- // Round based on the value of the next bit.
- return getRounded(PositiveFloat(Quotient, -Shift),
- Shifted % Divisor >= getHalf(Divisor));
-}
-
-template <class DigitsT>
-template <class IntT>
-IntT PositiveFloat<DigitsT>::toInt() const {
- typedef std::numeric_limits<IntT> Limits;
- if (*this < 1)
- return 0;
- if (*this >= Limits::max())
- return Limits::max();
+ if (const BasicBlock *BB = MBB->getBasicBlock())
+ ss << " derived from LLVM BB " << BB->getName();
- IntT N = Digits;
- if (Exponent > 0) {
- assert(size_t(Exponent) < sizeof(IntT) * 8);
- return N << Exponent;
+ return ss.str();
}
- if (Exponent < 0) {
- assert(size_t(-Exponent) < sizeof(IntT) * 8);
- return N >> -Exponent;
- }
- return N;
-}
-
-template <class DigitsT>
-std::pair<int32_t, int> PositiveFloat<DigitsT>::lgImpl() const {
- if (isZero())
- return std::make_pair(INT32_MIN, 0);
-
- // Get the floor of the lg of Digits.
- int32_t LocalFloor = Width - countLeadingZerosWidth(Digits) - 1;
-
- // Get the floor of the lg of this.
- int32_t Floor = Exponent + LocalFloor;
- if (Digits == UINT64_C(1) << LocalFloor)
- return std::make_pair(Floor, 0);
- // Round based on the next digit.
- bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
- return std::make_pair(Floor + Round, Round ? 1 : -1);
-}
-
-template <class DigitsT>
-PositiveFloat<DigitsT>
-PositiveFloat<DigitsT>::normalizeExponents(PositiveFloat X) {
- if (isZero() || X.isZero())
- return X;
-
- if (Exponent > X.Exponent) {
- // Reverse the arguments.
- *this = X.normalizeExponents(*this);
- return X;
+ void setBlockFreq(BlockT *BB, BlockFrequency Freq) {
+ Freqs[BB] = Freq;
+ DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") = ";
+ printBlockFreq(dbgs(), Freq) << "\n");
}
- if (Exponent == X.Exponent)
- return X;
-
- int ExponentDiff = getDiff(Exponent, X.Exponent);
- if (ExponentDiff >= 2 * Width) {
- *this = getZero();
- return X;
+ /// getEdgeFreq - Return edge frequency based on SRC frequency and Src -> Dst
+ /// edge probability.
+ BlockFrequency getEdgeFreq(BlockT *Src, BlockT *Dst) const {
+ BranchProbability Prob = BPI->getEdgeProbability(Src, Dst);
+ return getBlockFreq(Src) * Prob;
}
- // Use up any leading zeros on X, and then shift this.
- int ShiftX = std::min(countLeadingZerosWidth(X.Digits), ExponentDiff);
- int ShiftThis = ExponentDiff - ShiftX;
-
- if (ShiftThis >= Width) {
- *this = getZero();
- return X;
+ /// incBlockFreq - Increase BB block frequency by FREQ.
+ ///
+ void incBlockFreq(BlockT *BB, BlockFrequency Freq) {
+ Freqs[BB] += Freq;
+ DEBUG(dbgs() << "Frequency(" << getBlockName(BB) << ") += ";
+ printBlockFreq(dbgs(), Freq) << " --> ";
+ printBlockFreq(dbgs(), Freqs[BB]) << "\n");
}
- X.Digits <<= ShiftX;
- X.Exponent -= ShiftX;
- Digits >>= ShiftThis;
- Exponent += ShiftThis;
- return X;
-}
+ // All blocks in postorder.
+ std::vector<BlockT *> POT;
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator+=(const PositiveFloat &X) {
- if (isLargest() || X.isZero())
- return *this;
- if (isZero() || X.isLargest())
- return *this = X;
-
- // Normalize exponents.
- PositiveFloat Scaled = normalizeExponents(X);
-
- // Check for zero again.
- if (isZero())
- return *this = Scaled;
- if (Scaled.isZero())
- return *this;
-
- // Compute sum.
- DigitsType Sum = Digits + Scaled.Digits;
- bool DidOverflow = Sum < Digits || Sum < Scaled.Digits;
- Digits = Sum;
- if (!DidOverflow)
- return *this;
-
- if (Exponent == MaxExponent)
- return *this = getLargest();
-
- ++Exponent;
- Digits = Digits >> 1 | UINT64_C(1) << (Width - 1);
-
- return *this;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator-=(const PositiveFloat &X) {
- if (X.isZero())
- return *this;
- if (*this <= X)
- return *this = getZero();
-
- // Normalize exponents.
- PositiveFloat Scaled = normalizeExponents(X);
- assert(Digits >= Scaled.Digits);
-
- // Compute difference.
- if (!Scaled.isZero()) {
- Digits -= Scaled.Digits;
- return *this;
- }
+ // Map Block -> Position in reverse-postorder list.
+ DenseMap<BlockT *, unsigned> RPO;
- // Check if X just barely lost its last bit. E.g., for 32-bit:
- //
- // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
- if (*this == PositiveFloat(1, X.lgFloor() + Width)) {
- Digits = DigitsType(0) - 1;
- --Exponent;
- }
- return *this;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator*=(const PositiveFloat &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = X;
-
- // Save the exponents.
- int32_t Exponents = int32_t(Exponent) + int32_t(X.Exponent);
-
- // Get the raw product.
- *this = getProduct(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Exponents;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::
-operator/=(const PositiveFloat &X) {
- if (isZero())
- return *this;
- if (X.isZero())
- return *this = getLargest();
-
- // Save the exponents.
- int32_t Exponents = int32_t(Exponent) + -int32_t(X.Exponent);
-
- // Get the raw quotient.
- *this = getQuotient(Digits, X.Digits);
-
- // Combine with exponents.
- return *this <<= Exponents;
-}
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::shiftLeft(int32_t Shift) {
- if (Shift < 0)
- return shiftRight(-Shift);
- if (!Shift || isZero())
- return *this;
-
- // Shift as much as we can in the exponent.
- int16_t ExponentShift = std::min(Shift, MaxExponent - Exponent);
- Exponent += ExponentShift;
- if (ExponentShift == Shift)
- return *this;
-
- // Check this late, since it's rare.
- if (isLargest())
- return *this;
-
- // Shift as far as possible.
- int32_t RawShift = std::min(Shift, countLeadingZerosWidth(Digits));
- if (RawShift + ExponentShift < Shift)
- // Saturate.
- return *this = getLargest();
-
- Digits <<= Shift;
- return *this;
-}
+ // For each loop header, record the per-iteration probability of exiting the
+ // loop. This is the reciprocal of the expected number of loop iterations.
+ typedef DenseMap<BlockT*, BranchProbability> LoopExitProbMap;
+ LoopExitProbMap LoopExitProb;
-template <class DigitsT>
-PositiveFloat<DigitsT> &PositiveFloat<DigitsT>::shiftRight(int32_t Shift) {
- if (Shift < 0)
- return shiftLeft(-Shift);
- if (!Shift || isZero())
- return *this;
-
- // Shift as much as we can in the exponent.
- int16_t ExponentShift = std::min(Shift, Exponent - MinExponent);
- Exponent -= ExponentShift;
- if (ExponentShift == Shift)
- return *this;
-
- // Shift as far as possible.
- int32_t RawShift = Shift - ExponentShift;
- if (RawShift >= Width)
- // Saturate.
- return *this = getZero();
-
- // May result in zero.
- Digits >>= Shift;
- return *this;
-}
+ // (reverse-)postorder traversal iterators.
+ typedef typename std::vector<BlockT *>::iterator pot_iterator;
+ typedef typename std::vector<BlockT *>::reverse_iterator rpot_iterator;
-template <class DigitsT>
-int PositiveFloat<DigitsT>::compare(const PositiveFloat &X) const {
- // Check for zero.
- if (isZero())
- return X.isZero() ? 0 : -1;
- if (X.isZero())
- return 1;
-
- // Check for the scale. Use lgFloor to be sure that the exponent difference
- // is always lower than 64.
- int32_t lgL = lgFloor(), lgR = X.lgFloor();
- if (lgL != lgR)
- return lgL < lgR ? -1 : 1;
-
- // Compare digits.
- if (Exponent < X.Exponent)
- return PositiveFloatBase::compare(Digits, X.Digits, X.Exponent - Exponent);
-
- return -PositiveFloatBase::compare(X.Digits, Digits, Exponent - X.Exponent);
-}
+ pot_iterator pot_begin() { return POT.begin(); }
+ pot_iterator pot_end() { return POT.end(); }
-template <class T> struct isPodLike<PositiveFloat<T>> {
- static const bool value = true;
-};
-}
-
-//===----------------------------------------------------------------------===//
-//
-// BlockMass definition.
-//
-// TODO: Make this private to BlockFrequencyInfoImpl or delete.
-//
-//===----------------------------------------------------------------------===//
-namespace llvm {
+ rpot_iterator rpot_begin() { return POT.rbegin(); }
+ rpot_iterator rpot_end() { return POT.rend(); }
-/// \brief Mass of a block.
-///
-/// This class implements a sort of fixed-point fraction always between 0.0 and
-/// 1.0. getMass() == UINT64_MAX indicates a value of 1.0.
-///
-/// Masses can be added and subtracted. Simple saturation arithmetic is used,
-/// so arithmetic operations never overflow or underflow.
-///
-/// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
-/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
-/// quite, maximum precision).
-///
-/// Masses can be scaled by \a BranchProbability at maximum precision.
-class BlockMass {
- uint64_t Mass;
+ rpot_iterator rpot_at(BlockT *BB) {
+ rpot_iterator I = rpot_begin();
+ unsigned idx = RPO.lookup(BB);
+ assert(idx);
+ std::advance(I, idx - 1);
-public:
- BlockMass() : Mass(0) {}
- explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
-
- static BlockMass getEmpty() { return BlockMass(); }
- static BlockMass getFull() { return BlockMass(UINT64_MAX); }
-
- uint64_t getMass() const { return Mass; }
-
- bool isFull() const { return Mass == UINT64_MAX; }
- bool isEmpty() const { return !Mass; }
-
- bool operator!() const { return isEmpty(); }
-
- /// \brief Add another mass.
- ///
- /// Adds another mass, saturating at \a isFull() rather than overflowing.
- BlockMass &operator+=(const BlockMass &X) {
- uint64_t Sum = Mass + X.Mass;
- Mass = Sum < Mass ? UINT64_MAX : Sum;
- return *this;
+ assert(*I == BB);
+ return I;
}
- /// \brief Subtract another mass.
+ /// isBackedge - Return if edge Src -> Dst is a reachable backedge.
///
- /// Subtracts another mass, saturating at \a isEmpty() rather than
- /// undeflowing.
- BlockMass &operator-=(const BlockMass &X) {
- uint64_t Diff = Mass - X.Mass;
- Mass = Diff > Mass ? 0 : Diff;
- return *this;
+ bool isBackedge(BlockT *Src, BlockT *Dst) const {
+ unsigned a = RPO.lookup(Src);
+ if (!a)
+ return false;
+ unsigned b = RPO.lookup(Dst);
+ assert(b && "Destination block should be reachable");
+ return a >= b;
}
- /// \brief Scale by another mass.
- ///
- /// The current implementation is a little imprecise, but it's relatively
- /// fast, never overflows, and maintains the property that 1.0*1.0==1.0
- /// (where isFull represents the number 1.0). It's an approximation of
- /// 128-bit multiply that gets right-shifted by 64-bits.
- ///
- /// For a given digit size, multiplying two-digit numbers looks like:
- ///
- /// U1 . L1
- /// * U2 . L2
- /// ============
- /// 0 . . L1*L2
- /// + 0 . U1*L2 . 0 // (shift left once by a digit-size)
- /// + 0 . U2*L1 . 0 // (shift left once by a digit-size)
- /// + U1*L2 . 0 . 0 // (shift left twice by a digit-size)
- ///
- /// BlockMass has 64-bit numbers. Split each into two 32-bit digits, stored
- /// 64-bit. Add 1 to the lower digits, to model isFull as 1.0; this won't
- /// overflow, since we have 64-bit storage for each digit.
- ///
- /// To do this accurately, (a) multiply into two 64-bit digits, incrementing
- /// the upper digit on overflows of the lower digit (carry), (b) subtract 1
- /// from the lower digit, decrementing the upper digit on underflow (carry),
- /// and (c) truncate the lower digit. For the 1.0*1.0 case, the upper digit
- /// will be 0 at the end of step (a), and then will underflow back to isFull
- /// (1.0) in step (b).
- ///
- /// Instead, the implementation does something a little faster with a small
- /// loss of accuracy: ignore the lower 64-bit digit entirely. The loss of
- /// accuracy is small, since the sum of the unmodelled carries is 0 or 1
- /// (i.e., step (a) will overflow at most once, and step (b) will underflow
- /// only if step (a) overflows).
- ///
- /// This is the formula we're calculating:
- ///
- /// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>32 + (U2 * (L1+1))>>32
- ///
- /// As a demonstration of 1.0*1.0, consider two 4-bit numbers that are both
- /// full (1111).
- ///
- /// U1.L1 * U2.L2 == U1 * U2 + (U1 * (L2+1))>>2 + (U2 * (L1+1))>>2
- /// 11.11 * 11.11 == 11 * 11 + (11 * (11+1))/4 + (11 * (11+1))/4
- /// == 1001 + (11 * 100)/4 + (11 * 100)/4
- /// == 1001 + 1100/4 + 1100/4
- /// == 1001 + 0011 + 0011
- /// == 1111
- BlockMass &operator*=(const BlockMass &X) {
- uint64_t U1 = Mass >> 32, L1 = Mass & UINT32_MAX, U2 = X.Mass >> 32,
- L2 = X.Mass & UINT32_MAX;
- Mass = U1 * U2 + (U1 * (L2 + 1) >> 32) + ((L1 + 1) * U2 >> 32);
- return *this;
- }
+ /// getSingleBlockPred - return single BB block predecessor or NULL if
+ /// BB has none or more predecessors.
+ BlockT *getSingleBlockPred(BlockT *BB) {
+ typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
- /// \brief Multiply by a branch probability.
- ///
- /// Multiply by P. Guarantees full precision.
- ///
- /// This could be naively implemented by multiplying by the numerator and
- /// dividing by the denominator, but in what order? Multiplying first can
- /// overflow, while dividing first will lose precision (potentially, changing
- /// a non-zero mass to zero).
- ///
- /// The implementation mixes the two methods. Since \a BranchProbability
- /// uses 32-bits and \a BlockMass 64-bits, shift the mass as far to the left
- /// as there is room, then divide by the denominator to get a quotient.
- /// Multiplying by the numerator and right shifting gives a first
- /// approximation.
- ///
- /// Calculate the error in this first approximation by calculating the
- /// opposite mass (multiply by the opposite numerator and shift) and
- /// subtracting both from teh original mass.
- ///
- /// Add to the first approximation the correct fraction of this error value.
- /// This time, multiply first and then divide, since there is no danger of
- /// overflow.
- ///
- /// \pre P represents a fraction between 0.0 and 1.0.
- BlockMass &operator*=(const BranchProbability &P);
-
- bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
- bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
- bool operator!=(const BlockMass &X) const { return !(*this == X); }
- bool operator>(const BlockMass &X) const { return X < *this; }
- bool operator<=(const BlockMass &X) const { return !(*this > X); }
- bool operator>=(const BlockMass &X) const { return !(*this < X); }
+ if (PI == PE)
+ return nullptr;
- /// \brief Convert to floating point.
- ///
- /// Convert to a float. \a isFull() gives 1.0, while \a isEmpty() gives
- /// slightly above 0.0.
- PositiveFloat<uint64_t> toFloat() const;
-
- void dump() const;
- raw_ostream &print(raw_ostream &OS) const;
-};
-
-inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) += R;
-}
-inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) -= R;
-}
-inline BlockMass operator*(const BlockMass &L, const BlockMass &R) {
- return BlockMass(L) *= R;
-}
-inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
- return BlockMass(L) *= R;
-}
-inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
- return BlockMass(R) *= L;
-}
+ BlockT *Pred = *PI;
-inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
- return X.print(OS);
-}
+ ++PI;
+ if (PI != PE)
+ return nullptr;
-template <> struct isPodLike<BlockMass> {
- static const bool value = true;
-};
-}
+ return Pred;
+ }
-//===----------------------------------------------------------------------===//
-//
-// BlockFrequencyInfoImpl definition.
-//
-//===----------------------------------------------------------------------===//
-namespace llvm {
+ void doBlock(BlockT *BB, BlockT *LoopHead,
+ SmallPtrSet<BlockT *, 8> &BlocksInLoop) {
-class BasicBlock;
-class BranchProbabilityInfo;
-class Function;
-class Loop;
-class LoopInfo;
-class MachineBasicBlock;
-class MachineBranchProbabilityInfo;
-class MachineFunction;
-class MachineLoop;
-class MachineLoopInfo;
-
-/// \brief Base class for BlockFrequencyInfoImpl
-///
-/// BlockFrequencyInfoImplBase has supporting data structures and some
-/// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
-/// the block type (or that call such algorithms) are skipped here.
-///
-/// Nevertheless, the majority of the overall algorithm documention lives with
-/// BlockFrequencyInfoImpl. See there for details.
-class BlockFrequencyInfoImplBase {
-public:
- typedef PositiveFloat<uint64_t> Float;
+ DEBUG(dbgs() << "doBlock(" << getBlockName(BB) << ")\n");
+ setBlockFreq(BB, 0);
- /// \brief Representative of a block.
- ///
- /// This is a simple wrapper around an index into the reverse-post-order
- /// traversal of the blocks.
- ///
- /// Unlike a block pointer, its order has meaning (location in the
- /// topological sort) and it's class is the same regardless of block type.
- struct BlockNode {
- typedef uint32_t IndexType;
- IndexType Index;
-
- bool operator==(const BlockNode &X) const { return Index == X.Index; }
- bool operator!=(const BlockNode &X) const { return Index != X.Index; }
- bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
- bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
- bool operator<(const BlockNode &X) const { return Index < X.Index; }
- bool operator>(const BlockNode &X) const { return Index > X.Index; }
-
- BlockNode() : Index(UINT32_MAX) {}
- BlockNode(IndexType Index) : Index(Index) {}
-
- bool isValid() const { return Index <= getMaxIndex(); }
- static size_t getMaxIndex() { return UINT32_MAX - 1; }
- };
-
- /// \brief Stats about a block itself.
- struct FrequencyData {
- Float Floating;
- uint64_t Integer;
- };
-
- /// \brief Index of loop information.
- struct WorkingData {
- BlockNode ContainingLoop; ///< The block whose loop this block is inside.
- uint32_t LoopIndex; ///< Index into PackagedLoops.
- bool IsPackaged; ///< Has ContainingLoop been packaged up?
- bool IsAPackage; ///< Has this block's loop been packaged up?
- BlockMass Mass; ///< Mass distribution from the entry block.
-
- WorkingData()
- : LoopIndex(UINT32_MAX), IsPackaged(false), IsAPackage(false) {}
-
- bool hasLoopHeader() const { return ContainingLoop.isValid(); }
- bool isLoopHeader() const { return LoopIndex != UINT32_MAX; }
- };
-
- /// \brief Unscaled probability weight.
- ///
- /// Probability weight for an edge in the graph (including the
- /// successor/target node).
- ///
- /// All edges in the original function are 32-bit. However, exit edges from
- /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
- /// space in general.
- ///
- /// In addition to the raw weight amount, Weight stores the type of the edge
- /// in the current context (i.e., the context of the loop being processed).
- /// Is this a local edge within the loop, an exit from the loop, or a
- /// backedge to the loop header?
- struct Weight {
- enum DistType { Local, Exit, Backedge };
- DistType Type;
- BlockNode TargetNode;
- uint64_t Amount;
- Weight() : Type(Local), Amount(0) {}
- };
-
- /// \brief Distribution of unscaled probability weight.
- ///
- /// Distribution of unscaled probability weight to a set of successors.
- ///
- /// This class collates the successor edge weights for later processing.
- ///
- /// \a DidOverflow indicates whether \a Total did overflow while adding to
- /// the distribution. It should never overflow twice. There's no flag for
- /// whether \a ForwardTotal overflows, since when \a Total exceeds 32-bits
- /// they both get re-computed during \a normalize().
- struct Distribution {
- typedef SmallVector<Weight, 4> WeightList;
- WeightList Weights; ///< Individual successor weights.
- uint64_t Total; ///< Sum of all weights.
- bool DidOverflow; ///< Whether \a Total did overflow.
- uint32_t ForwardTotal; ///< Total excluding backedges.
-
- Distribution() : Total(0), DidOverflow(false), ForwardTotal(0) {}
- void addLocal(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Local);
+ if (BB == LoopHead) {
+ setBlockFreq(BB, EntryFreq);
+ return;
}
- void addExit(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Exit);
+
+ if (BlockT *Pred = getSingleBlockPred(BB)) {
+ if (BlocksInLoop.count(Pred))
+ setBlockFreq(BB, getEdgeFreq(Pred, BB));
+ // TODO: else? irreducible, ignore it for now.
+ return;
}
- void addBackedge(const BlockNode &Node, uint64_t Amount) {
- add(Node, Amount, Weight::Backedge);
+
+ bool isInLoop = false;
+ bool isLoopHead = false;
+
+ for (typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
+ PI != PE; ++PI) {
+ BlockT *Pred = *PI;
+
+ if (isBackedge(Pred, BB)) {
+ isLoopHead = true;
+ } else if (BlocksInLoop.count(Pred)) {
+ incBlockFreq(BB, getEdgeFreq(Pred, BB));
+ isInLoop = true;
+ }
+ // TODO: else? irreducible.
}
- /// \brief Normalize the distribution.
- ///
- /// Combines multiple edges to the same \a Weight::TargetNode and scales
- /// down so that \a Total fits into 32-bits.
- ///
- /// This is linear in the size of \a Weights. For the vast majority of
- /// cases, adjacent edge weights are combined by sorting WeightList and
- /// combining adjacent weights. However, for very large edge lists an
- /// auxiliary hash table is used.
- void normalize();
-
- private:
- void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
- };
-
- /// \brief Data for a packaged loop.
- ///
- /// Contains the data necessary to represent represent a loop as a node once
- /// it's packaged.
- ///
- /// PackagedLoopData inherits from BlockData to give the node the necessary
- /// stats. Further, it has a list of successors, list of members, and stores
- /// the backedge mass assigned to this loop.
- struct PackagedLoopData {
- typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
- typedef SmallVector<BlockNode, 4> MemberList;
- BlockNode Header; ///< Header.
- ExitMap Exits; ///< Successor edges (and weights).
- MemberList Members; ///< Members of the loop.
- BlockMass BackedgeMass; ///< Mass returned to loop header.
- BlockMass Mass;
- Float Scale;
-
- PackagedLoopData(const BlockNode &Header) : Header(Header) {}
- };
-
- /// \brief Data about each block. This is used downstream.
- std::vector<FrequencyData> Freqs;
-
- /// \brief Loop data: see initializeLoops().
- std::vector<WorkingData> Working;
-
- /// \brief Indexed information about packaged loops.
- std::vector<PackagedLoopData> PackagedLoops;
-
- /// \brief Create the initial loop packages.
- ///
- /// Initializes PackagedLoops using the data in Working about backedges
- /// and containing loops. Called by initializeLoops().
- ///
- /// \post WorkingData::LoopIndex has been initialized for every loop header
- /// and PackagedLoopData::Members has been initialized.
+ if (!isInLoop)
+ return;
- /// \brief Add all edges out of a packaged loop to the distribution.
- ///
- /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
- /// successor edge.
- void addLoopSuccessorsToDist(const BlockNode &LoopHead,
- const BlockNode &LocalLoopHead,
- Distribution &Dist);
+ if (!isLoopHead)
+ return;
- /// \brief Add an edge to the distribution.
- ///
- /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
- /// edge is forward/exit/backedge is in the context of LoopHead. Otherwise,
- /// every edge should be a forward edge (since all the loops are packaged
- /// up).
- void addToDist(Distribution &Dist, const BlockNode &LoopHead,
- const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
-
- PackagedLoopData &getLoopPackage(const BlockNode &Head) {
- assert(Head.Index < Working.size());
- size_t Index = Working[Head.Index].LoopIndex;
- assert(Index < PackagedLoops.size());
- return PackagedLoops[Index];
+ // This block is a loop header, so boost its frequency by the expected
+ // number of loop iterations. The loop blocks will be revisited so they all
+ // get this boost.
+ typename LoopExitProbMap::const_iterator I = LoopExitProb.find(BB);
+ assert(I != LoopExitProb.end() && "Loop header missing from table");
+ Freqs[BB] /= I->second;
+ DEBUG(dbgs() << "Loop header scaled to ";
+ printBlockFreq(dbgs(), Freqs[BB]) << ".\n");
}
- /// \brief Distribute mass according to a distribution.
- ///
- /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
- /// backedges and exits are stored in its entry in PackagedLoops.
- ///
- /// Mass is distributed in parallel from two copies of the source mass.
- ///
- /// The first mass (forward) represents the distribution of mass through the
- /// local DAG. This distribution should lose mass at loop exits and ignore
- /// backedges.
- ///
- /// The second mass (general) represents the behavior of the loop in the
- /// global context. In a given distribution from the head, how much mass
- /// exits, and to where? How much mass returns to the loop head?
- ///
- /// The forward mass should be split up between local successors and exits,
- /// but only actually distributed to the local successors. The general mass
- /// should be split up between all three types of successors, but distributed
- /// only to exits and backedges.
- void distributeMass(const BlockNode &Source, const BlockNode &LoopHead,
- Distribution &Dist);
-
- /// \brief Compute the loop scale for a loop.
- void computeLoopScale(const BlockNode &LoopHead);
-
- /// \brief Package up a loop.
- void packageLoop(const BlockNode &LoopHead);
-
- /// \brief Finalize frequency metrics.
- ///
- /// Unwraps loop packages, calculates final frequencies, and cleans up
- /// no-longer-needed data structures.
- void finalizeMetrics();
+ /// doLoop - Propagate block frequency down through the loop.
+ void doLoop(BlockT *Head, BlockT *Tail) {
+ DEBUG(dbgs() << "doLoop(" << getBlockName(Head) << ", "
+ << getBlockName(Tail) << ")\n");
- /// \brief Clear all memory.
- void clear();
+ SmallPtrSet<BlockT *, 8> BlocksInLoop;
- virtual std::string getBlockName(const BlockNode &Node) const;
+ for (rpot_iterator I = rpot_at(Head), E = rpot_at(Tail); ; ++I) {
+ BlockT *BB = *I;
+ doBlock(BB, Head, BlocksInLoop);
- virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
- void dump() const { print(dbgs()); }
-
- Float getFloatingBlockFreq(const BlockNode &Node) const;
-
- BlockFrequency getBlockFreq(const BlockNode &Node) const;
+ BlocksInLoop.insert(BB);
+ if (I == E)
+ break;
+ }
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
- raw_ostream &printBlockFreq(raw_ostream &OS,
- const BlockFrequency &Freq) const;
+ // Compute loop's cyclic probability using backedges probabilities.
+ BlockFrequency BackFreq;
+ for (typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(Head),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(Head);
+ PI != PE; ++PI) {
+ BlockT *Pred = *PI;
+ assert(Pred);
+ if (isBackedge(Pred, Head))
+ BackFreq += getEdgeFreq(Pred, Head);
+ }
- uint64_t getEntryFreq() const {
- assert(!Freqs.empty());
- return Freqs[0].Integer;
+ // The cyclic probability is freq(BackEdges) / freq(Head), where freq(Head)
+ // only counts edges entering the loop, not the loop backedges.
+ // The probability of leaving the loop on each iteration is:
+ //
+ // ExitProb = 1 - CyclicProb
+ //
+ // The Expected number of loop iterations is:
+ //
+ // Iterations = 1 / ExitProb
+ //
+ uint64_t D = std::max(getBlockFreq(Head).getFrequency(), UINT64_C(1));
+ uint64_t N = std::max(BackFreq.getFrequency(), UINT64_C(1));
+ if (N < D)
+ N = D - N;
+ else
+ // We'd expect N < D, but rounding and saturation means that can't be
+ // guaranteed.
+ N = 1;
+
+ // Now ExitProb = N / D, make sure it fits in an i32/i32 fraction.
+ assert(N <= D);
+ if (D > UINT32_MAX) {
+ unsigned Shift = 32 - countLeadingZeros(D);
+ D >>= Shift;
+ N >>= Shift;
+ if (N == 0)
+ N = 1;
+ }
+ BranchProbability LEP = BranchProbability(N, D);
+ LoopExitProb.insert(std::make_pair(Head, LEP));
+ DEBUG(dbgs() << "LoopExitProb[" << getBlockName(Head) << "] = " << LEP
+ << " from 1 - ";
+ printBlockFreq(dbgs(), BackFreq) << " / ";
+ printBlockFreq(dbgs(), getBlockFreq(Head)) << ".\n");
}
- /// \brief Virtual destructor.
- ///
- /// Need a virtual destructor to mask the compiler warning about
- /// getBlockName().
- virtual ~BlockFrequencyInfoImplBase() {}
-};
-namespace bfi_detail {
-template <class BlockT> struct TypeMap {};
-template <> struct TypeMap<BasicBlock> {
- typedef BasicBlock BlockT;
- typedef Function FunctionT;
- typedef BranchProbabilityInfo BranchProbabilityInfoT;
- typedef Loop LoopT;
- typedef LoopInfo LoopInfoT;
-};
-template <> struct TypeMap<MachineBasicBlock> {
- typedef MachineBasicBlock BlockT;
- typedef MachineFunction FunctionT;
- typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
- typedef MachineLoop LoopT;
- typedef MachineLoopInfo LoopInfoT;
-};
-
-/// \brief Get the name of a MachineBasicBlock.
-///
-/// Get the name of a MachineBasicBlock. It's templated so that including from
-/// CodeGen is unnecessary (that would be a layering issue).
-///
-/// This is used mainly for debug output. The name is similar to
-/// MachineBasicBlock::getFullName(), but skips the name of the function.
-template <class BlockT> std::string getBlockName(const BlockT *BB) {
- assert(BB && "Unexpected nullptr");
- if (BB->getBasicBlock())
- return BB->getName().str();
- return (Twine("BB") + Twine(BB->getNumber())).str();
-}
-/// \brief Get the name of a BasicBlock.
-template <> inline std::string getBlockName(const BasicBlock *BB) {
- assert(BB && "Unexpected nullptr");
- return BB->getName().str();
-}
-}
-
-/// \brief Shared implementation for block frequency analysis.
-///
-/// This is a shared implementation of BlockFrequencyInfo and
-/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
-/// blocks.
-///
-/// This algorithm leverages BlockMass and PositiveFloat to maintain precision,
-/// separates mass distribution from loop scaling, and dithers to eliminate
-/// probability mass loss.
-///
-/// The implementation is split between BlockFrequencyInfoImpl, which knows the
-/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
-/// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
-/// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
-/// reverse-post order. This gives two advantages: it's easy to compare the
-/// relative ordering of two nodes, and maps keyed on BlockT can be represented
-/// by vectors.
-///
-/// This algorithm is O(V+E), unless there is irreducible control flow, in
-/// which case it's O(V*E) in the worst case.
-///
-/// These are the main stages:
-///
-/// 0. Reverse post-order traversal (\a initializeRPOT()).
-///
-/// Run a single post-order traversal and save it (in reverse) in RPOT.
-/// All other stages make use of this ordering. Save a lookup from BlockT
-/// to BlockNode (the index into RPOT) in Nodes.
-///
-/// 1. Loop indexing (\a initializeLoops()).
-///
-/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
-/// the algorithm. In particular, store the immediate members of each loop
-/// in reverse post-order.
-///
-/// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
-///
-/// For each loop (bottom-up), distribute mass through the DAG resulting
-/// from ignoring backedges and treating sub-loops as a single pseudo-node.
-/// Track the backedge mass distributed to the loop header, and use it to
-/// calculate the loop scale (number of loop iterations).
-///
-/// Visiting loops bottom-up is a post-order traversal of loop headers.
-/// For each loop, immediate members that represent sub-loops will already
-/// have been visited and packaged into a pseudo-node.
-///
-/// Distributing mass in a loop is a reverse-post-order traversal through
-/// the loop. Start by assigning full mass to the Loop header. For each
-/// node in the loop:
-///
-/// - Fetch and categorize the weight distribution for its successors.
-/// If this is a packaged-subloop, the weight distribution is stored
-/// in \a PackagedLoopData::Exits. Otherwise, fetch it from
-/// BranchProbabilityInfo.
-///
-/// - Each successor is categorized as \a Weight::Local, a normal
-/// forward edge within the current loop, \a Weight::Backedge, a
-/// backedge to the loop header, or \a Weight::Exit, any successor
-/// outside the loop. The weight, the successor, and its category
-/// are stored in \a Distribution. There can be multiple edges to
-/// each successor.
-///
-/// - Normalize the distribution: scale weights down so that their sum
-/// is 32-bits, and coalesce multiple edges to the same node.
-///
-/// - Distribute the mass accordingly, dithering to minimize mass loss,
-/// as described in \a distributeMass(). Mass is distributed in
-/// parallel in two ways: forward, and general. Local successors
-/// take their mass from the forward mass, while exit and backedge
-/// successors take their mass from the general mass. Additionally,
-/// exit edges use up (ignored) mass from the forward mass, and local
-/// edges use up (ignored) mass from the general distribution.
-///
-/// Finally, calculate the loop scale from the accumulated backedge mass.
-///
-/// 3. Distribute mass in the function (\a computeMassInFunction()).
-///
-/// Finally, distribute mass through the DAG resulting from packaging all
-/// loops in the function. This uses the same algorithm as distributing
-/// mass in a loop, except that there are no exit or backedge edges.
-///
-/// 4. Loop unpackaging and cleanup (\a finalizeMetrics()).
-///
-/// Initialize the frequency to a floating point representation of its
-/// mass.
-///
-/// Visit loops top-down (reverse post-order), scaling the loop header's
-/// frequency by its psuedo-node's mass and loop scale. Keep track of the
-/// minimum and maximum final frequencies.
-///
-/// Using the min and max frequencies as a guide, translate floating point
-/// frequencies to an appropriate range in uint64_t.
-///
-/// It has some known flaws.
-///
-/// - Irreducible control flow isn't modelled correctly. In particular,
-/// LoopInfo and MachineLoopInfo ignore irreducible backedges. The main
-/// result is that irreducible SCCs will under-scaled. No mass is lost,
-/// but the computed branch weights for the loop pseudo-node will be
-/// incorrect.
-///
-/// Modelling irreducible control flow exactly involves setting up and
-/// solving a group of infinite geometric series. Such precision is
-/// unlikely to be worthwhile, since most of our algorithms give up on
-/// irreducible control flow anyway.
-///
-/// Nevertheless, we might find that we need to get closer. If
-/// LoopInfo/MachineLoopInfo flags loops with irreducible control flow
-/// (and/or the function as a whole), we can find the SCCs, compute an
-/// approximate exit frequency for the SCC as a whole, and scale up
-/// accordingly.
-///
-/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
-/// BlockFrequency's 64-bit integer precision.
-template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
- typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
- typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
- typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
- BranchProbabilityInfoT;
- typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
- typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
+ friend class BlockFrequencyInfo;
+ friend class MachineBlockFrequencyInfo;
- typedef GraphTraits<const BlockT *> Successor;
- typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
+ BlockFrequencyInfoImpl() { }
- const BranchProbabilityInfoT *BPI;
- const LoopInfoT *LI;
- const FunctionT *F;
+ void doFunction(FunctionT *fn, BranchProbabilityInfoT *bpi) {
+ Fn = fn;
+ BPI = bpi;
- // All blocks in reverse postorder.
- std::vector<const BlockT *> RPOT;
- DenseMap<const BlockT *, BlockNode> Nodes;
+ // Clear everything.
+ RPO.clear();
+ POT.clear();
+ LoopExitProb.clear();
+ Freqs.clear();
- typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
+ BlockT *EntryBlock = fn->begin();
- rpot_iterator rpot_begin() const { return RPOT.begin(); }
- rpot_iterator rpot_end() const { return RPOT.end(); }
+ std::copy(po_begin(EntryBlock), po_end(EntryBlock), std::back_inserter(POT));
- size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
+ unsigned RPOidx = 0;
+ for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
+ BlockT *BB = *I;
+ RPO[BB] = ++RPOidx;
+ DEBUG(dbgs() << "RPO[" << getBlockName(BB) << "] = " << RPO[BB] << "\n");
+ }
- BlockNode getNode(const rpot_iterator &I) const {
- return BlockNode(getIndex(I));
- }
- BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
+ // Travel over all blocks in postorder.
+ for (pot_iterator I = pot_begin(), E = pot_end(); I != E; ++I) {
+ BlockT *BB = *I;
+ BlockT *LastTail = nullptr;
+ DEBUG(dbgs() << "POT: " << getBlockName(BB) << "\n");
- const BlockT *getBlock(const BlockNode &Node) const {
- return RPOT[Node.Index];
- }
+ for (typename GT::ChildIteratorType
+ PI = GraphTraits< Inverse<BlockT *> >::child_begin(BB),
+ PE = GraphTraits< Inverse<BlockT *> >::child_end(BB);
+ PI != PE; ++PI) {
- void initializeRPOT();
- void initializeLoops();
- void runOnFunction(const FunctionT *F);
+ BlockT *Pred = *PI;
+ if (isBackedge(Pred, BB) && (!LastTail || RPO[Pred] > RPO[LastTail]))
+ LastTail = Pred;
+ }
- void propagateMassToSuccessors(const BlockNode &LoopHead,
- const BlockNode &Node);
- void computeMassInLoops();
- void computeMassInLoop(const BlockNode &LoopHead);
- void computeMassInFunction();
+ if (LastTail)
+ doLoop(BB, LastTail);
+ }
- std::string getBlockName(const BlockNode &Node) const override {
- return bfi_detail::getBlockName(getBlock(Node));
+ // At the end assume the whole function as a loop, and travel over it once
+ // again.
+ doLoop(*(rpot_begin()), *(pot_begin()));
}
public:
- const FunctionT *getFunction() const { return F; }
- void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
- const LoopInfoT *LI);
- BlockFrequencyInfoImpl() : BPI(0), LI(0), F(0) {}
+ uint64_t getEntryFreq() { return EntryFreq; }
- using BlockFrequencyInfoImplBase::getEntryFreq;
+ /// getBlockFreq - Return block frequency. Return 0 if we don't have it.
BlockFrequency getBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
- }
- Float getFloatingBlockFreq(const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
- }
-
- /// \brief Print the frequencies for the current function.
- ///
- /// Prints the frequencies for the blocks in the current function.
- ///
- /// Blocks are printed in the natural iteration order of the function, rather
- /// than reverse post-order. This provides two advantages: writing -analyze
- /// tests is easier (since blocks come out in source order), and even
- /// unreachable blocks are printed.
- raw_ostream &print(raw_ostream &OS) const override;
- using BlockFrequencyInfoImplBase::dump;
-
- using BlockFrequencyInfoImplBase::printBlockFreq;
- raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
- return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
- }
-};
-
-template <class BT>
-void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
- const BranchProbabilityInfoT *BPI,
- const LoopInfoT *LI) {
- // Save the parameters.
- this->BPI = BPI;
- this->LI = LI;
- this->F = F;
-
- // Clean up left-over data structures.
- BlockFrequencyInfoImplBase::clear();
- RPOT.clear();
- Nodes.clear();
-
- // Initialize.
- DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
- << std::string(F->getName().size(), '=') << "\n");
- initializeRPOT();
- initializeLoops();
-
- // Visit loops in post-order to find thelocal mass distribution, and then do
- // the full function.
- computeMassInLoops();
- computeMassInFunction();
- finalizeMetrics();
-}
-
-template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
- const BlockT *Entry = F->begin();
- RPOT.reserve(F->size());
- std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
- std::reverse(RPOT.begin(), RPOT.end());
-
- assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
- "More nodes in function than Block Frequency Info supports");
-
- DEBUG(dbgs() << "reverse-post-order-traversal\n");
- for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
- BlockNode Node = getNode(I);
- DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
- Nodes[*I] = Node;
+ typename DenseMap<const BlockT *, BlockFrequency>::const_iterator
+ I = Freqs.find(BB);
+ if (I != Freqs.end())
+ return I->second;
+ return 0;
}
- Working.resize(RPOT.size());
- Freqs.resize(RPOT.size());
-}
-
-template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
- DEBUG(dbgs() << "loop-detection\n");
- if (LI->empty())
- return;
-
- // Visit loops top down and assign them an index.
- std::deque<const LoopT *> Q;
- Q.insert(Q.end(), LI->begin(), LI->end());
- while (!Q.empty()) {
- const LoopT *Loop = Q.front();
- Q.pop_front();
- Q.insert(Q.end(), Loop->begin(), Loop->end());
-
- // Save the order this loop was visited.
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
-
- Working[Header.Index].LoopIndex = PackagedLoops.size();
- PackagedLoops.emplace_back(Header);
- DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
+ void print(raw_ostream &OS) const {
+ OS << "\n\n---- Block Freqs ----\n";
+ for (typename FunctionT::iterator I = Fn->begin(), E = Fn->end(); I != E;) {
+ BlockT *BB = I++;
+ OS << " " << getBlockName(BB) << " = ";
+ printBlockFreq(OS, getBlockFreq(BB)) << "\n";
+
+ for (typename GraphTraits<BlockT *>::ChildIteratorType
+ SI = GraphTraits<BlockT *>::child_begin(BB),
+ SE = GraphTraits<BlockT *>::child_end(BB); SI != SE; ++SI) {
+ BlockT *Succ = *SI;
+ OS << " " << getBlockName(BB) << " -> " << getBlockName(Succ)
+ << " = "; printBlockFreq(OS, getEdgeFreq(BB, Succ)) << "\n";
+ }
+ }
}
- // Visit nodes in reverse post-order and add them to their deepest containing
- // loop.
- for (size_t Index = 0; Index < RPOT.size(); ++Index) {
- const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
- if (!Loop)
- continue;
-
- // If this is a loop header, find its parent loop (if any).
- if (Working[Index].isLoopHeader())
- if (!(Loop = Loop->getParentLoop()))
- continue;
-
- // Add this node to its containing loop's member list.
- BlockNode Header = getNode(Loop->getHeader());
- assert(Header.isValid());
- const auto &HeaderData = Working[Header.Index];
- assert(HeaderData.isLoopHeader());
-
- Working[Index].ContainingLoop = Header;
- PackagedLoops[HeaderData.LoopIndex].Members.push_back(Index);
- DEBUG(dbgs() << " - loop = " << getBlockName(Header)
- << ": member = " << getBlockName(Index) << "\n");
+ void dump() const {
+ print(dbgs());
}
-}
-
-template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
- // Visit loops with the deepest first, and the top-level loops last.
- for (auto L = PackagedLoops.rbegin(), LE = PackagedLoops.rend(); L != LE; ++L)
- computeMassInLoop(L->Header);
-}
-
-template <class BT>
-void BlockFrequencyInfoImpl<BT>::computeMassInLoop(const BlockNode &LoopHead) {
- // Compute mass in loop.
- DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(LoopHead) << "\n");
-
- Working[LoopHead.Index].Mass = BlockMass::getFull();
- propagateMassToSuccessors(LoopHead, LoopHead);
-
- for (const BlockNode &M : getLoopPackage(LoopHead).Members)
- propagateMassToSuccessors(LoopHead, M);
-
- computeLoopScale(LoopHead);
- packageLoop(LoopHead);
-}
-template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
- // Compute mass in function.
- DEBUG(dbgs() << "compute-mass-in-function\n");
- Working[0].Mass = BlockMass::getFull();
- for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
- // Check for nodes that have been packaged.
- BlockNode Node = getNode(I);
- if (Working[Node.Index].hasLoopHeader())
- continue;
-
- propagateMassToSuccessors(BlockNode(), Node);
+ // Utility method that looks up the block frequency associated with BB and
+ // prints it to OS.
+ raw_ostream &printBlockFreq(raw_ostream &OS,
+ const BlockT *BB) {
+ return printBlockFreq(OS, getBlockFreq(BB));
}
-}
-template <class BT>
-void
-BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(const BlockNode &LoopHead,
- const BlockNode &Node) {
- DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
- // Calculate probability for successors.
- Distribution Dist;
- if (Node != LoopHead && Working[Node.Index].isLoopHeader())
- addLoopSuccessorsToDist(LoopHead, Node, Dist);
- else {
- const BlockT *BB = getBlock(Node);
- for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
- SI != SE; ++SI)
- // Do not dereference SI, or getEdgeWeight() is linear in the number of
- // successors.
- addToDist(Dist, LoopHead, Node, getNode(*SI), BPI->getEdgeWeight(BB, SI));
+ raw_ostream &printBlockFreq(raw_ostream &OS,
+ const BlockFrequency &Freq) const {
+ // Convert fixed-point number to decimal.
+ uint64_t Frequency = Freq.getFrequency();
+ OS << Frequency / EntryFreq << ".";
+ uint64_t Rem = Frequency % EntryFreq;
+ uint64_t Eps = 1;
+ do {
+ Rem *= 10;
+ Eps *= 10;
+ OS << Rem / EntryFreq;
+ Rem = Rem % EntryFreq;
+ } while (Rem >= Eps/2);
+ return OS;
}
- // Distribute mass to successors, saving exit and backedge data in the
- // loop header.
- distributeMass(Node, LoopHead, Dist);
-}
+};
-template <class BT>
-raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
- if (!F)
- return OS;
- OS << "block-frequency-info: " << F->getName() << "\n";
- for (const BlockT &BB : *F)
- OS << " - " << bfi_detail::getBlockName(&BB)
- << ": float = " << getFloatingBlockFreq(&BB)
- << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
-
- // Add an extra newline for readability.
- OS << "\n";
- return OS;
-}
}
#endif