summaryrefslogtreecommitdiff
path: root/lib/Analysis/PostDominators.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2002-08-02 16:43:03 +0000
committerChris Lattner <sabre@nondot.org>2002-08-02 16:43:03 +0000
commit4c9df7c619ba827729490757dae6dc35bb068a9f (patch)
tree4b2b713c17e2cf2c43e94379023483f13013d237 /lib/Analysis/PostDominators.cpp
parentf201495f27311bfcb3677e7846c44afa64734417 (diff)
downloadllvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.gz
llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.bz2
llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.xz
Split dominance calculation and post dominance calculation stuff
Dominance calculation goes to VMCore library to be used by Verifier. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3210 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/PostDominators.cpp')
-rw-r--r--lib/Analysis/PostDominators.cpp273
1 files changed, 6 insertions, 267 deletions
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
index 1aff600d65..24355d4d6d 100644
--- a/lib/Analysis/PostDominators.cpp
+++ b/lib/Analysis/PostDominators.cpp
@@ -1,93 +1,24 @@
-//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
+//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
//
-// This file provides a simple class to calculate the dominator set of a
-// function.
+// This file implements the post-dominator construction algorithms.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Assembly/Writer.h"
#include "Support/DepthFirstIterator.h"
-#include "Support/STLExtras.h"
#include "Support/SetOperations.h"
-#include <algorithm>
using std::set;
//===----------------------------------------------------------------------===//
-// DominatorSet Implementation
+// PostDominatorSet Implementation
//===----------------------------------------------------------------------===//
-static RegisterAnalysis<DominatorSet>
-A("domset", "Dominator Set Construction", true);
static RegisterAnalysis<PostDominatorSet>
B("postdomset", "Post-Dominator Set Construction", true);
-
-AnalysisID DominatorSet::ID = A;
AnalysisID PostDominatorSet::ID = B;
-// dominates - Return true if A dominates B. This performs the special checks
-// neccesary if A and B are in the same basic block.
-//
-bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
- BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
- if (BBA != BBB) return dominates(BBA, BBB);
-
- // Loop through the basic block until we find A or B.
- BasicBlock::iterator I = BBA->begin();
- for (; &*I != A && &*I != B; ++I) /*empty*/;
-
- // A dominates B if it is found first in the basic block...
- return &*I == A;
-}
-
-// runOnFunction - This method calculates the forward dominator sets for the
-// specified function.
-//
-bool DominatorSet::runOnFunction(Function &F) {
- Doms.clear(); // Reset from the last time we were run...
- Root = &F.getEntryNode();
- assert(pred_begin(Root) == pred_end(Root) &&
- "Root node has predecessors in function!");
-
- bool Changed;
- do {
- Changed = false;
-
- DomSetType WorkingSet;
- df_iterator<Function*> It = df_begin(&F), End = df_end(&F);
- for ( ; It != End; ++It) {
- BasicBlock *BB = *It;
- pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
- if (PI != PEnd) { // Is there SOME predecessor?
- // Loop until we get to a predecessor that has had it's dom set filled
- // in at least once. We are guaranteed to have this because we are
- // traversing the graph in DFO and have handled start nodes specially.
- //
- while (Doms[*PI].size() == 0) ++PI;
- WorkingSet = Doms[*PI];
-
- for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
- DomSetType &PredSet = Doms[*PI];
- if (PredSet.size())
- set_intersect(WorkingSet, PredSet);
- }
- }
-
- WorkingSet.insert(BB); // A block always dominates itself
- DomSetType &BBSet = Doms[BB];
- if (BBSet != WorkingSet) {
- BBSet.swap(WorkingSet); // Constant time operation!
- Changed = true; // The sets changed.
- }
- WorkingSet.clear(); // Clear out the set for next iteration
- }
- } while (Changed);
- return false;
-}
-
-
// Postdominator set construction. This converts the specified function to only
// have a single exit node (return stmt), then calculates the post dominance
// sets for the function.
@@ -151,146 +82,22 @@ void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(UnifyFunctionExitNodes::ID);
}
-static std::ostream &operator<<(std::ostream &o, const set<BasicBlock*> &BBs) {
- for (set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
- I != E; ++I) {
- o << " ";
- WriteAsOperand(o, *I, false);
- o << "\n";
- }
- return o;
-}
-
-void DominatorSetBase::print(std::ostream &o) const {
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- o << "=============================--------------------------------\n"
- << "\nDominator Set For Basic Block\n" << I->first
- << "-------------------------------\n" << I->second << "\n";
-}
-
//===----------------------------------------------------------------------===//
-// ImmediateDominators Implementation
+// ImmediatePostDominators Implementation
//===----------------------------------------------------------------------===//
-static RegisterAnalysis<ImmediateDominators>
-C("idom", "Immediate Dominators Construction", true);
static RegisterAnalysis<ImmediatePostDominators>
D("postidom", "Immediate Post-Dominators Construction", true);
-
-AnalysisID ImmediateDominators::ID = C;
AnalysisID ImmediatePostDominators::ID = D;
-// calcIDoms - Calculate the immediate dominator mapping, given a set of
-// dominators for every basic block.
-void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
- // Loop over all of the nodes that have dominators... figuring out the IDOM
- // for each node...
- //
- for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
- DI != DEnd; ++DI) {
- BasicBlock *BB = DI->first;
- const DominatorSet::DomSetType &Dominators = DI->second;
- unsigned DomSetSize = Dominators.size();
- if (DomSetSize == 1) continue; // Root node... IDom = null
-
- // Loop over all dominators of this node. This corresponds to looping over
- // nodes in the dominator chain, looking for a node whose dominator set is
- // equal to the current nodes, except that the current node does not exist
- // in it. This means that it is one level higher in the dom chain than the
- // current node, and it is our idom!
- //
- DominatorSet::DomSetType::const_iterator I = Dominators.begin();
- DominatorSet::DomSetType::const_iterator End = Dominators.end();
- for (; I != End; ++I) { // Iterate over dominators...
- // All of our dominators should form a chain, where the number of elements
- // in the dominator set indicates what level the node is at in the chain.
- // We want the node immediately above us, so it will have an identical
- // dominator set, except that BB will not dominate it... therefore it's
- // dominator set size will be one less than BB's...
- //
- if (DS.getDominators(*I).size() == DomSetSize - 1) {
- IDoms[BB] = *I;
- break;
- }
- }
- }
-}
-
-void ImmediateDominatorsBase::print(std::ostream &o) const {
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- o << "=============================--------------------------------\n"
- << "\nImmediate Dominator For Basic Block\n" << *I->first
- << "is: \n" << *I->second << "\n";
-}
-
-
//===----------------------------------------------------------------------===//
-// DominatorTree Implementation
+// PostDominatorTree Implementation
//===----------------------------------------------------------------------===//
-static RegisterAnalysis<DominatorTree>
-E("domtree", "Dominator Tree Construction", true);
static RegisterAnalysis<PostDominatorTree>
F("postdomtree", "Post-Dominator Tree Construction", true);
-
-AnalysisID DominatorTree::ID = E;
AnalysisID PostDominatorTree::ID = F;
-// DominatorTreeBase::reset - Free all of the tree node memory.
-//
-void DominatorTreeBase::reset() {
- for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
- delete I->second;
- Nodes.clear();
-}
-
-
-void DominatorTree::calculate(const DominatorSet &DS) {
- Nodes[Root] = new Node(Root, 0); // Add a node for the root...
-
- // Iterate over all nodes in depth first order...
- for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
- I != E; ++I) {
- BasicBlock *BB = *I;
- const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
- unsigned DomSetSize = Dominators.size();
- if (DomSetSize == 1) continue; // Root node... IDom = null
-
- // Loop over all dominators of this node. This corresponds to looping over
- // nodes in the dominator chain, looking for a node whose dominator set is
- // equal to the current nodes, except that the current node does not exist
- // in it. This means that it is one level higher in the dom chain than the
- // current node, and it is our idom! We know that we have already added
- // a DominatorTree node for our idom, because the idom must be a
- // predecessor in the depth first order that we are iterating through the
- // function.
- //
- DominatorSet::DomSetType::const_iterator I = Dominators.begin();
- DominatorSet::DomSetType::const_iterator End = Dominators.end();
- for (; I != End; ++I) { // Iterate over dominators...
- // All of our dominators should form a chain, where the number of
- // elements in the dominator set indicates what level the node is at in
- // the chain. We want the node immediately above us, so it will have
- // an identical dominator set, except that BB will not dominate it...
- // therefore it's dominator set size will be one less than BB's...
- //
- if (DS.getDominators(*I).size() == DomSetSize - 1) {
- // We know that the immediate dominator should already have a node,
- // because we are traversing the CFG in depth first order!
- //
- Node *IDomNode = Nodes[*I];
- assert(IDomNode && "No node for IDOM?");
-
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
- break;
- }
- }
- }
-}
-
-
void PostDominatorTree::calculate(const PostDominatorSet &DS) {
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
@@ -339,74 +146,15 @@ void PostDominatorTree::calculate(const PostDominatorSet &DS) {
}
}
-static std::ostream &operator<<(std::ostream &o,
- const DominatorTreeBase::Node *Node) {
- return o << Node->getNode()
- << "\n------------------------------------------\n";
-}
-
-static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
- unsigned Lev) {
- o << "Level #" << Lev << ": " << N;
- for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
- I != E; ++I) {
- PrintDomTree(*I, o, Lev+1);
- }
-}
-
-void DominatorTreeBase::print(std::ostream &o) const {
- o << "=============================--------------------------------\n"
- << "Inorder Dominator Tree:\n";
- PrintDomTree(Nodes.find(getRoot())->second, o, 1);
-}
-
-
//===----------------------------------------------------------------------===//
-// DominanceFrontier Implementation
+// PostDominanceFrontier Implementation
//===----------------------------------------------------------------------===//
-static RegisterAnalysis<DominanceFrontier>
-G("domfrontier", "Dominance Frontier Construction", true);
static RegisterAnalysis<PostDominanceFrontier>
H("postdomfrontier", "Post-Dominance Frontier Construction", true);
-
-AnalysisID DominanceFrontier::ID = G;
AnalysisID PostDominanceFrontier::ID = H;
const DominanceFrontier::DomSetType &
-DominanceFrontier::calculate(const DominatorTree &DT,
- const DominatorTree::Node *Node) {
- // Loop over CFG successors to calculate DFlocal[Node]
- BasicBlock *BB = Node->getNode();
- DomSetType &S = Frontiers[BB]; // The new set to fill in...
-
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
- SI != SE; ++SI) {
- // Does Node immediately dominate this successor?
- if (DT[*SI]->getIDom() != Node)
- S.insert(*SI);
- }
-
- // At this point, S is DFlocal. Now we union in DFup's of our children...
- // Loop through and visit the nodes that Node immediately dominates (Node's
- // children in the IDomTree)
- //
- for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
- NI != NE; ++NI) {
- DominatorTree::Node *IDominee = *NI;
- const DomSetType &ChildDF = calculate(DT, IDominee);
-
- DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
- for (; CDFI != CDFE; ++CDFI) {
- if (!Node->dominates(DT[*CDFI]))
- S.insert(*CDFI);
- }
- }
-
- return S;
-}
-
-const DominanceFrontier::DomSetType &
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
@@ -439,12 +187,3 @@ PostDominanceFrontier::calculate(const PostDominatorTree &DT,
return S;
}
-
-void DominanceFrontierBase::print(std::ostream &o) const {
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- o << "=============================--------------------------------\n"
- << "\nDominance Frontier For Basic Block\n";
- WriteAsOperand(o, I->first, false);
- o << " is: \n" << I->second << "\n";
- }
-}