summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG
diff options
context:
space:
mode:
authorDan Gohman <gohman@apple.com>2008-11-15 00:23:40 +0000
committerDan Gohman <gohman@apple.com>2008-11-15 00:23:40 +0000
commitade9f1893412184c164aa3eb55a3e007ec647303 (patch)
treef175accbfd13585c03ea5701acdc7debc1cf1d42 /lib/CodeGen/SelectionDAG
parent2833f59cad691e9679f6c5946fa630f1bef5b89a (diff)
downloadllvm-ade9f1893412184c164aa3eb55a3e007ec647303.tar.gz
llvm-ade9f1893412184c164aa3eb55a3e007ec647303.tar.bz2
llvm-ade9f1893412184c164aa3eb55a3e007ec647303.tar.xz
Move ScheduleDAGList's LatencyPriorityQueue class out to a separate file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59340 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG')
-rw-r--r--lib/CodeGen/SelectionDAG/CMakeLists.txt1
-rw-r--r--lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp165
-rw-r--r--lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h124
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp260
4 files changed, 291 insertions, 259 deletions
diff --git a/lib/CodeGen/SelectionDAG/CMakeLists.txt b/lib/CodeGen/SelectionDAG/CMakeLists.txt
index dad932bf37..a3654c2473 100644
--- a/lib/CodeGen/SelectionDAG/CMakeLists.txt
+++ b/lib/CodeGen/SelectionDAG/CMakeLists.txt
@@ -2,6 +2,7 @@ add_llvm_library(LLVMSelectionDAG
CallingConvLower.cpp
DAGCombiner.cpp
FastISel.cpp
+ LatencyPriorityQueue.cpp
LegalizeDAG.cpp
LegalizeFloatTypes.cpp
LegalizeIntegerTypes.cpp
diff --git a/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp b/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp
new file mode 100644
index 0000000000..6c8edf10ff
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp
@@ -0,0 +1,165 @@
+//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LatencyPriorityQueue class, which is a
+// SchedulingPriorityQueue that schedules using latency information to
+// reduce the length of the critical path through the basic block.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "scheduler"
+#include "LatencyPriorityQueue.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
+ unsigned LHSNum = LHS->NodeNum;
+ unsigned RHSNum = RHS->NodeNum;
+
+ // The most important heuristic is scheduling the critical path.
+ unsigned LHSLatency = PQ->getLatency(LHSNum);
+ unsigned RHSLatency = PQ->getLatency(RHSNum);
+ if (LHSLatency < RHSLatency) return true;
+ if (LHSLatency > RHSLatency) return false;
+
+ // After that, if two nodes have identical latencies, look to see if one will
+ // unblock more other nodes than the other.
+ unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
+ unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
+ if (LHSBlocked < RHSBlocked) return true;
+ if (LHSBlocked > RHSBlocked) return false;
+
+ // Finally, just to provide a stable ordering, use the node number as a
+ // deciding factor.
+ return LHSNum < RHSNum;
+}
+
+
+/// CalcNodePriority - Calculate the maximal path from the node to the exit.
+///
+int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
+ int &Latency = Latencies[SU.NodeNum];
+ if (Latency != -1)
+ return Latency;
+
+ std::vector<const SUnit*> WorkList;
+ WorkList.push_back(&SU);
+ while (!WorkList.empty()) {
+ const SUnit *Cur = WorkList.back();
+ bool AllDone = true;
+ int MaxSuccLatency = 0;
+ for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
+ I != E; ++I) {
+ int SuccLatency = Latencies[I->Dep->NodeNum];
+ if (SuccLatency == -1) {
+ AllDone = false;
+ WorkList.push_back(I->Dep);
+ } else {
+ MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
+ }
+ }
+ if (AllDone) {
+ Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
+ WorkList.pop_back();
+ }
+ }
+
+ return Latency;
+}
+
+/// CalculatePriorities - Calculate priorities of all scheduling units.
+void LatencyPriorityQueue::CalculatePriorities() {
+ Latencies.assign(SUnits->size(), -1);
+ NumNodesSolelyBlocking.assign(SUnits->size(), 0);
+
+ // For each node, calculate the maximal path from the node to the exit.
+ std::vector<std::pair<const SUnit*, unsigned> > WorkList;
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
+ const SUnit *SU = &(*SUnits)[i];
+ if (SU->Succs.empty())
+ WorkList.push_back(std::make_pair(SU, 0U));
+ }
+
+ while (!WorkList.empty()) {
+ const SUnit *SU = WorkList.back().first;
+ unsigned SuccLat = WorkList.back().second;
+ WorkList.pop_back();
+ int &Latency = Latencies[SU->NodeNum];
+ if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
+ Latency = SU->Latency + SuccLat;
+ for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
+ I != E; ++I)
+ WorkList.push_back(std::make_pair(I->Dep, Latency));
+ }
+ }
+}
+
+/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
+/// of SU, return it, otherwise return null.
+SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
+ SUnit *OnlyAvailablePred = 0;
+ for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ SUnit &Pred = *I->Dep;
+ if (!Pred.isScheduled) {
+ // We found an available, but not scheduled, predecessor. If it's the
+ // only one we have found, keep track of it... otherwise give up.
+ if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
+ return 0;
+ OnlyAvailablePred = &Pred;
+ }
+ }
+
+ return OnlyAvailablePred;
+}
+
+void LatencyPriorityQueue::push_impl(SUnit *SU) {
+ // Look at all of the successors of this node. Count the number of nodes that
+ // this node is the sole unscheduled node for.
+ unsigned NumNodesBlocking = 0;
+ for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I)
+ if (getSingleUnscheduledPred(I->Dep) == SU)
+ ++NumNodesBlocking;
+ NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
+
+ Queue.push(SU);
+}
+
+
+// ScheduledNode - As nodes are scheduled, we look to see if there are any
+// successor nodes that have a single unscheduled predecessor. If so, that
+// single predecessor has a higher priority, since scheduling it will make
+// the node available.
+void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
+ for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I)
+ AdjustPriorityOfUnscheduledPreds(I->Dep);
+}
+
+/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
+/// scheduled. If SU is not itself available, then there is at least one
+/// predecessor node that has not been scheduled yet. If SU has exactly ONE
+/// unscheduled predecessor, we want to increase its priority: it getting
+/// scheduled will make this node available, so it is better than some other
+/// node of the same priority that will not make a node available.
+void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
+ if (SU->isPending) return; // All preds scheduled.
+
+ SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
+ if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
+
+ // Okay, we found a single predecessor that is available, but not scheduled.
+ // Since it is available, it must be in the priority queue. First remove it.
+ remove(OnlyAvailablePred);
+
+ // Reinsert the node into the priority queue, which recomputes its
+ // NumNodesSolelyBlocking value.
+ push(OnlyAvailablePred);
+}
diff --git a/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h b/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h
new file mode 100644
index 0000000000..f04d2ede5a
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h
@@ -0,0 +1,124 @@
+//===---- LatencyPriorityQueue.h - A latency-oriented priority queue ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the LatencyPriorityQueue class, which is a
+// SchedulingPriorityQueue that schedules using latency information to
+// reduce the length of the critical path through the basic block.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LATENCY_PRIORITY_QUEUE_H
+#define LATENCY_PRIORITY_QUEUE_H
+
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/ADT/PriorityQueue.h"
+
+namespace llvm {
+ class LatencyPriorityQueue;
+
+ /// Sorting functions for the Available queue.
+ struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+ LatencyPriorityQueue *PQ;
+ explicit latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
+
+ bool operator()(const SUnit* left, const SUnit* right) const;
+ };
+
+ class LatencyPriorityQueue : public SchedulingPriorityQueue {
+ // SUnits - The SUnits for the current graph.
+ std::vector<SUnit> *SUnits;
+
+ // Latencies - The latency (max of latency from this node to the bb exit)
+ // for each node.
+ std::vector<int> Latencies;
+
+ /// NumNodesSolelyBlocking - This vector contains, for every node in the
+ /// Queue, the number of nodes that the node is the sole unscheduled
+ /// predecessor for. This is used as a tie-breaker heuristic for better
+ /// mobility.
+ std::vector<unsigned> NumNodesSolelyBlocking;
+
+ PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
+public:
+ LatencyPriorityQueue() : Queue(latency_sort(this)) {
+ }
+
+ void initNodes(std::vector<SUnit> &sunits) {
+ SUnits = &sunits;
+ // Calculate node priorities.
+ CalculatePriorities();
+ }
+
+ void addNode(const SUnit *SU) {
+ Latencies.resize(SUnits->size(), -1);
+ NumNodesSolelyBlocking.resize(SUnits->size(), 0);
+ CalcLatency(*SU);
+ }
+
+ void updateNode(const SUnit *SU) {
+ Latencies[SU->NodeNum] = -1;
+ CalcLatency(*SU);
+ }
+
+ void releaseState() {
+ SUnits = 0;
+ Latencies.clear();
+ }
+
+ unsigned getLatency(unsigned NodeNum) const {
+ assert(NodeNum < Latencies.size());
+ return Latencies[NodeNum];
+ }
+
+ unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
+ assert(NodeNum < NumNodesSolelyBlocking.size());
+ return NumNodesSolelyBlocking[NodeNum];
+ }
+
+ unsigned size() const { return Queue.size(); }
+
+ bool empty() const { return Queue.empty(); }
+
+ virtual void push(SUnit *U) {
+ push_impl(U);
+ }
+ void push_impl(SUnit *U);
+
+ void push_all(const std::vector<SUnit *> &Nodes) {
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
+ push_impl(Nodes[i]);
+ }
+
+ SUnit *pop() {
+ if (empty()) return NULL;
+ SUnit *V = Queue.top();
+ Queue.pop();
+ return V;
+ }
+
+ void remove(SUnit *SU) {
+ assert(!Queue.empty() && "Not in queue!");
+ Queue.erase_one(SU);
+ }
+
+ // ScheduledNode - As nodes are scheduled, we look to see if there are any
+ // successor nodes that have a single unscheduled predecessor. If so, that
+ // single predecessor has a higher priority, since scheduling it will make
+ // the node available.
+ void ScheduledNode(SUnit *Node);
+
+private:
+ void CalculatePriorities();
+ int CalcLatency(const SUnit &SU);
+ void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
+ SUnit *getSingleUnscheduledPred(SUnit *SU);
+ };
+}
+
+#endif
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
index 14042ed602..168e6d5f29 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
@@ -30,6 +30,7 @@
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/Statistic.h"
+#include "LatencyPriorityQueue.h"
#include <climits>
using namespace llvm;
@@ -276,265 +277,6 @@ void ScheduleDAGList::ListScheduleTopDown() {
}
//===----------------------------------------------------------------------===//
-// LatencyPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using latency information to
-// reduce the length of the critical path through the basic block.
-//
-namespace {
- class LatencyPriorityQueue;
-
- /// Sorting functions for the Available queue.
- struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
- LatencyPriorityQueue *PQ;
- latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
- latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
-
- bool operator()(const SUnit* left, const SUnit* right) const;
- };
-} // end anonymous namespace
-
-namespace {
- class LatencyPriorityQueue : public SchedulingPriorityQueue {
- // SUnits - The SUnits for the current graph.
- std::vector<SUnit> *SUnits;
-
- // Latencies - The latency (max of latency from this node to the bb exit)
- // for each node.
- std::vector<int> Latencies;
-
- /// NumNodesSolelyBlocking - This vector contains, for every node in the
- /// Queue, the number of nodes that the node is the sole unscheduled
- /// predecessor for. This is used as a tie-breaker heuristic for better
- /// mobility.
- std::vector<unsigned> NumNodesSolelyBlocking;
-
- PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
-public:
- LatencyPriorityQueue() : Queue(latency_sort(this)) {
- }
-
- void initNodes(std::vector<SUnit> &sunits) {
- SUnits = &sunits;
- // Calculate node priorities.
- CalculatePriorities();
- }
-
- void addNode(const SUnit *SU) {
- Latencies.resize(SUnits->size(), -1);
- NumNodesSolelyBlocking.resize(SUnits->size(), 0);
- CalcLatency(*SU);
- }
-
- void updateNode(const SUnit *SU) {
- Latencies[SU->NodeNum] = -1;
- CalcLatency(*SU);
- }
-
- void releaseState() {
- SUnits = 0;
- Latencies.clear();
- }
-
- unsigned getLatency(unsigned NodeNum) const {
- assert(NodeNum < Latencies.size());
- return Latencies[NodeNum];
- }
-
- unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
- assert(NodeNum < NumNodesSolelyBlocking.size());
- return NumNodesSolelyBlocking[NodeNum];
- }
-
- unsigned size() const { return Queue.size(); }
-
- bool empty() const { return Queue.empty(); }
-
- virtual void push(SUnit *U) {
- push_impl(U);
- }
- void push_impl(SUnit *U);
-
- void push_all(const std::vector<SUnit *> &Nodes) {
- for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
- push_impl(Nodes[i]);
- }
-
- SUnit *pop() {
- if (empty()) return NULL;
- SUnit *V = Queue.top();
- Queue.pop();
- return V;
- }
-
- void remove(SUnit *SU) {
- assert(!Queue.empty() && "Not in queue!");
- Queue.erase_one(SU);
- }
-
- // ScheduledNode - As nodes are scheduled, we look to see if there are any
- // successor nodes that have a single unscheduled predecessor. If so, that
- // single predecessor has a higher priority, since scheduling it will make
- // the node available.
- void ScheduledNode(SUnit *Node);
-
-private:
- void CalculatePriorities();
- int CalcLatency(const SUnit &SU);
- void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
- SUnit *getSingleUnscheduledPred(SUnit *SU);
- };
-}
-
-bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
- unsigned LHSNum = LHS->NodeNum;
- unsigned RHSNum = RHS->NodeNum;
-
- // The most important heuristic is scheduling the critical path.
- unsigned LHSLatency = PQ->getLatency(LHSNum);
- unsigned RHSLatency = PQ->getLatency(RHSNum);
- if (LHSLatency < RHSLatency) return true;
- if (LHSLatency > RHSLatency) return false;
-
- // After that, if two nodes have identical latencies, look to see if one will
- // unblock more other nodes than the other.
- unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
- unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
- if (LHSBlocked < RHSBlocked) return true;
- if (LHSBlocked > RHSBlocked) return false;
-
- // Finally, just to provide a stable ordering, use the node number as a
- // deciding factor.
- return LHSNum < RHSNum;
-}
-
-
-/// CalcNodePriority - Calculate the maximal path from the node to the exit.
-///
-int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
- int &Latency = Latencies[SU.NodeNum];
- if (Latency != -1)
- return Latency;
-
- std::vector<const SUnit*> WorkList;
- WorkList.push_back(&SU);
- while (!WorkList.empty()) {
- const SUnit *Cur = WorkList.back();
- bool AllDone = true;
- int MaxSuccLatency = 0;
- for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
- I != E; ++I) {
- int SuccLatency = Latencies[I->Dep->NodeNum];
- if (SuccLatency == -1) {
- AllDone = false;
- WorkList.push_back(I->Dep);
- } else {
- MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
- }
- }
- if (AllDone) {
- Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
- WorkList.pop_back();
- }
- }
-
- return Latency;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-void LatencyPriorityQueue::CalculatePriorities() {
- Latencies.assign(SUnits->size(), -1);
- NumNodesSolelyBlocking.assign(SUnits->size(), 0);
-
- // For each node, calculate the maximal path from the node to the exit.
- std::vector<std::pair<const SUnit*, unsigned> > WorkList;
- for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
- const SUnit *SU = &(*SUnits)[i];
- if (SU->Succs.empty())
- WorkList.push_back(std::make_pair(SU, 0U));
- }
-
- while (!WorkList.empty()) {
- const SUnit *SU = WorkList.back().first;
- unsigned SuccLat = WorkList.back().second;
- WorkList.pop_back();
- int &Latency = Latencies[SU->NodeNum];
- if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
- Latency = SU->Latency + SuccLat;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
- I != E; ++I)
- WorkList.push_back(std::make_pair(I->Dep, Latency));
- }
- }
-}
-
-/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
-/// of SU, return it, otherwise return null.
-SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
- SUnit *OnlyAvailablePred = 0;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
- I != E; ++I) {
- SUnit &Pred = *I->Dep;
- if (!Pred.isScheduled) {
- // We found an available, but not scheduled, predecessor. If it's the
- // only one we have found, keep track of it... otherwise give up.
- if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
- return 0;
- OnlyAvailablePred = &Pred;
- }
- }
-
- return OnlyAvailablePred;
-}
-
-void LatencyPriorityQueue::push_impl(SUnit *SU) {
- // Look at all of the successors of this node. Count the number of nodes that
- // this node is the sole unscheduled node for.
- unsigned NumNodesBlocking = 0;
- for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- if (getSingleUnscheduledPred(I->Dep) == SU)
- ++NumNodesBlocking;
- NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
-
- Queue.push(SU);
-}
-
-
-// ScheduledNode - As nodes are scheduled, we look to see if there are any
-// successor nodes that have a single unscheduled predecessor. If so, that
-// single predecessor has a higher priority, since scheduling it will make
-// the node available.
-void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
- for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- AdjustPriorityOfUnscheduledPreds(I->Dep);
-}
-
-/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
-/// scheduled. If SU is not itself available, then there is at least one
-/// predecessor node that has not been scheduled yet. If SU has exactly ONE
-/// unscheduled predecessor, we want to increase its priority: it getting
-/// scheduled will make this node available, so it is better than some other
-/// node of the same priority that will not make a node available.
-void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
- if (SU->isPending) return; // All preds scheduled.
-
- SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
- if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
-
- // Okay, we found a single predecessor that is available, but not scheduled.
- // Since it is available, it must be in the priority queue. First remove it.
- remove(OnlyAvailablePred);
-
- // Reinsert the node into the priority queue, which recomputes its
- // NumNodesSolelyBlocking value.
- push(OnlyAvailablePred);
-}
-
-
-//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//