summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG
diff options
context:
space:
mode:
authorEvan Cheng <evan.cheng@apple.com>2006-05-11 23:55:42 +0000
committerEvan Cheng <evan.cheng@apple.com>2006-05-11 23:55:42 +0000
commite165a78551a91d8420cd8f074d97701e8788f8b5 (patch)
tree590d6035b42a39a608f93d2f39b24ec44b43f46f /lib/CodeGen/SelectionDAG
parente993cc27ad9fd84e6aaf652c94eb9ca0cb63a898 (diff)
downloadllvm-e165a78551a91d8420cd8f074d97701e8788f8b5.tar.gz
llvm-e165a78551a91d8420cd8f074d97701e8788f8b5.tar.bz2
llvm-e165a78551a91d8420cd8f074d97701e8788f8b5.tar.xz
Refactor scheduler code. Move register-reduction list scheduler to a
separate file. Added an initial implementation of top-down register pressure reduction list scheduler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28226 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG')
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAG.cpp251
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp927
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp813
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp45
4 files changed, 1104 insertions, 932 deletions
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
index f9749903a7..4a9b9c7f04 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
@@ -13,6 +13,7 @@
//
//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -20,10 +21,185 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
+#include <iostream>
using namespace llvm;
+/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
+/// This SUnit graph is similar to the SelectionDAG, but represents flagged
+/// together nodes with a single SUnit.
+void ScheduleDAG::BuildSchedUnits() {
+ // Reserve entries in the vector for each of the SUnits we are creating. This
+ // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
+ // invalidated.
+ SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
+
+ const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
+
+ for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
+ E = DAG.allnodes_end(); NI != E; ++NI) {
+ if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
+ continue;
+
+ // If this node has already been processed, stop now.
+ if (SUnitMap[NI]) continue;
+
+ SUnit *NodeSUnit = NewSUnit(NI);
+
+ // See if anything is flagged to this node, if so, add them to flagged
+ // nodes. Nodes can have at most one flag input and one flag output. Flags
+ // are required the be the last operand and result of a node.
+
+ // Scan up, adding flagged preds to FlaggedNodes.
+ SDNode *N = NI;
+ while (N->getNumOperands() &&
+ N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
+ N = N->getOperand(N->getNumOperands()-1).Val;
+ NodeSUnit->FlaggedNodes.push_back(N);
+ SUnitMap[N] = NodeSUnit;
+ }
+
+ // Scan down, adding this node and any flagged succs to FlaggedNodes if they
+ // have a user of the flag operand.
+ N = NI;
+ while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
+ SDOperand FlagVal(N, N->getNumValues()-1);
+
+ // There are either zero or one users of the Flag result.
+ bool HasFlagUse = false;
+ for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
+ UI != E; ++UI)
+ if (FlagVal.isOperand(*UI)) {
+ HasFlagUse = true;
+ NodeSUnit->FlaggedNodes.push_back(N);
+ SUnitMap[N] = NodeSUnit;
+ N = *UI;
+ break;
+ }
+ if (!HasFlagUse) break;
+ }
+
+ // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
+ // Update the SUnit
+ NodeSUnit->Node = N;
+ SUnitMap[N] = NodeSUnit;
+
+ // Compute the latency for the node. We use the sum of the latencies for
+ // all nodes flagged together into this SUnit.
+ if (InstrItins.isEmpty()) {
+ // No latency information.
+ NodeSUnit->Latency = 1;
+ } else {
+ NodeSUnit->Latency = 0;
+ if (N->isTargetOpcode()) {
+ unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
+ InstrStage *S = InstrItins.begin(SchedClass);
+ InstrStage *E = InstrItins.end(SchedClass);
+ for (; S != E; ++S)
+ NodeSUnit->Latency += S->Cycles;
+ }
+ for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
+ SDNode *FNode = NodeSUnit->FlaggedNodes[i];
+ if (FNode->isTargetOpcode()) {
+ unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
+ InstrStage *S = InstrItins.begin(SchedClass);
+ InstrStage *E = InstrItins.end(SchedClass);
+ for (; S != E; ++S)
+ NodeSUnit->Latency += S->Cycles;
+ }
+ }
+ }
+ }
+
+ // Pass 2: add the preds, succs, etc.
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
+ SUnit *SU = &SUnits[su];
+ SDNode *MainNode = SU->Node;
+
+ if (MainNode->isTargetOpcode()) {
+ unsigned Opc = MainNode->getTargetOpcode();
+ if (TII->isTwoAddrInstr(Opc)) {
+ SU->isTwoAddress = true;
+ SDNode *OpN = MainNode->getOperand(0).Val;
+ SUnit *OpSU = SUnitMap[OpN];
+ if (OpSU)
+ OpSU->isDefNUseOperand = true;
+ }
+ }
+
+ // Find all predecessors and successors of the group.
+ // Temporarily add N to make code simpler.
+ SU->FlaggedNodes.push_back(MainNode);
+
+ for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
+ SDNode *N = SU->FlaggedNodes[n];
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDNode *OpN = N->getOperand(i).Val;
+ if (isPassiveNode(OpN)) continue; // Not scheduled.
+ SUnit *OpSU = SUnitMap[OpN];
+ assert(OpSU && "Node has no SUnit!");
+ if (OpSU == SU) continue; // In the same group.
+
+ MVT::ValueType OpVT = N->getOperand(i).getValueType();
+ assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
+ bool isChain = OpVT == MVT::Other;
+
+ if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
+ if (!isChain) {
+ SU->NumPreds++;
+ SU->NumPredsLeft++;
+ } else {
+ SU->NumChainPredsLeft++;
+ }
+ }
+ if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
+ if (!isChain) {
+ OpSU->NumSuccs++;
+ OpSU->NumSuccsLeft++;
+ } else {
+ OpSU->NumChainSuccsLeft++;
+ }
+ }
+ }
+ }
+
+ // Remove MainNode from FlaggedNodes again.
+ SU->FlaggedNodes.pop_back();
+ }
+
+ return;
+}
+
+static void CalculateDepths(SUnit *SU, unsigned Depth) {
+ if (Depth > SU->Depth) SU->Depth = Depth;
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
+ E = SU->Succs.end(); I != E; ++I)
+ CalculateDepths(I->first, Depth+1);
+}
+
+void ScheduleDAG::CalculateDepths() {
+ SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+ ::CalculateDepths(Entry, 0U);
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i)
+ if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
+ ::CalculateDepths(&SUnits[i], 0U);
+ }
+}
+
+static void CalculateHeights(SUnit *SU, unsigned Height) {
+ if (Height > SU->Height) SU->Height = Height;
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+ E = SU->Preds.end(); I != E; ++I)
+ CalculateHeights(I->first, Height+1);
+}
+void ScheduleDAG::CalculateHeights() {
+ SUnit *Root = SUnitMap[DAG.getRoot().Val];
+ ::CalculateHeights(Root, 0U);
+}
+
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the machine instrs.)
@@ -348,6 +524,32 @@ void ScheduleDAG::EmitNoop() {
TII->insertNoop(*BB, BB->end());
}
+/// EmitSchedule - Emit the machine code in scheduled order.
+void ScheduleDAG::EmitSchedule() {
+ std::map<SDNode*, unsigned> VRBaseMap;
+ for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+ if (SUnit *SU = Sequence[i]) {
+ for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
+ EmitNode(SU->FlaggedNodes[j], VRBaseMap);
+ EmitNode(SU->Node, VRBaseMap);
+ } else {
+ // Null SUnit* is a noop.
+ EmitNoop();
+ }
+ }
+}
+
+/// dump - dump the schedule.
+void ScheduleDAG::dumpSchedule() const {
+ for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+ if (SUnit *SU = Sequence[i])
+ SU->dump(&DAG);
+ else
+ std::cerr << "**** NOOP ****\n";
+ }
+}
+
+
/// Run - perform scheduling.
///
MachineBasicBlock *ScheduleDAG::Run() {
@@ -360,4 +562,53 @@ MachineBasicBlock *ScheduleDAG::Run() {
return BB;
}
+/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
+/// a group of nodes flagged together.
+void SUnit::dump(const SelectionDAG *G) const {
+ std::cerr << "SU(" << NodeNum << "): ";
+ Node->dump(G);
+ std::cerr << "\n";
+ if (FlaggedNodes.size() != 0) {
+ for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
+ std::cerr << " ";
+ FlaggedNodes[i]->dump(G);
+ std::cerr << "\n";
+ }
+ }
+}
+
+void SUnit::dumpAll(const SelectionDAG *G) const {
+ dump(G);
+ std::cerr << " # preds left : " << NumPredsLeft << "\n";
+ std::cerr << " # succs left : " << NumSuccsLeft << "\n";
+ std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
+ std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
+ std::cerr << " Latency : " << Latency << "\n";
+ std::cerr << " Depth : " << Depth << "\n";
+ std::cerr << " Height : " << Height << "\n";
+
+ if (Preds.size() != 0) {
+ std::cerr << " Predecessors:\n";
+ for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
+ E = Preds.end(); I != E; ++I) {
+ if (I->second)
+ std::cerr << " ch ";
+ else
+ std::cerr << " val ";
+ I->first->dump(G);
+ }
+ }
+ if (Succs.size() != 0) {
+ std::cerr << " Successors:\n";
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
+ E = Succs.end(); I != E; ++I) {
+ if (I->second)
+ std::cerr << " ch ";
+ else
+ std::cerr << " val ";
+ I->first->dump(G);
+ }
+ }
+ std::cerr << "\n";
+}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
index 7e87b525a0..34136d847c 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
@@ -7,10 +7,10 @@
//
//===----------------------------------------------------------------------===//
//
-// This implements bottom-up and top-down list schedulers, using standard
-// algorithms. The basic approach uses a priority queue of available nodes to
-// schedule. One at a time, nodes are taken from the priority queue (thus in
-// priority order), checked for legality to schedule, and emitted if legal.
+// This implements a top-down list scheduler, using standard algorithms.
+// The basic approach uses a priority queue of available nodes to schedule.
+// One at a time, nodes are taken from the priority queue (thus in priority
+// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
@@ -29,157 +29,20 @@
#include <climits>
#include <iostream>
#include <queue>
-#include <set>
-#include <vector>
-#include "llvm/Support/CommandLine.h"
using namespace llvm;
namespace {
- cl::opt<bool> SchedVertically("sched-vertically", cl::Hidden);
- cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden);
-}
-
-namespace {
Statistic<> NumNoops ("scheduler", "Number of noops inserted");
Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
-
- /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
- /// a group of nodes flagged together.
- struct SUnit {
- SDNode *Node; // Representative node.
- std::vector<SDNode*> FlaggedNodes; // All nodes flagged to Node.
-
- // Preds/Succs - The SUnits before/after us in the graph. The boolean value
- // is true if the edge is a token chain edge, false if it is a value edge.
- std::set<std::pair<SUnit*,bool> > Preds; // All sunit predecessors.
- std::set<std::pair<SUnit*,bool> > Succs; // All sunit successors.
-
- short NumPredsLeft; // # of preds not scheduled.
- short NumSuccsLeft; // # of succs not scheduled.
- short NumChainPredsLeft; // # of chain preds not scheduled.
- short NumChainSuccsLeft; // # of chain succs not scheduled.
- bool isTwoAddress : 1; // Is a two-address instruction.
- bool isDefNUseOperand : 1; // Is a def&use operand.
- bool isPending : 1; // True once pending.
- bool isAvailable : 1; // True once available.
- bool isScheduled : 1; // True once scheduled.
- unsigned short Latency; // Node latency.
- unsigned CycleBound; // Upper/lower cycle to be scheduled at.
- unsigned Cycle; // Once scheduled, the cycle of the op.
- unsigned NodeNum; // Entry # of node in the node vector.
-
- SUnit(SDNode *node, unsigned nodenum)
- : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
- NumChainPredsLeft(0), NumChainSuccsLeft(0),
- isTwoAddress(false), isDefNUseOperand(false),
- isPending(false), isAvailable(false), isScheduled(false),
- Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {}
-
- void dump(const SelectionDAG *G) const;
- void dumpAll(const SelectionDAG *G) const;
- };
-}
-
-void SUnit::dump(const SelectionDAG *G) const {
- std::cerr << "SU(" << NodeNum << "): ";
- Node->dump(G);
- std::cerr << "\n";
- if (FlaggedNodes.size() != 0) {
- for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
- std::cerr << " ";
- FlaggedNodes[i]->dump(G);
- std::cerr << "\n";
- }
- }
-}
-
-void SUnit::dumpAll(const SelectionDAG *G) const {
- dump(G);
-
- std::cerr << " # preds left : " << NumPredsLeft << "\n";
- std::cerr << " # succs left : " << NumSuccsLeft << "\n";
- std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
- std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
- std::cerr << " Latency : " << Latency << "\n";
-
- if (Preds.size() != 0) {
- std::cerr << " Predecessors:\n";
- for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
- E = Preds.end(); I != E; ++I) {
- if (I->second)
- std::cerr << " ch ";
- else
- std::cerr << " val ";
- I->first->dump(G);
- }
- }
- if (Succs.size() != 0) {
- std::cerr << " Successors:\n";
- for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
- E = Succs.end(); I != E; ++I) {
- if (I->second)
- std::cerr << " ch ";
- else
- std::cerr << " val ";
- I->first->dump(G);
- }
- }
- std::cerr << "\n";
-}
-
-//===----------------------------------------------------------------------===//
-/// SchedulingPriorityQueue - This interface is used to plug different
-/// priorities computation algorithms into the list scheduler. It implements the
-/// interface of a standard priority queue, where nodes are inserted in
-/// arbitrary order and returned in priority order. The computation of the
-/// priority and the representation of the queue are totally up to the
-/// implementation to decide.
-///
-namespace {
-class SchedulingPriorityQueue {
-public:
- virtual ~SchedulingPriorityQueue() {}
-
- virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
- virtual void releaseState() = 0;
-
- virtual bool empty() const = 0;
- virtual void push(SUnit *U) = 0;
-
- virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
- virtual SUnit *pop() = 0;
-
- virtual void RemoveFromPriorityQueue(SUnit *SU) = 0;
-
- /// ScheduledNode - As each node is scheduled, this method is invoked. This
- /// allows the priority function to adjust the priority of node that have
- /// already been emitted.
- virtual void ScheduledNode(SUnit *Node) {}
-};
}
-
-
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGList - The actual list scheduler implementation. This supports
-/// both top-down and bottom-up scheduling.
+/// top-down scheduling.
///
class ScheduleDAGList : public ScheduleDAG {
private:
- // SDNode to SUnit mapping (many to one).
- std::map<SDNode*, SUnit*> SUnitMap;
-
- // The schedule. Null SUnit*'s represent noop instructions.
- std::vector<SUnit*> Sequence;
-
- // The scheduling units.
- std::vector<SUnit> SUnits;
-
- /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
- /// it is top-down.
- bool isBottomUp;
-
/// AvailableQueue - The priority queue to use for the available SUnits.
///
SchedulingPriorityQueue *AvailableQueue;
@@ -194,20 +57,12 @@ private:
/// HazardRec - The hazard recognizer to use.
HazardRecognizer *HazardRec;
- /// OpenNodes - Nodes with open live ranges, i.e. predecessors or successors
- /// of scheduled nodes which are not themselves scheduled.
- std::map<const TargetRegisterClass*, std::set<SUnit*> > OpenNodes;
-
- /// RegPressureLimits - Keep track of upper limit of register pressure for
- /// each register class that allows the scheduler to go into vertical mode.
- std::map<const TargetRegisterClass*, unsigned> RegPressureLimits;
-
public:
ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
- const TargetMachine &tm, bool isbottomup,
+ const TargetMachine &tm,
SchedulingPriorityQueue *availqueue,
HazardRecognizer *HR)
- : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
+ : ScheduleDAG(dag, bb, tm),
AvailableQueue(availqueue), HazardRec(HR) {
}
@@ -218,202 +73,16 @@ public:
void Schedule();
- void dumpSchedule() const;
-
private:
- SUnit *NewSUnit(SDNode *N);
- void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
void ReleaseSucc(SUnit *SuccSU, bool isChain);
- void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle, bool Veritical=true);
- void ScheduleVertically(SUnit *SU, unsigned& CurCycle);
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown();
- void ListScheduleBottomUp();
- void BuildSchedUnits();
- void EmitSchedule();
};
} // end anonymous namespace
HazardRecognizer::~HazardRecognizer() {}
-/// NewSUnit - Creates a new SUnit and return a ptr to it.
-SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
- SUnits.push_back(SUnit(N, SUnits.size()));
- return &SUnits.back();
-}
-
-/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
-/// This SUnit graph is similar to the SelectionDAG, but represents flagged
-/// together nodes with a single SUnit.
-void ScheduleDAGList::BuildSchedUnits() {
- // Reserve entries in the vector for each of the SUnits we are creating. This
- // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
- // invalidated.
- SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
-
- const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
-
- for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
- E = DAG.allnodes_end(); NI != E; ++NI) {
- if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
- continue;
-
- // If this node has already been processed, stop now.
- if (SUnitMap[NI]) continue;
-
- SUnit *NodeSUnit = NewSUnit(NI);
-
- // See if anything is flagged to this node, if so, add them to flagged
- // nodes. Nodes can have at most one flag input and one flag output. Flags
- // are required the be the last operand and result of a node.
-
- // Scan up, adding flagged preds to FlaggedNodes.
- SDNode *N = NI;
- while (N->getNumOperands() &&
- N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
- N = N->getOperand(N->getNumOperands()-1).Val;
- NodeSUnit->FlaggedNodes.push_back(N);
- SUnitMap[N] = NodeSUnit;
- }
-
- // Scan down, adding this node and any flagged succs to FlaggedNodes if they
- // have a user of the flag operand.
- N = NI;
- while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
- SDOperand FlagVal(N, N->getNumValues()-1);
-
- // There are either zero or one users of the Flag result.
- bool HasFlagUse = false;
- for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
- UI != E; ++UI)
- if (FlagVal.isOperand(*UI)) {
- HasFlagUse = true;
- NodeSUnit->FlaggedNodes.push_back(N);
- SUnitMap[N] = NodeSUnit;
- N = *UI;
- break;
- }
- if (!HasFlagUse) break;
- }
-
- // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
- // Update the SUnit
- NodeSUnit->Node = N;
- SUnitMap[N] = NodeSUnit;
-
- // Compute the latency for the node. We use the sum of the latencies for
- // all nodes flagged together into this SUnit.
- if (InstrItins.isEmpty()) {
- // No latency information.
- NodeSUnit->Latency = 1;
- } else {
- NodeSUnit->Latency = 0;
- if (N->isTargetOpcode()) {
- unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
- InstrStage *S = InstrItins.begin(SchedClass);
- InstrStage *E = InstrItins.end(SchedClass);
- for (; S != E; ++S)
- NodeSUnit->Latency += S->Cycles;
- }
- for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
- SDNode *FNode = NodeSUnit->FlaggedNodes[i];
- if (FNode->isTargetOpcode()) {
- unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
- InstrStage *S = InstrItins.begin(SchedClass);
- InstrStage *E = InstrItins.end(SchedClass);
- for (; S != E; ++S)
- NodeSUnit->Latency += S->Cycles;
- }
- }
- }
- }
-
- // Pass 2: add the preds, succs, etc.
- for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
- SUnit *SU = &SUnits[su];
- SDNode *MainNode = SU->Node;
-
- if (MainNode->isTargetOpcode()) {
- unsigned Opc = MainNode->getTargetOpcode();
- if (TII->isTwoAddrInstr(Opc)) {
- SU->isTwoAddress = true;
- SDNode *OpN = MainNode->getOperand(0).Val;
- SUnit *OpSU = SUnitMap[OpN];
- if (OpSU)
- OpSU->isDefNUseOperand = true;
- }
- }
-
- // Find all predecessors and successors of the group.
- // Temporarily add N to make code simpler.
- SU->FlaggedNodes.push_back(MainNode);
-
- for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
- SDNode *N = SU->FlaggedNodes[n];
-
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- SDNode *OpN = N->getOperand(i).Val;
- if (isPassiveNode(OpN)) continue; // Not scheduled.
- SUnit *OpSU = SUnitMap[OpN];
- assert(OpSU && "Node has no SUnit!");
- if (OpSU == SU) continue; // In the same group.
-
- MVT::ValueType OpVT = N->getOperand(i).getValueType();
- assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
- bool isChain = OpVT == MVT::Other;
-
- if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
- if (!isChain) {
- SU->NumPredsLeft++;
- } else {
- SU->NumChainPredsLeft++;
- }
- }
- if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
- if (!isChain) {
- OpSU->NumSuccsLeft++;
- } else {
- OpSU->NumChainSuccsLeft++;
- }
- }
- }
- }
-
- // Remove MainNode from FlaggedNodes again.
- SU->FlaggedNodes.pop_back();
- }
-
- DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
- SUnits[su].dumpAll(&DAG));
- return;
-}
-
-/// EmitSchedule - Emit the machine code in scheduled order.
-void ScheduleDAGList::EmitSchedule() {
- std::map<SDNode*, unsigned> VRBaseMap;
- for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
- if (SUnit *SU = Sequence[i]) {
- for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
- EmitNode(SU->FlaggedNodes[j], VRBaseMap);
- EmitNode(SU->Node, VRBaseMap);
- } else {
- // Null SUnit* is a noop.
- EmitNoop();
- }
- }
-}
-
-/// dump - dump the schedule.
-void ScheduleDAGList::dumpSchedule() const {
- for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
- if (SUnit *SU = Sequence[i])
- SU->dump(&DAG);
- else
- std::cerr << "**** NOOP ****\n";
- }
-}
-
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGList::Schedule() {
DEBUG(std::cerr << "********** List Scheduling **********\n");
@@ -423,11 +92,7 @@ void ScheduleDAGList::Schedule() {
AvailableQueue->initNodes(SUnits);
- // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
- if (isBottomUp)
- ListScheduleBottomUp();
- else
- ListScheduleTopDown();
+ ListScheduleTopDown();
AvailableQueue->releaseState();
@@ -440,273 +105,6 @@ void ScheduleDAGList::Schedule() {
}
//===----------------------------------------------------------------------===//
-// Bottom-Up Scheduling
-//===----------------------------------------------------------------------===//
-
-static const TargetRegisterClass *getRegClass(SUnit *SU,
- const TargetInstrInfo *TII,
- const MRegisterInfo *MRI,
- SSARegMap *RegMap) {
- if (SU->Node->isTargetOpcode()) {
- unsigned Opc = SU->Node->getTargetOpcode();
- const TargetInstrDescriptor &II = TII->get(Opc);
- return II.OpInfo->RegClass;
- } else {
- assert(SU->Node->getOpcode() == ISD::CopyFromReg);
- unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
- if (MRegisterInfo::isVirtualRegister(SrcReg))
- return RegMap->getRegClass(SrcReg);
- else {
- for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
- E = MRI->regclass_end(); I != E; ++I)
- if ((*I)->hasType(SU->Node->getValueType(0)) &&
- (*I)->contains(SrcReg))
- return *I;
- assert(false && "Couldn't find register class for reg copy!");
- }
- return NULL;
- }
-}
-
-static unsigned getNumResults(SUnit *SU) {
- unsigned NumResults = 0;
- for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
- MVT::ValueType VT = SU->Node->getValueType(i);
- if (VT != MVT::Other && VT != MVT::Flag)
- NumResults++;
- }
- return NumResults;
-}
-
-/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
-/// the Available queue is the count reaches zero. Also update its cycle bound.
-void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain,
- unsigned CurCycle) {
- // FIXME: the distance between two nodes is not always == the predecessor's
- // latency. For example, the reader can very well read the register written
- // by the predecessor later than the issue cycle. It also depends on the
- // interrupt model (drain vs. freeze).
- PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
-
- if (!isChain)
- PredSU->NumSuccsLeft--;
- else
- PredSU->NumChainSuccsLeft--;
-
-#ifndef NDEBUG
- if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
- std::cerr << "*** List scheduling failed! ***\n";
- PredSU->dump(&DAG);
- std::cerr << " has been released too many times!\n";
- assert(0);
- }
-#endif
-
- if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
- // EntryToken has to go last! Special case it here.
- if (PredSU->Node->getOpcode() != ISD::EntryToken) {
- PredSU->isAvailable = true;
- AvailableQueue->push(PredSU);
- }
- }
-
- if (getNumResults(PredSU) > 0) {
- const TargetRegisterClass *RegClass = getRegClass(PredSU, TII, MRI, RegMap);
- OpenNodes[RegClass].insert(PredSU);
- }
-}
-
-/// SharesOperandWithTwoAddr - Check if there is a unscheduled two-address node
-/// with which SU shares an operand. If so, returns the node.
-static SUnit *SharesOperandWithTwoAddr(SUnit *SU) {
- assert(!SU->isTwoAddress && "Node cannot be two-address op");
- for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
- E = SU->Preds.end(); I != E; ++I) {
- if (I->second) continue;
- SUnit *PredSU = I->first;
- for (std::set<std::pair<SUnit*, bool> >::iterator II =
- PredSU->Succs.begin(), EE = PredSU->Succs.end(); II != EE; ++II) {
- if (II->second) continue;
- SUnit *SSU = II->first;
- if (SSU->isTwoAddress && !SSU->isScheduled) {
- return SSU;
- }
- }
- }
- return NULL;
-}
-
-static bool isFloater(const SUnit *SU) {
- unsigned Opc = SU->Node->getOpcode();
- return (Opc != ISD::CopyFromReg && SU->NumPredsLeft == 0);
-}
-
-static bool isSimpleFloaterUse(const SUnit *SU) {
- unsigned NumOps = 0;
- for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
- E = SU->Preds.end(); I != E; ++I) {
- if (I->second) continue;
- if (++NumOps > 1)
- return false;
- if (!isFloater(I->first))
- return false;
- }
- return true;
-}
-
-/// ScheduleVertically - Schedule vertically. That is, follow up the D&U chain
-/// (of two-address code) and schedule floaters aggressively.
-void ScheduleDAGList::ScheduleVertically(SUnit *SU, unsigned& CurCycle) {
- // Try scheduling Def&Use operand if register pressure is low.
- const TargetRegisterClass *RegClass = getRegClass(SU, TII, MRI, RegMap);
- unsigned Pressure = OpenNodes[RegClass].size();
- unsigned Limit = RegPressureLimits[RegClass];
-
- // See if we can schedule any predecessor that takes no registers.
- for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
- E = SU->Preds.end(); I != E; ++I) {
- if (I->second) continue;
-
- SUnit *PredSU = I->first;
- if (!PredSU->isAvailable || PredSU->isScheduled)
- continue;
-
- if (isFloater(PredSU)) {
- DEBUG(std::cerr<<"*** Scheduling floater\n");
- AvailableQueue->RemoveFromPriorityQueue(PredSU);
- ScheduleNodeBottomUp(PredSU, CurCycle, false);
- }
- }
-
- SUnit *DUSU = NULL;
- if (SU->isTwoAddress && Pressure < Limit) {
- DUSU = SUnitMap[SU->Node->getOperand(0).Val];
- if (!DUSU->isAvailable || DUSU->isScheduled)
- DUSU = NULL;
- else if (!DUSU->isTwoAddress) {
- SUnit *SSU = SharesOperandWithTwoAddr(DUSU);
- if (SSU && SSU->isAvailable) {
- AvailableQueue->RemoveFromPriorityQueue(SSU);
- ScheduleNodeBottomUp(SSU, CurCycle, false);
- Pressure = OpenNodes[RegClass].size();
- if (Pressure >= Limit)
- DUSU = NULL;
- }
- }
- }
-
- if (DUSU) {
- DEBUG(std::cerr<<"*** Low register pressure: scheduling D&U operand\n");
- AvailableQueue->RemoveFromPriorityQueue(DUSU);
- ScheduleNodeBottomUp(DUSU, CurCycle, false);
- Pressure = OpenNodes[RegClass].size();
- ScheduleVertically(DUSU, CurCycle);
- }
-}
-
-/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
-/// count of its predecessors. If a predecessor pending count is zero, add it to
-/// the Available queue.
-void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle,
- bool Vertical) {
- DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
- DEBUG(SU->dump(&DAG));
- SU->Cycle = CurCycle;
-
- AvailableQueue->ScheduledNode(SU);
- Sequence.push_back(SU);
-
- // Bottom up: release predecessors
- for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
- E = SU->Preds.end(); I != E; ++I)
- ReleasePred(I->first, I->second, CurCycle);
- SU->isScheduled = true;
- CurCycle++;
-
- if (getNumResults(SU) != 0) {
- const TargetRegisterClass *RegClass = getRegClass(SU, TII, MRI, RegMap);
- OpenNodes[RegClass].erase(SU);
-
- if (SchedVertically && Vertical)
- ScheduleVertically(SU, CurCycle);
- }
-}
-
-/// isReady - True if node's lower cycle bound is less or equal to the current
-/// scheduling cycle. Always true if all nodes have uniform latency 1.
-static inline bool isReady(SUnit *SU, unsigned CurCycle) {
- return SU->CycleBound <= CurCycle;
-}
-
-/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
-/// schedulers.
-void ScheduleDAGList::ListScheduleBottomUp() {
- // Determine rough register pressure limit.
- for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
- E = MRI->regclass_end(); RCI != E; ++RCI) {
- const TargetRegisterClass *RC = *RCI;
- unsigned Limit = RC->getNumRegs();
- Limit = (Limit > 2) ? Limit - 2 : 0;
- std::map<const TargetRegisterClass*, unsigned>::iterator RPI =
- RegPressureLimits.find(RC);
- if (RPI == RegPressureLimits.end())
- RegPressureLimits[RC] = Limit;
- else {
- unsigned &OldLimit = RegPressureLimits[RC];
- if (Limit < OldLimit)
- OldLimit = Limit;
- }
- }
-
- unsigned CurCycle = 0;
- // Add root to Available queue.
- AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
-
- // While Available queue is not empty, grab the node with the highest
- // priority. If it is not ready put it back. Schedule the node.
- std::vector<SUnit*> NotReady;
- SUnit *CurNode = NULL;
- while (!AvailableQueue->empty()) {
- SUnit *CurNode = AvailableQueue->pop();
- while (!isReady(CurNode, CurCycle)) {
- NotReady.push_back(CurNode);
- CurNode = AvailableQueue->pop();
- }
-
- // Add the nodes that aren't ready back onto the available list.
- AvailableQueue->push_all(NotReady);
- NotReady.clear();
-
- ScheduleNodeBottomUp(CurNode, CurCycle);
- }
-
- // Add entry node last
- if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
- SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
- Sequence.push_back(Entry);
- }
-
- // Reverse the order if it is bottom up.
- std::reverse(Sequence.begin(), Sequence.end());
-
-
-#ifndef NDEBUG
- // Verify that all SUnits were scheduled.
- bool AnyNotSched = false;
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
- if (!AnyNotSched)
- std::cerr << "*** List scheduling failed! ***\n";
- SUnits[i].dump(&DAG);
- std::cerr << "has not been scheduled!\n";
- AnyNotSched = true;
- }
- }
- assert(!AnyNotSched);
-#endif
-}
-
-//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
@@ -885,284 +283,6 @@ void ScheduleDAGList::ListScheduleTopDown() {
}
//===----------------------------------------------------------------------===//
-// RegReductionPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
-// to reduce register pressure.
-//
-namespace {
- template<class SF>
- class RegReductionPriorityQueue;
-
- /// Sorting functions for the Available queue.
- struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
- RegReductionPriorityQueue<ls_rr_sort> *SPQ;
- ls_rr_sort(RegReductionPriorityQueue<ls_rr_sort> *spq) : SPQ(spq) {}
- ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
-
- bool operator()(const SUnit* left, const SUnit* right) const;
- };
-} // end anonymous namespace
-
-namespace {
- template<class SF>
- class RegReductionPriorityQueue : public SchedulingPriorityQueue {
- // SUnits - The SUnits for the current graph.
- const std::vector<SUnit> *SUnits;
-
- // SethiUllmanNumbers - The SethiUllman number for each node.
- std::vector<int> SethiUllmanNumbers;
-
- std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
- public:
- RegReductionPriorityQueue() :
- Queue(ls_rr_sort(this)) {}
-
- void initNodes(const std::vector<SUnit> &sunits) {
- SUnits = &sunits;
- // Add pseudo dependency edges for two-address nodes.
- if (SchedLowerDefNUse)
- AddPseudoTwoAddrDeps();
- // Calculate node priorities.
- CalculatePriorities();
- }
- void releaseState() {
- SUnits = 0;
- SethiUllmanNumbers.clear();
- }
-
- int getSethiUllmanNumber(unsigned NodeNum) const {
- assert(NodeNum < SethiUllmanNumbers.size());
- return SethiUllmanNumbers[NodeNum];
- }
-
- bool empty() const { return Queue.empty(); }
-
- void push(SUnit *U) {
- Queue.push(U);
- }
- void push_all(const std::vector<SUnit *> &Nodes) {
- for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
- Queue.push(Nodes[i]);
- }
-
- SUnit *pop() {
- SUnit *V = Queue.top();
- Queue.pop();
- return V;
- }
-
- /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
- /// node from a priority queue. We should roll our own heap to make this
- /// better or something.
- void RemoveFromPriorityQueue(SUnit *SU) {
- std::vector<SUnit*> Temp;
-
- assert(!Queue.empty() && "Not in queue!");
- while (Queue.top() != SU) {
- Temp.push_back(Queue.top());
- Queue.pop();
- assert(!Queue.empty() && "Not in queue!");
- }
-
- // Remove the node from the PQ.
- Queue.pop();
-
- // Add all the other nodes back.
- for (unsigned i = 0, e = Temp.size(); i != e; ++i)
- Queue.push(Temp[i]);
- }
-
- private:
- void AddPseudoTwoAddrDeps();
- void CalculatePriorities();
- int CalcNodePriority(const SUnit *SU);
- };
-}
-
-bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
- unsigned LeftNum = left->NodeNum;
- unsigned RightNum = right->NodeNum;
- bool LIsTarget = left->Node->isTargetOpcode();
- bool RIsTarget = right->Node->isTargetOpcode();
- int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
- int RPriority = SPQ->getSethiUllmanNumber(RightNum);
- bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0);
- bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0);
- int LBonus = 0;
- int RBonus = 0;
-
- // Schedule floaters (e.g. load from some constant address) and those nodes
- // with a single predecessor each first. They maintain / reduce register
- // pressure.
- if (LIsFloater)
- LBonus += 2;
- if (RIsFloater)
- RBonus += 2;
-
- if (!SchedLowerDefNUse) {
- // Special tie breaker: if two nodes share a operand, the one that use it
- // as a def&use operand is preferred.
- if (LIsTarget && RIsTarget) {
- if (left->isTwoAddress && !right->isTwoAddress) {
- SDNode *DUNode = left->Node->getOperand(0).Val;
- if (DUNode->isOperand(right->Node))
- LBonus += 2;
- }
- if (!left->isTwoAddress && right->isTwoAddress) {
- SDNode *DUNode = right->Node->getOperand(0).Val;
- if (DUNode->isOperand(left->Node))
- RBonus += 2;
- }
- }
- }
-
- if (LPriority+LBonus < RPriority+RBonus)
- return true;
- else if (LPriority+LBonus == RPriority+RBonus)
- if (left->NumPredsLeft > right->NumPredsLeft)
- return true;
- else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus)
- if (left->CycleBound > right->CycleBound)
- return true;
- return false;
-}
-
-static inline bool isCopyFromLiveIn(const SUnit *SU) {
- SDNode *N = SU->Node;
- return N->getOpcode() == ISD::CopyFromReg &&
- N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
-}
-
-// FIXME: This is probably too slow!
-static void isReachable(SUnit *SU, SUnit *TargetSU,
- std::set<SUnit *> &Visited, bool &Reached) {
- if (Reached) return;
- if (SU == TargetSU) {
- Reached = true;
- return;
- }
- if (!Visited.insert(SU).second) return;
-
- for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
- E = SU->Preds.end(); I != E; ++I)
- isReachable(I->first, TargetSU, Visited, Reached);
-}
-
-static bool isReachable(SUnit *SU, SUnit *TargetSU) {
- std::set<SUnit *> Visited;
- bool Reached = false;
- isReachable(SU, TargetSU, Visited, Reached);
- return Reached;
-}
-
-static SUnit *getDefUsePredecessor(SUnit *SU) {
- SDNode *DU = SU->Node->getOperand(0).Val;
- for (std::set<std::pair<SUnit*, bool> >::iterator
- I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
- if (I->second) continue; // ignore chain preds
- SUnit *PredSU = I->first;
- if (PredSU->Node == DU)
- return PredSU;
- }
-
- // Must be flagged.
- return NULL;
-}
-
-static bool canClobber(SUnit *SU, SUnit *Op) {
- if (SU->isTwoAddress)
- return Op == getDefUsePredecessor(SU);
- return false;
-}
-
-/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
-/// it as a def&use operand. Add a pseudo control edge from it to the other
-/// node (if it won't create a cycle) so the two-address one will be scheduled
-/// first (lower in the schedule).
-template<class SF>
-void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
- for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
- SUnit *SU = (SUnit *)&((*SUnits)[i]);
- SDNode *Node = SU->Node;
- if (!Node->isTargetOpcode())
- continue;
-
- if (SU->isTwoAddress) {
- unsigned Depth = SU->Node->getNodeDepth();
- SUnit *DUSU = getDefUsePredecessor(SU);
- if (!DUSU) continue;
-
- for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
- E = DUSU->Succs.end(); I != E; ++I) {
- SUnit *SuccSU = I->first;
- if (SuccSU != SU && !canClobber(SuccSU, DUSU)) {
- if (SuccSU->Node->getNodeDepth() <= Depth+2 &&
- !isReachable(SuccSU, SU)) {
- DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
- << " to SU #" << SuccSU->NodeNum << "\n");
- if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
- SU->NumChainPredsLeft++;
- if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
- SuccSU->NumChainSuccsLeft++;
- }
- }
- }
- }
- }
-}
-
-/// CalcNodePriority - Priority is the Sethi Ullman number.
-/// Smaller number is the higher priority.
-template<class SF>
-int RegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
- int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
- if (SethiUllmanNumber != 0)
- return SethiUllmanNumber;
-
- unsigned Opc = SU->Node->getOpcode();
- if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
- SethiUllmanNumber = INT_MAX - 10;
- else if (SU->NumSuccsLeft == 0)
- // If SU does not have a use, i.e. it doesn't produce a value that would
- // be consumed (e.g. store), then it terminates a chain of computation.
- // Give it a small SethiUllman number so it will be scheduled right before its
- // predecessors that it doesn't lengthen their live ranges.
- SethiUllmanNumber = INT_MIN + 10;
- else if (SU->NumPredsLeft == 0 &&
- (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
- SethiUllmanNumber = 1;
- else {
- int Extra = 0;
- for (std::set<std::pair<SUnit*, bool> >::const_iterator
- I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
- if (I->second) continue; // ignore chain preds
- SUnit *PredSU = I->first;
- int PredSethiUllman = CalcNodePriority(PredSU);
- if (PredSethiUllman > SethiUllmanNumber) {
- SethiUllmanNumber = PredSethiUllman;
- Extra = 0;
- } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
- Extra++;
- }
-
- SethiUllmanNumber += Extra;
- }
-
- return SethiUllmanNumber;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-template<class SF>
-void RegReductionPriorityQueue<SF>::CalculatePriorities() {
- SethiUllmanNumbers.assign(SUnits->size(), 0);
-
- for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
- CalcNodePriority(&(*SUnits)[i]);
-}
-
-//===----------------------------------------------------------------------===//
// LatencyPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
@@ -1240,6 +360,17 @@ public:
return V;
}
+ // ScheduledNode - As nodes are scheduled, we look to see if there are any
+ // successor nodes that have a single unscheduled predecessor. If so, that
+ // single predecessor has a higher priority, since scheduling it will make
+ // the node available.
+ void ScheduledNode(SUnit *Node);
+
+private:
+ void CalculatePriorities();
+ int CalcLatency(const SUnit &SU);
+ void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
+
/// RemoveFromPriorityQueue - This is a really inefficient way to remove a
/// node from a priority queue. We should roll our own heap to make this
/// better or something.
@@ -1260,17 +391,6 @@ public:
for (unsigned i = 0, e = Temp.size(); i != e; ++i)
Queue.push(Temp[i]);
}
-
- // ScheduledNode - As nodes are scheduled, we look to see if there are any
- // successor nodes that have a single unscheduled predecessor. If so, that
- // single predecessor has a higher priority, since scheduling it will make
- // the node available.
- void ScheduledNode(SUnit *Node);
-
-private:
- void CalculatePriorities();
- int CalcLatency(const SUnit &SU);
- void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
};
}
@@ -1388,19 +508,12 @@ void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
// Public Constructor Functions
//===----------------------------------------------------------------------===//
-llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
- MachineBasicBlock *BB) {
- return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true,
- new RegReductionPriorityQueue<ls_rr_sort>(),
- new HazardRecognizer());
-}
-
/// createTDListDAGScheduler - This creates a top-down list scheduler with the
/// specified hazard recognizer.
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
MachineBasicBlock *BB,
HazardRecognizer *HR) {
- return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
+ return new ScheduleDAGList(DAG, BB, DAG.getTarget(),
new LatencyPriorityQueue(),
HR);
}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
new file mode 100644
index 0000000000..acd6904ce2
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -0,0 +1,813 @@
+//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Evan Cheng and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements bottom-up and top-down register pressure reduction list
+// schedulers, using standard algorithms. The basic approach uses a priority
+// queue of available nodes to schedule. One at a time, nodes are taken from
+// the priority queue (thus in priority order), checked for legality to
+// schedule, and emitted if legal.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sched"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include <climits>
+#include <iostream>
+#include <queue>
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+namespace {
+ cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden);
+}
+
+namespace {
+//===----------------------------------------------------------------------===//
+/// ScheduleDAGRRList - The actual register reduction list scheduler
+/// implementation. This supports both top-down and bottom-up scheduling.
+///
+
+class ScheduleDAGRRList : public ScheduleDAG {
+private:
+ /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
+ /// it is top-down.
+ bool isBottomUp;
+
+ /// AvailableQueue - The priority queue to use for the available SUnits.
+ ///
+ SchedulingPriorityQueue *AvailableQueue;
+
+public:
+ ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
+ const TargetMachine &tm, bool isbottomup,
+ SchedulingPriorityQueue *availqueue)
+ : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
+ AvailableQueue(availqueue) {
+ }
+
+ ~ScheduleDAGRRList() {
+ delete AvailableQueue;
+ }
+
+ void Schedule();
+
+private:
+ void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
+ void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
+ void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle);
+ void ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle);
+ void ListScheduleTopDown();
+ void ListScheduleBottomUp();
+};
+} // end anonymous namespace
+
+
+/// Schedule - Schedule the DAG using list scheduling.
+void ScheduleDAGRRList::Schedule() {
+ DEBUG(std::cerr << "********** List Scheduling **********\n");
+
+ // Build scheduling units.
+ BuildSchedUnits();
+
+ CalculateDepths();
+ CalculateHeights();
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(&DAG));
+
+ AvailableQueue->initNodes(SUnits);
+
+ // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
+ if (isBottomUp)
+ ListScheduleBottomUp();
+ else
+ ListScheduleTopDown();
+
+ AvailableQueue->releaseState();
+
+ DEBUG(std::cerr << "*** Final schedule ***\n");
+ DEBUG(dumpSchedule());
+ DEBUG(std::cerr << "\n");
+
+ // Emit in scheduled order
+ EmitSchedule();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Bottom-Up Scheduling
+//===----------------------------------------------------------------------===//
+
+static const TargetRegisterClass *getRegClass(SUnit *SU,
+ const TargetInstrInfo *TII,
+ const MRegisterInfo *MRI,
+ SSARegMap *RegMap) {
+ if (SU->Node->isTargetOpcode()) {
+ unsigned Opc = SU->Node->getTargetOpcode();
+ const TargetInstrDescriptor &II = TII->get(Opc);
+ return II.OpInfo->RegClass;
+ } else {
+ assert(SU->Node->getOpcode() == ISD::CopyFromReg);
+ unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
+ if (MRegisterInfo::isVirtualRegister(SrcReg))
+ return RegMap->getRegClass(SrcReg);
+ else {
+ for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
+ E = MRI->regclass_end(); I != E; ++I)
+ if ((*I)->hasType(SU->Node->getValueType(0)) &&
+ (*I)->contains(SrcReg))
+ return *I;
+ assert(false && "Couldn't find register class for reg copy!");
+ }
+ return NULL;
+ }
+}
+
+static unsigned getNumResults(SUnit *SU) {
+ unsigned NumResults = 0;
+ for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
+ MVT::ValueType VT = SU->Node->getValueType(i);
+ if (VT != MVT::Other && VT != MVT::Flag)
+ NumResults++;
+ }
+ return NumResults;
+}
+
+/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
+/// the Available queue is the count reaches zero. Also update its cycle bound.
+void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
+ unsigned CurCycle) {
+ // FIXME: the distance between two nodes is not always == the predecessor's
+ // latency. For example, the reader can very well read the register written
+ // by the predecessor later than the issue cycle. It also depends on the
+ // interrupt model (drain vs. freeze).
+ PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
+
+ if (!isChain)
+ PredSU->NumSuccsLeft--;
+ else
+ PredSU->NumChainSuccsLeft--;
+
+#ifndef NDEBUG
+ if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
+ std::cerr << "*** List scheduling failed! ***\n";
+ PredSU->dump(&DAG);
+ std::cerr << " has been released too many times!\n";
+ assert(0);
+ }
+#endif
+
+ if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
+ // EntryToken has to go last! Special case it here.
+ if (PredSU->Node->getOpcode() != ISD::EntryToken) {
+ PredSU->isAvailable = true;
+ AvailableQueue->push(PredSU);
+ }
+ }
+}
+
+/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
+/// count of its predecessors. If a predecessor pending count is zero, add it to
+/// the Available queue.
+void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle) {
+ DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(SU->dump(&DAG));
+ SU->Cycle = CurCycle;
+
+ AvailableQueue->ScheduledNode(SU);
+ Sequence.push_back(SU);
+
+ // Bottom up: release predecessors
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+ E = SU->Preds.end(); I != E; ++I)
+ ReleasePred(I->first, I->second, CurCycle);
+ SU->isScheduled = true;
+ CurCycle++;
+}
+
+/// isReady - True if node's lower cycle bound is less or equal to the current
+/// scheduling cycle. Always true if all nodes have uniform latency 1.
+static inline bool isReady(SUnit *SU, unsigned CurCycle) {
+ return SU->CycleBound <= CurCycle;
+}
+
+/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
+/// schedulers.
+void ScheduleDAGRRList::ListScheduleBottomUp() {
+ unsigned CurCycle = 0;
+ // Add root to Available queue.
+ AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
+
+ // While Available queue is not empty, grab the node with the highest
+ // priority. If it is not ready put it back. Schedule the node.
+ std::vector<SUnit*> NotReady;
+ SUnit *CurNode = NULL;
+ while (!AvailableQueue->empty()) {
+ SUnit *CurNode = AvailableQueue->pop();
+ while (!isReady(CurNode, CurCycle)) {
+ NotReady.push_back(CurNode);
+ CurNode = AvailableQueue->pop();
+ }
+
+ // Add the nodes that aren't ready back onto the available list.
+ AvailableQueue->push_all(NotReady);
+ NotReady.clear();
+
+ ScheduleNodeBottomUp(CurNode, CurCycle);
+ }
+
+ // Add entry node last
+ if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
+ SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+ Sequence.push_back(Entry);
+ }
+
+ // Reverse the order if it is bottom up.
+ std::reverse(Sequence.begin(), Sequence.end());
+
+
+#ifndef NDEBUG
+ // Verify that all SUnits were scheduled.
+ bool AnyNotSched = false;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
+ if (!AnyNotSched)
+ std::cerr << "*** List scheduling failed! ***\n";
+ SUnits[i].dump(&DAG);
+ std::cerr << "has not been scheduled!\n";
+ AnyNotSched = true;
+ }
+ }
+ assert(!AnyNotSched);
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Down Scheduling
+//===----------------------------------------------------------------------===//
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
+/// the PendingQueue if the count reaches zero.
+void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
+ unsigned CurCycle) {
+ // FIXME: the distance between two nodes is not always == the predecessor's
+ // latency. For example, the reader can very well read the register written
+ // by the predecessor later than the issue cycle. It also depends on the
+ // interrupt model (drain vs. freeze).
+ SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
+
+ if (!isChain)
+ SuccSU->NumPredsLeft--;
+ else
+ SuccSU->NumChainPredsLeft--;
+
+#ifndef NDEBUG
+ if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
+ std::cerr << "*** List scheduling failed! ***\n";
+ SuccSU->dump(&DAG);
+ std::cerr << " has been released too many times!\n";
+ assert(0);
+ }
+#endif
+
+ if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
+ SuccSU->isAvailable = true;
+ AvailableQueue->push(SuccSU);
+ }
+}
+
+
+/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
+/// count of its successors. If a successor pending count is zero, add it to
+/// the Available queue.
+void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle) {
+ DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(SU->dump(&DAG));
+ SU->Cycle = CurCycle;
+
+ AvailableQueue->ScheduledNode(SU);
+ Sequence.push_back(SU);
+
+ // Top down: release successors
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
+ E = SU->Succs.end(); I != E; ++I)
+ ReleaseSucc(I->first, I->second, CurCycle);
+ SU->isScheduled = true;
+ CurCycle++;
+}
+
+void ScheduleDAGRRList::ListScheduleTopDown() {
+ unsigned CurCycle = 0;
+ SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+
+ // All leaves to Available queue.
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ // It is available if it has no predecessors.
+ if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
+ AvailableQueue->push(&SUnits[i]);
+ SUnits[i].isAvailable = true;
+ }
+ }
+
+ // Emit the entry node first.
+ ScheduleNodeTopDown(Entry, CurCycle);
+
+ // While Available queue is not empty, grab the node with the highest
+ // priority. If it is not ready put it back. Schedule the node.
+ std::vector<SUnit*> NotReady;
+ SUnit *CurNode = NULL;
+ while (!AvailableQueue->empty()) {
+ SUnit *CurNode = AvailableQueue->pop();
+ while (!isReady(CurNode, CurCycle)) {
+ NotReady.push_back(CurNode);
+ CurNode = AvailableQueue->pop();
+ }
+
+ // Add the nodes that aren't ready back onto the available list.
+ AvailableQueue->push_all(NotReady);
+ NotReady.clear();
+
+ ScheduleNodeTopDown(CurNode, CurCycle);
+ }
+
+
+#ifndef NDEBUG
+ // Verify that all SUnits were scheduled.
+ bool AnyNotSched = false;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ if (!SUnits[i].isScheduled) {
+ if (!AnyNotSched)
+ std::cerr << "*** List scheduling failed! ***\n";
+ SUnits[i].dump(&DAG);
+ std::cerr << "has not been scheduled!\n";
+ AnyNotSched = true;
+ }
+ }
+ assert(!AnyNotSched);
+#endif
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// RegReductionPriorityQueue Implementation
+//===----------------------------------------------------------------------===//
+//
+// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
+// to reduce register pressure.
+//
+namespace {
+ template<class SF>
+ class RegReductionPriorityQueue;
+
+ /// Sorting functions for the Available queue.
+ struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+ RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
+ bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
+ bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
+
+ bool operator()(const SUnit* left, const SUnit* right) const;
+ };
+
+ struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+ RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
+ td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
+ td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
+
+ bool operator()(const SUnit* left, const SUnit* right) const;
+ };
+} // end anonymous namespace
+
+namespace {
+ template<class SF>
+ class RegReductionPriorityQueue : public SchedulingPriorityQueue {
+ std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
+
+ public:
+ RegReductionPriorityQueue() :
+ Queue(SF(this)) {}
+
+ virtual void initNodes(const std::vector<SUnit> &sunits) {}
+ virtual void releaseState() {}
+
+ virtual int getSethiUllmanNumber(unsigned NodeNum) const {
+ return 0;
+ }
+
+ bool empty() const { return Queue.empty(); }
+
+ void push(SUnit *U) {
+ Queue.push(U);
+ }
+ void push_all(const std::vector<SUnit *> &Nodes) {
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
+ Queue.push(Nodes[i]);
+ }
+
+ SUnit *pop() {
+ SUnit *V = Queue.top();
+ Queue.pop();
+ return V;
+ }
+ };
+
+ template<class SF>
+ class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
+ // SUnits - The SUnits for the current graph.
+ const std::vector<SUnit> *SUnits;
+
+ // SethiUllmanNumbers - The SethiUllman number for each node.
+ std::vector<int> SethiUllmanNumbers;
+
+ public:
+ BURegReductionPriorityQueue() {}
+
+ void initNodes(const std::vector<SUnit> &sunits) {
+ SUnits = &sunits;
+ // Add pseudo dependency edges for two-address nodes.
+ if (SchedLowerDefNUse)
+ AddPseudoTwoAddrDeps();
+ // Calculate node priorities.
+ CalculatePriorities();
+ }
+
+ void releaseState() {
+ SUnits = 0;
+ SethiUllmanNumbers.clear();
+ }
+
+ int getSethiUllmanNumber(unsigned NodeNum) const {
+ assert(NodeNum < SethiUllmanNumbers.size());
+ return SethiUllmanNumbers[NodeNum];
+ }
+
+ private:
+ void AddPseudoTwoAddrDeps();
+ void CalculatePriorities();
+ int CalcNodePriority(const SUnit *SU);
+ };
+
+
+ template<class SF>
+ class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
+ // SUnits - The SUnits for the current graph.
+ const std::vector<SUnit> *SUnits;
+
+ // SethiUllmanNumbers - The SethiUllman number for each node.
+ std::vector<int> SethiUllmanNumbers;
+
+ public:
+ TDRegReductionPriorityQueue() {}
+
+ void initNodes(const std::vector<SUnit> &sunits) {
+ SUnits = &sunits;
+ // Calculate node priorities.
+ CalculatePriorities();
+ }
+
+ void releaseState() {
+ SUnits = 0;
+ SethiUllmanNumbers.clear();
+ }
+
+ int getSethiUllmanNumber(unsigned NodeNum) const {
+ assert(NodeNum < SethiUllmanNumbers.size());
+ return SethiUllmanNumbers[NodeNum];
+ }
+
+ private:
+ void CalculatePriorities();
+ int CalcNodePriority(const SUnit *SU);
+ };
+}
+
+// Bottom up
+bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+ unsigned LeftNum = left->NodeNum;
+ unsigned RightNum = right->NodeNum;
+ bool LIsTarget = left->Node->isTargetOpcode();
+ bool RIsTarget = right->Node->isTargetOpcode();
+ int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
+ int RPriority = SPQ->getSethiUllmanNumber(RightNum);
+ bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0);
+ bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0);
+ int LBonus = 0;
+ int RBonus = 0;
+
+ // Schedule floaters (e.g. load from some constant address) and those nodes
+ // with a single predecessor each first. They maintain / reduce register
+ // pressure.
+ if (LIsFloater)
+ LBonus += 2;
+ if (RIsFloater)
+ RBonus += 2;
+
+ if (!SchedLowerDefNUse) {
+ // Special tie breaker: if two nodes share a operand, the one that use it
+ // as a def&use operand is preferred.
+ if (LIsTarget && RIsTarget) {
+ if (left->isTwoAddress && !right->isTwoAddress) {
+ SDNode *DUNode = left->Node->getOperand(0).Val;
+ if (DUNode->isOperand(right->Node))
+ LBonus += 2;
+ }
+ if (!left->isTwoAddress && right->isTwoAddress) {
+ SDNode *DUNode = right->Node->getOperand(0).Val;
+ if (DUNode->isOperand(left->Node))
+ RBonus += 2;
+ }
+ }
+ }
+
+ if (LPriority+LBonus < RPriority+RBonus)
+ return true;
+ else if (LPriority+LBonus == RPriority+RBonus)
+ if (left->NumPredsLeft > right->NumPredsLeft)
+ return true;
+ else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus)
+ if (left->CycleBound > right->CycleBound)
+ return true;
+ return false;
+}
+
+static inline bool isCopyFromLiveIn(const SUnit *SU) {
+ SDNode *N = SU->Node;
+ return N->getOpcode() == ISD::CopyFromReg &&
+ N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
+}
+
+// FIXME: This is probably too slow!
+static void isReachable(SUnit *SU, SUnit *TargetSU,
+ std::set<SUnit *> &Visited, bool &Reached) {
+ if (Reached) return;
+ if (SU == TargetSU) {
+ Reached = true;
+ return;
+ }
+ if (!Visited.insert(SU).second) return;
+
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+ E = SU->Preds.end(); I != E; ++I)
+ isReachable(I->first, TargetSU, Visited, Reached);
+}
+
+static bool isReachable(SUnit *SU, SUnit *TargetSU) {
+ std::set<SUnit *> Visited;
+ bool Reached = false;
+ isReachable(SU, TargetSU, Visited, Reached);
+ return Reached;
+}
+
+static SUnit *getDefUsePredecessor(SUnit *SU) {
+ SDNode *DU = SU->Node->getOperand(0).Val;
+ for (std::set<std::pair<SUnit*, bool> >::iterator
+ I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+ if (I->second) continue; // ignore chain preds
+ SUnit *PredSU = I->first;
+ if (PredSU->Node == DU)
+ return PredSU;
+ }
+
+ // Must be flagged.
+ return NULL;
+}
+
+static bool canClobber(SUnit *SU, SUnit *Op) {
+ if (SU->isTwoAddress)
+ return Op == getDefUsePredecessor(SU);
+ return false;
+}
+
+/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
+/// it as a def&use operand. Add a pseudo control edge from it to the other
+/// node (if it won't create a cycle) so the two-address one will be scheduled
+/// first (lower in the schedule).
+template<class SF>
+void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
+ SUnit *SU = (SUnit *)&((*SUnits)[i]);
+ SDNode *Node = SU->Node;
+ if (!Node->isTargetOpcode())
+ continue;
+
+ if (SU->isTwoAddress) {
+ unsigned Depth = SU->Node->getNodeDepth();
+ SUnit *DUSU = getDefUsePredecessor(SU);
+ if (!DUSU) continue;
+
+ for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
+ E = DUSU->Succs.end(); I != E; ++I) {
+ SUnit *SuccSU = I->first;
+ if (SuccSU != SU && !canClobber(SuccSU, DUSU)) {
+ if (SuccSU->Node->getNodeDepth() <= Depth+2 &&
+ !isReachable(SuccSU, SU)) {
+ DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
+ << " to SU #" << SuccSU->NodeNum << "\n");
+ if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
+ SU->NumChainPredsLeft++;
+ if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
+ SuccSU->NumChainSuccsLeft++;
+ }
+ }
+ }
+ }
+ }
+}
+
+/// CalcNodePriority - Priority is the Sethi Ullman number.
+/// Smaller number is the higher priority.
+template<class SF>
+int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
+ int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
+ if (SethiUllmanNumber != 0)
+ return SethiUllmanNumber;
+
+ unsigned Opc = SU->Node->getOpcode();
+ if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+ SethiUllmanNumber = INT_MAX - 10;
+ else if (SU->NumSuccsLeft == 0)
+ // If SU does not have a use, i.e. it doesn't produce a value that would
+ // be consumed (e.g. store), then it terminates a chain of computation.
+ // Give it a small SethiUllman number so it will be scheduled right before its
+ // predecessors that it doesn't lengthen their live ranges.
+ SethiUllmanNumber = INT_MIN + 10;
+ else if (SU->NumPredsLeft == 0 &&
+ (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
+ SethiUllmanNumber = 1;
+ else {
+ int Extra = 0;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+ if (I->second) continue; // ignore chain preds
+ SUnit *PredSU = I->first;
+ int PredSethiUllman = CalcNodePriority(PredSU);
+ if (PredSethiUllman > SethiUllmanNumber) {
+ SethiUllmanNumber = PredSethiUllman;
+ Extra = 0;
+ } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
+ Extra++;
+ }
+
+ SethiUllmanNumber += Extra;
+ }
+
+ return SethiUllmanNumber;
+}
+
+/// CalculatePriorities - Calculate priorities of all scheduling units.
+template<class SF>
+void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
+ SethiUllmanNumbers.assign(SUnits->size(), 0);
+
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
+ CalcNodePriority(&(*SUnits)[i]);
+}
+
+static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
+ unsigned Sum = 0;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) {
+ SUnit *SuccSU = I->first;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) {
+ SUnit *PredSU = II->first;
+ if (!PredSU->isScheduled)
+ Sum++;
+ }
+ }
+
+ return Sum;
+}
+
+
+// Top down
+bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+ unsigned LeftNum = left->NodeNum;
+ unsigned RightNum = right->NodeNum;
+ int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
+ int RPriority = SPQ->getSethiUllmanNumber(RightNum);
+ bool LIsTarget = left->Node->isTargetOpcode();
+ bool RIsTarget = right->Node->isTargetOpcode();
+ bool LIsFloater = LIsTarget && left->NumPreds == 0;
+ bool RIsFloater = RIsTarget && right->NumPreds == 0;
+ unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
+ unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
+
+ if (left->NumSuccs == 0 && right->NumSuccs != 0)
+ return false;
+ else if (left->NumSuccs != 0 && right->NumSuccs == 0)
+ return true;
+
+ // Special tie breaker: if two nodes share a operand, the one that use it
+ // as a def&use operand is preferred.
+ if (LIsTarget && RIsTarget) {
+ if (left->isTwoAddress && !right->isTwoAddress) {
+ SDNode *DUNode = left->Node->getOperand(0).Val;
+ if (DUNode->isOperand(right->Node))
+ RBonus += 2;
+ }
+ if (!left->isTwoAddress && right->isTwoAddress) {
+ SDNode *DUNode = right->Node->getOperand(0).Val;
+ if (DUNode->isOperand(left->Node))
+ LBonus += 2;
+ }
+ }
+ if (LIsFloater)
+ LBonus -= 2;
+ if (RIsFloater)
+ RBonus -= 2;
+ if (left->NumSuccs == 1)
+ LBonus += 2;
+ if (right->NumSuccs == 1)
+ RBonus += 2;
+
+ if (LPriority+LBonus < RPriority+RBonus)
+ return true;
+ else if (LPriority == RPriority)
+ if (left->Depth < right->Depth)
+ return true;
+ else if (left->Depth == right->Depth)
+ if (left->NumSuccsLeft > right->NumSuccsLeft)
+ return true;
+ else if (left->NumSuccsLeft == right->NumSuccsLeft)
+ if (left->CycleBound > right->CycleBound)
+ return true;
+ return false;
+}
+
+/// CalcNodePriority - Priority is the Sethi Ullman number.
+/// Smaller number is the higher priority.
+template<class SF>
+int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
+ int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
+ if (SethiUllmanNumber != 0)
+ return SethiUllmanNumber;
+
+ unsigned Opc = SU->Node->getOpcode();
+ if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+ SethiUllmanNumber = INT_MAX - 10;
+ else if (SU->NumSuccsLeft == 0)
+ // If SU does not have a use, i.e. it doesn't produce a value that would
+ // be consumed (e.g. store), then it terminates a chain of computation.
+ // Give it a small SethiUllman number so it will be scheduled right before its
+ // predecessors that it doesn't lengthen their live ranges.
+ SethiUllmanNumber = INT_MIN + 10;
+ else if (SU->NumPredsLeft == 0 &&
+ (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
+ SethiUllmanNumber = 1;
+ else {
+ int Extra = 0;
+ for (std::set<std::pair<SUnit*, bool> >::const_iterator
+ I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+ if (I->second) continue; // ignore chain preds
+ SUnit *PredSU = I->first;
+ int PredSethiUllman = CalcNodePriority(PredSU);
+ if (PredSethiUllman > SethiUllmanNumber) {
+ SethiUllmanNumber = PredSethiUllman;
+ Extra = 0;
+ } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
+ Extra++;
+ }
+
+ SethiUllmanNumber += Extra;
+ }
+
+ return SethiUllmanNumber;
+}
+
+/// CalculatePriorities - Calculate priorities of all scheduling units.
+template<class SF>
+void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
+ SethiUllmanNumbers.assign(SUnits->size(), 0);
+
+ for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
+ CalcNodePriority(&(*SUnits)[i]);
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true,
+ new BURegReductionPriorityQueue<bu_ls_rr_sort>());
+}
+
+llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG,
+ MachineBasicBlock *BB) {
+ return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false,
+ new TDRegReductionPriorityQueue<td_ls_rr_sort>());
+}
+
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index e9ac44693a..6e24ad4205 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -58,36 +58,28 @@ ViewSchedDAGs("view-sched-dags", cl::Hidden,
static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
#endif
-// Scheduling heuristics
-enum SchedHeuristics {
- defaultScheduling, // Let the target specify its preference.
- noScheduling, // No scheduling, emit breadth first sequence.
- simpleScheduling, // Two pass, min. critical path, max. utilization.
- simpleNoItinScheduling, // Same as above exact using generic latency.
- listSchedulingBURR, // Bottom up reg reduction list scheduling.
- listSchedulingTD // Top-down list scheduler.
-};
-
namespace {
- cl::opt<SchedHeuristics>
+ cl::opt<ScheduleDAG::SchedHeuristics>
ISHeuristic(
"sched",
cl::desc("Choose scheduling style"),
- cl::init(defaultScheduling),
+ cl::init(ScheduleDAG::defaultScheduling),
cl::values(
- clEnumValN(defaultScheduling, "default",
+ clEnumValN(ScheduleDAG::defaultScheduling, "default",
"Target preferred scheduling style"),
- clEnumValN(noScheduling, "none",
+ clEnumValN(ScheduleDAG::noScheduling, "none",
"No scheduling: breadth first sequencing"),
- clEnumValN(simpleScheduling, "simple",
+ clEnumValN(ScheduleDAG::simpleScheduling, "simple",
"Simple two pass scheduling: minimize critical path "
"and maximize processor utilization"),
- clEnumValN(simpleNoItinScheduling, "simple-noitin",
+ clEnumValN(ScheduleDAG::simpleNoItinScheduling, "simple-noitin",
"Simple two pass scheduling: Same as simple "
"except using generic latency"),
- clEnumValN(listSchedulingBURR, "list-burr",
- "Bottom up register reduction list scheduling"),
- clEnumValN(listSchedulingTD, "list-td",
+ clEnumValN(ScheduleDAG::listSchedulingBURR, "list-burr",
+ "Bottom-up register reduction list scheduling"),
+ clEnumValN(ScheduleDAG::listSchedulingTDRR, "list-tdrr",
+ "Top-down register reduction list scheduling"),
+ clEnumValN(ScheduleDAG::listSchedulingTD, "list-td",
"Top-down list scheduler"),
clEnumValEnd));
} // namespace
@@ -3418,7 +3410,7 @@ void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
switch (ISHeuristic) {
default: assert(0 && "Unrecognized scheduling heuristic");
- case defaultScheduling:
+ case ScheduleDAG::defaultScheduling:
if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
else {
@@ -3427,19 +3419,22 @@ void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
SL = createBURRListDAGScheduler(DAG, BB);
}
break;
- case noScheduling:
+ case ScheduleDAG::noScheduling:
SL = createBFS_DAGScheduler(DAG, BB);
break;
- case simpleScheduling:
+ case ScheduleDAG::simpleScheduling:
SL = createSimpleDAGScheduler(false, DAG, BB);
break;
- case simpleNoItinScheduling:
+ case ScheduleDAG::simpleNoItinScheduling:
SL = createSimpleDAGScheduler(true, DAG, BB);
break;
- case listSchedulingBURR:
+ case ScheduleDAG::listSchedulingBURR:
SL = createBURRListDAGScheduler(DAG, BB);
break;
- case listSchedulingTD:
+ case ScheduleDAG::listSchedulingTDRR:
+ SL = createTDRRListDAGScheduler(DAG, BB);
+ break;
+ case ScheduleDAG::listSchedulingTD:
SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
break;
}