summaryrefslogtreecommitdiff
path: root/lib/CodeGen
diff options
context:
space:
mode:
authorBenjamin Kramer <benny.kra@googlemail.com>2013-01-11 20:05:37 +0000
committerBenjamin Kramer <benny.kra@googlemail.com>2013-01-11 20:05:37 +0000
commit69e42dbd006c0afb732067ece7327988b1e24c01 (patch)
tree15eda209bdbedb97aed6f16286c25e7d845f4432 /lib/CodeGen
parent3e40d927a775994d8f4c2d30695be69c248fa16c (diff)
downloadllvm-69e42dbd006c0afb732067ece7327988b1e24c01.tar.gz
llvm-69e42dbd006c0afb732067ece7327988b1e24c01.tar.bz2
llvm-69e42dbd006c0afb732067ece7327988b1e24c01.tar.xz
Split TargetLowering into a CodeGen and a SelectionDAG part.
This fixes some of the cycles between libCodeGen and libSelectionDAG. It's still a complete mess but as long as the edges consist of virtual call it doesn't cause breakage. BasicTTI did static calls and thus broke some build configurations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172246 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen')
-rw-r--r--lib/CodeGen/BasicTargetTransformInfo.cpp8
-rw-r--r--lib/CodeGen/CMakeLists.txt15
-rw-r--r--lib/CodeGen/DwarfEHPrepare.cpp2
-rw-r--r--lib/CodeGen/IfConversion.cpp2
-rw-r--r--lib/CodeGen/MachineBlockPlacement.cpp2
-rw-r--r--lib/CodeGen/MachineLICM.cpp2
-rw-r--r--lib/CodeGen/SelectionDAG/TargetLowering.cpp976
-rw-r--r--lib/CodeGen/SjLjEHPrepare.cpp6
-rw-r--r--lib/CodeGen/StackProtector.cpp6
-rw-r--r--lib/CodeGen/TargetLoweringBase.cpp1274
10 files changed, 1301 insertions, 992 deletions
diff --git a/lib/CodeGen/BasicTargetTransformInfo.cpp b/lib/CodeGen/BasicTargetTransformInfo.cpp
index 59192f444e..ea5e93747d 100644
--- a/lib/CodeGen/BasicTargetTransformInfo.cpp
+++ b/lib/CodeGen/BasicTargetTransformInfo.cpp
@@ -26,7 +26,7 @@ using namespace llvm;
namespace {
class BasicTTI : public ImmutablePass, public TargetTransformInfo {
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the result needs to be inserted and/or extracted from vectors.
@@ -37,7 +37,7 @@ public:
llvm_unreachable("This pass cannot be directly constructed");
}
- BasicTTI(const TargetLowering *TLI) : ImmutablePass(ID), TLI(TLI) {
+ BasicTTI(const TargetLoweringBase *TLI) : ImmutablePass(ID), TLI(TLI) {
initializeBasicTTIPass(*PassRegistry::getPassRegistry());
}
@@ -112,7 +112,7 @@ INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
char BasicTTI::ID = 0;
ImmutablePass *
-llvm::createBasicTargetTransformInfoPass(const TargetLowering *TLI) {
+llvm::createBasicTargetTransformInfoPass(const TargetLoweringBase *TLI) {
return new BasicTTI(TLI);
}
@@ -128,7 +128,7 @@ bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const {
- TargetLowering::AddrMode AM;
+ TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index d5f3932c15..ddc7adab49 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -9,8 +9,8 @@ add_llvm_library(LLVMCodeGen
CodeGen.cpp
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp
- DeadMachineInstructionElim.cpp
DFAPacketizer.cpp
+ DeadMachineInstructionElim.cpp
DwarfEHPrepare.cpp
EarlyIfConversion.cpp
EdgeBundles.cpp
@@ -32,21 +32,20 @@ add_llvm_library(LLVMCodeGen
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveIntervalUnion.cpp
+ LiveRangeCalc.cpp
+ LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
- LiveRangeCalc.cpp
- LiveRangeEdit.cpp
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp
MachineBranchProbabilityInfo.cpp
+ MachineCSE.cpp
MachineCodeEmitter.cpp
MachineCopyPropagation.cpp
- MachineCSE.cpp
MachineDominators.cpp
- MachinePostDominators.cpp
MachineFunction.cpp
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
@@ -58,6 +57,7 @@ add_llvm_library(LLVMCodeGen
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
+ MachinePostDominators.cpp
MachineRegisterInfo.cpp
MachineSSAUpdater.cpp
MachineScheduler.cpp
@@ -91,16 +91,17 @@ add_llvm_library(LLVMCodeGen
ShrinkWrapping.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
- Spiller.cpp
SpillPlacement.cpp
+ Spiller.cpp
SplitKit.cpp
+ StackColoring.cpp
StackProtector.cpp
StackSlotColoring.cpp
- StackColoring.cpp
StrongPHIElimination.cpp
TailDuplication.cpp
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp
+ TargetLoweringBase.cpp
TargetLoweringObjectFileImpl.cpp
TargetOptionsImpl.cpp
TargetRegisterInfo.cpp
diff --git a/lib/CodeGen/DwarfEHPrepare.cpp b/lib/CodeGen/DwarfEHPrepare.cpp
index 4cafa96b10..f27ec770eb 100644
--- a/lib/CodeGen/DwarfEHPrepare.cpp
+++ b/lib/CodeGen/DwarfEHPrepare.cpp
@@ -33,7 +33,7 @@ STATISTIC(NumResumesLowered, "Number of resume calls lowered");
namespace {
class DwarfEHPrepare : public FunctionPass {
const TargetMachine *TM;
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
// RewindFunction - _Unwind_Resume or the target equivalent.
Constant *RewindFunction;
diff --git a/lib/CodeGen/IfConversion.cpp b/lib/CodeGen/IfConversion.cpp
index 8906991e86..3583a9b71b 100644
--- a/lib/CodeGen/IfConversion.cpp
+++ b/lib/CodeGen/IfConversion.cpp
@@ -151,7 +151,7 @@ namespace {
/// basic block number.
std::vector<BBInfo> BBAnalysis;
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const InstrItineraryData *InstrItins;
diff --git a/lib/CodeGen/MachineBlockPlacement.cpp b/lib/CodeGen/MachineBlockPlacement.cpp
index 07a3e039ed..3b09c6b779 100644
--- a/lib/CodeGen/MachineBlockPlacement.cpp
+++ b/lib/CodeGen/MachineBlockPlacement.cpp
@@ -171,7 +171,7 @@ class MachineBlockPlacement : public MachineFunctionPass {
const TargetInstrInfo *TII;
/// \brief A handle to the target's lowering info.
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
/// \brief Allocator and owner of BlockChain structures.
///
diff --git a/lib/CodeGen/MachineLICM.cpp b/lib/CodeGen/MachineLICM.cpp
index 760cf8a516..ed3ed4d4d9 100644
--- a/lib/CodeGen/MachineLICM.cpp
+++ b/lib/CodeGen/MachineLICM.cpp
@@ -62,7 +62,7 @@ namespace {
class MachineLICM : public MachineFunctionPass {
const TargetMachine *TM;
const TargetInstrInfo *TII;
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
const TargetRegisterInfo *TRI;
const MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 35a11b40ca..2e248e9451 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -33,324 +33,6 @@
#include <cctype>
using namespace llvm;
-/// InitLibcallNames - Set default libcall names.
-///
-static void InitLibcallNames(const char **Names) {
- Names[RTLIB::SHL_I16] = "__ashlhi3";
- Names[RTLIB::SHL_I32] = "__ashlsi3";
- Names[RTLIB::SHL_I64] = "__ashldi3";
- Names[RTLIB::SHL_I128] = "__ashlti3";
- Names[RTLIB::SRL_I16] = "__lshrhi3";
- Names[RTLIB::SRL_I32] = "__lshrsi3";
- Names[RTLIB::SRL_I64] = "__lshrdi3";
- Names[RTLIB::SRL_I128] = "__lshrti3";
- Names[RTLIB::SRA_I16] = "__ashrhi3";
- Names[RTLIB::SRA_I32] = "__ashrsi3";
- Names[RTLIB::SRA_I64] = "__ashrdi3";
- Names[RTLIB::SRA_I128] = "__ashrti3";
- Names[RTLIB::MUL_I8] = "__mulqi3";
- Names[RTLIB::MUL_I16] = "__mulhi3";
- Names[RTLIB::MUL_I32] = "__mulsi3";
- Names[RTLIB::MUL_I64] = "__muldi3";
- Names[RTLIB::MUL_I128] = "__multi3";
- Names[RTLIB::MULO_I32] = "__mulosi4";
- Names[RTLIB::MULO_I64] = "__mulodi4";
- Names[RTLIB::MULO_I128] = "__muloti4";
- Names[RTLIB::SDIV_I8] = "__divqi3";
- Names[RTLIB::SDIV_I16] = "__divhi3";
- Names[RTLIB::SDIV_I32] = "__divsi3";
- Names[RTLIB::SDIV_I64] = "__divdi3";
- Names[RTLIB::SDIV_I128] = "__divti3";
- Names[RTLIB::UDIV_I8] = "__udivqi3";
- Names[RTLIB::UDIV_I16] = "__udivhi3";
- Names[RTLIB::UDIV_I32] = "__udivsi3";
- Names[RTLIB::UDIV_I64] = "__udivdi3";
- Names[RTLIB::UDIV_I128] = "__udivti3";
- Names[RTLIB::SREM_I8] = "__modqi3";
- Names[RTLIB::SREM_I16] = "__modhi3";
- Names[RTLIB::SREM_I32] = "__modsi3";
- Names[RTLIB::SREM_I64] = "__moddi3";
- Names[RTLIB::SREM_I128] = "__modti3";
- Names[RTLIB::UREM_I8] = "__umodqi3";
- Names[RTLIB::UREM_I16] = "__umodhi3";
- Names[RTLIB::UREM_I32] = "__umodsi3";
- Names[RTLIB::UREM_I64] = "__umoddi3";
- Names[RTLIB::UREM_I128] = "__umodti3";
-
- // These are generally not available.
- Names[RTLIB::SDIVREM_I8] = 0;
- Names[RTLIB::SDIVREM_I16] = 0;
- Names[RTLIB::SDIVREM_I32] = 0;
- Names[RTLIB::SDIVREM_I64] = 0;
- Names[RTLIB::SDIVREM_I128] = 0;
- Names[RTLIB::UDIVREM_I8] = 0;
- Names[RTLIB::UDIVREM_I16] = 0;
- Names[RTLIB::UDIVREM_I32] = 0;
- Names[RTLIB::UDIVREM_I64] = 0;
- Names[RTLIB::UDIVREM_I128] = 0;
-
- Names[RTLIB::NEG_I32] = "__negsi2";
- Names[RTLIB::NEG_I64] = "__negdi2";
- Names[RTLIB::ADD_F32] = "__addsf3";
- Names[RTLIB::ADD_F64] = "__adddf3";
- Names[RTLIB::ADD_F80] = "__addxf3";
- Names[RTLIB::ADD_F128] = "__addtf3";
- Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
- Names[RTLIB::SUB_F32] = "__subsf3";
- Names[RTLIB::SUB_F64] = "__subdf3";
- Names[RTLIB::SUB_F80] = "__subxf3";
- Names[RTLIB::SUB_F128] = "__subtf3";
- Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
- Names[RTLIB::MUL_F32] = "__mulsf3";
- Names[RTLIB::MUL_F64] = "__muldf3";
- Names[RTLIB::MUL_F80] = "__mulxf3";
- Names[RTLIB::MUL_F128] = "__multf3";
- Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
- Names[RTLIB::DIV_F32] = "__divsf3";
- Names[RTLIB::DIV_F64] = "__divdf3";
- Names[RTLIB::DIV_F80] = "__divxf3";
- Names[RTLIB::DIV_F128] = "__divtf3";
- Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
- Names[RTLIB::REM_F32] = "fmodf";
- Names[RTLIB::REM_F64] = "fmod";
- Names[RTLIB::REM_F80] = "fmodl";
- Names[RTLIB::REM_F128] = "fmodl";
- Names[RTLIB::REM_PPCF128] = "fmodl";
- Names[RTLIB::FMA_F32] = "fmaf";
- Names[RTLIB::FMA_F64] = "fma";
- Names[RTLIB::FMA_F80] = "fmal";
- Names[RTLIB::FMA_F128] = "fmal";
- Names[RTLIB::FMA_PPCF128] = "fmal";
- Names[RTLIB::POWI_F32] = "__powisf2";
- Names[RTLIB::POWI_F64] = "__powidf2";
- Names[RTLIB::POWI_F80] = "__powixf2";
- Names[RTLIB::POWI_F128] = "__powitf2";
- Names[RTLIB::POWI_PPCF128] = "__powitf2";
- Names[RTLIB::SQRT_F32] = "sqrtf";
- Names[RTLIB::SQRT_F64] = "sqrt";
- Names[RTLIB::SQRT_F80] = "sqrtl";
- Names[RTLIB::SQRT_F128] = "sqrtl";
- Names[RTLIB::SQRT_PPCF128] = "sqrtl";
- Names[RTLIB::LOG_F32] = "logf";
- Names[RTLIB::LOG_F64] = "log";
- Names[RTLIB::LOG_F80] = "logl";
- Names[RTLIB::LOG_F128] = "logl";
- Names[RTLIB::LOG_PPCF128] = "logl";
- Names[RTLIB::LOG2_F32] = "log2f";
- Names[RTLIB::LOG2_F64] = "log2";
- Names[RTLIB::LOG2_F80] = "log2l";
- Names[RTLIB::LOG2_F128] = "log2l";
- Names[RTLIB::LOG2_PPCF128] = "log2l";
- Names[RTLIB::LOG10_F32] = "log10f";
- Names[RTLIB::LOG10_F64] = "log10";
- Names[RTLIB::LOG10_F80] = "log10l";
- Names[RTLIB::LOG10_F128] = "log10l";
- Names[RTLIB::LOG10_PPCF128] = "log10l";
- Names[RTLIB::EXP_F32] = "expf";
- Names[RTLIB::EXP_F64] = "exp";
- Names[RTLIB::EXP_F80] = "expl";
- Names[RTLIB::EXP_F128] = "expl";
- Names[RTLIB::EXP_PPCF128] = "expl";
- Names[RTLIB::EXP2_F32] = "exp2f";
- Names[RTLIB::EXP2_F64] = "exp2";
- Names[RTLIB::EXP2_F80] = "exp2l";
- Names[RTLIB::EXP2_F128] = "exp2l";
- Names[RTLIB::EXP2_PPCF128] = "exp2l";
- Names[RTLIB::SIN_F32] = "sinf";
- Names[RTLIB::SIN_F64] = "sin";
- Names[RTLIB::SIN_F80] = "sinl";
- Names[RTLIB::SIN_F128] = "sinl";
- Names[RTLIB::SIN_PPCF128] = "sinl";
- Names[RTLIB::COS_F32] = "cosf";
- Names[RTLIB::COS_F64] = "cos";
- Names[RTLIB::COS_F80] = "cosl";
- Names[RTLIB::COS_F128] = "cosl";
- Names[RTLIB::COS_PPCF128] = "cosl";
- Names[RTLIB::POW_F32] = "powf";
- Names[RTLIB::POW_F64] = "pow";
- Names[RTLIB::POW_F80] = "powl";
- Names[RTLIB::POW_F128] = "powl";
- Names[RTLIB::POW_PPCF128] = "powl";
- Names[RTLIB::CEIL_F32] = "ceilf";
- Names[RTLIB::CEIL_F64] = "ceil";
- Names[RTLIB::CEIL_F80] = "ceill";
- Names[RTLIB::CEIL_F128] = "ceill";
- Names[RTLIB::CEIL_PPCF128] = "ceill";
- Names[RTLIB::TRUNC_F32] = "truncf";
- Names[RTLIB::TRUNC_F64] = "trunc";
- Names[RTLIB::TRUNC_F80] = "truncl";
- Names[RTLIB::TRUNC_F128] = "truncl";
- Names[RTLIB::TRUNC_PPCF128] = "truncl";
- Names[RTLIB::RINT_F32] = "rintf";
- Names[RTLIB::RINT_F64] = "rint";
- Names[RTLIB::RINT_F80] = "rintl";
- Names[RTLIB::RINT_F128] = "rintl";
- Names[RTLIB::RINT_PPCF128] = "rintl";
- Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
- Names[RTLIB::NEARBYINT_F64] = "nearbyint";
- Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
- Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
- Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
- Names[RTLIB::FLOOR_F32] = "floorf";
- Names[RTLIB::FLOOR_F64] = "floor";
- Names[RTLIB::FLOOR_F80] = "floorl";
- Names[RTLIB::FLOOR_F128] = "floorl";
- Names[RTLIB::FLOOR_PPCF128] = "floorl";
- Names[RTLIB::COPYSIGN_F32] = "copysignf";
- Names[RTLIB::COPYSIGN_F64] = "copysign";
- Names[RTLIB::COPYSIGN_F80] = "copysignl";
- Names[RTLIB::COPYSIGN_F128] = "copysignl";
- Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
- Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
- Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
- Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
- Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
- Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
- Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
- Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
- Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
- Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
- Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
- Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
- Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
- Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
- Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
- Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
- Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
- Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
- Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
- Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
- Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
- Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
- Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
- Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
- Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
- Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
- Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
- Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
- Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
- Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
- Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
- Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
- Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
- Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
- Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
- Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
- Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
- Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
- Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
- Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
- Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
- Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
- Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
- Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
- Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
- Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
- Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
- Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
- Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
- Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
- Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
- Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
- Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
- Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
- Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
- Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
- Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
- Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
- Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
- Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
- Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
- Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
- Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
- Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
- Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
- Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
- Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
- Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
- Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
- Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
- Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
- Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
- Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
- Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
- Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
- Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
- Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
- Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
- Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
- Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
- Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
- Names[RTLIB::OEQ_F32] = "__eqsf2";
- Names[RTLIB::OEQ_F64] = "__eqdf2";
- Names[RTLIB::OEQ_F128] = "__eqtf2";
- Names[RTLIB::UNE_F32] = "__nesf2";
- Names[RTLIB::UNE_F64] = "__nedf2";
- Names[RTLIB::UNE_F128] = "__netf2";
- Names[RTLIB::OGE_F32] = "__gesf2";
- Names[RTLIB::OGE_F64] = "__gedf2";
- Names[RTLIB::OGE_F128] = "__getf2";
- Names[RTLIB::OLT_F32] = "__ltsf2";
- Names[RTLIB::OLT_F64] = "__ltdf2";
- Names[RTLIB::OLT_F128] = "__lttf2";
- Names[RTLIB::OLE_F32] = "__lesf2";
- Names[RTLIB::OLE_F64] = "__ledf2";
- Names[RTLIB::OLE_F128] = "__letf2";
- Names[RTLIB::OGT_F32] = "__gtsf2";
- Names[RTLIB::OGT_F64] = "__gtdf2";
- Names[RTLIB::OGT_F128] = "__gttf2";
- Names[RTLIB::UO_F32] = "__unordsf2";
- Names[RTLIB::UO_F64] = "__unorddf2";
- Names[RTLIB::UO_F128] = "__unordtf2";
- Names[RTLIB::O_F32] = "__unordsf2";
- Names[RTLIB::O_F64] = "__unorddf2";
- Names[RTLIB::O_F128] = "__unordtf2";
- Names[RTLIB::MEMCPY] = "memcpy";
- Names[RTLIB::MEMMOVE] = "memmove";
- Names[RTLIB::MEMSET] = "memset";
- Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
- Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
- Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
- Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
- Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
- Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
- Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
- Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
- Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
- Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
- Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
- Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
- Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
- Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
- Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
- Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
- Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
- Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
- Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
- Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
- Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
- Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
- Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
- Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
- Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
-}
-
-/// InitLibcallCallingConvs - Set default libcall CallingConvs.
-///
-static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
- for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
- CCs[i] = CallingConv::C;
- }
-}
-
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
@@ -571,447 +253,15 @@ RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
return UNKNOWN_LIBCALL;
}
-/// InitCmpLibcallCCs - Set default comparison libcall CC.
-///
-static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
- memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
- CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
- CCs[RTLIB::UNE_F32] = ISD::SETNE;
- CCs[RTLIB::UNE_F64] = ISD::SETNE;
- CCs[RTLIB::UNE_F128] = ISD::SETNE;
- CCs[RTLIB::OGE_F32] = ISD::SETGE;
- CCs[RTLIB::OGE_F64] = ISD::SETGE;
- CCs[RTLIB::OGE_F128] = ISD::SETGE;
- CCs[RTLIB::OLT_F32] = ISD::SETLT;
- CCs[RTLIB::OLT_F64] = ISD::SETLT;
- CCs[RTLIB::OLT_F128] = ISD::SETLT;
- CCs[RTLIB::OLE_F32] = ISD::SETLE;
- CCs[RTLIB::OLE_F64] = ISD::SETLE;
- CCs[RTLIB::OLE_F128] = ISD::SETLE;
- CCs[RTLIB::OGT_F32] = ISD::SETGT;
- CCs[RTLIB::OGT_F64] = ISD::SETGT;
- CCs[RTLIB::OGT_F128] = ISD::SETGT;
- CCs[RTLIB::UO_F32] = ISD::SETNE;
- CCs[RTLIB::UO_F64] = ISD::SETNE;
- CCs[RTLIB::UO_F128] = ISD::SETNE;
- CCs[RTLIB::O_F32] = ISD::SETEQ;
- CCs[RTLIB::O_F64] = ISD::SETEQ;
- CCs[RTLIB::O_F128] = ISD::SETEQ;
-}
-
/// NOTE: The constructor takes ownership of TLOF.
TargetLowering::TargetLowering(const TargetMachine &tm,
const TargetLoweringObjectFile *tlof)
- : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
- // All operations default to being supported.
- memset(OpActions, 0, sizeof(OpActions));
- memset(LoadExtActions, 0, sizeof(LoadExtActions));
- memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
- memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
- memset(CondCodeActions, 0, sizeof(CondCodeActions));
-
- // Set default actions for various operations.
- for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
- // Default all indexed load / store to expand.
- for (unsigned IM = (unsigned)ISD::PRE_INC;
- IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
- setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
- setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
- }
-
- // These operations default to expand.
- setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
- }
-
- // Most targets ignore the @llvm.prefetch intrinsic.
- setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
-
- // ConstantFP nodes default to expand. Targets can either change this to
- // Legal, in which case all fp constants are legal, or use isFPImmLegal()
- // to optimize expansions for certain constants.
- setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
-
- // These library functions default to expand.
- setOperationAction(ISD::FLOG , MVT::f16, Expand);
- setOperationAction(ISD::FLOG2, MVT::f16, Expand);
- setOperationAction(ISD::FLOG10, MVT::f16, Expand);
- setOperationAction(ISD::FEXP , MVT::f16, Expand);
- setOperationAction(ISD::FEXP2, MVT::f16, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
- setOperationAction(ISD::FCEIL, MVT::f16, Expand);
- setOperationAction(ISD::FRINT, MVT::f16, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
- setOperationAction(ISD::FLOG , MVT::f32, Expand);
- setOperationAction(ISD::FLOG2, MVT::f32, Expand);
- setOperationAction(ISD::FLOG10, MVT::f32, Expand);
- setOperationAction(ISD::FEXP , MVT::f32, Expand);
- setOperationAction(ISD::FEXP2, MVT::f32, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
- setOperationAction(ISD::FCEIL, MVT::f32, Expand);
- setOperationAction(ISD::FRINT, MVT::f32, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
- setOperationAction(ISD::FLOG , MVT::f64, Expand);
- setOperationAction(ISD::FLOG2, MVT::f64, Expand);
- setOperationAction(ISD::FLOG10, MVT::f64, Expand);
- setOperationAction(ISD::FEXP , MVT::f64, Expand);
- setOperationAction(ISD::FEXP2, MVT::f64, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
- setOperationAction(ISD::FCEIL, MVT::f64, Expand);
- setOperationAction(ISD::FRINT, MVT::f64, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
- setOperationAction(ISD::FLOG , MVT::f128, Expand);
- setOperationAction(ISD::FLOG2, MVT::f128, Expand);
- setOperationAction(ISD::FLOG10, MVT::f128, Expand);
- setOperationAction(ISD::FEXP , MVT::f128, Expand);
- setOperationAction(ISD::FEXP2, MVT::f128, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
- setOperationAction(ISD::FCEIL, MVT::f128, Expand);
- setOperationAction(ISD::FRINT, MVT::f128, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
-
- // Default ISD::TRAP to expand (which turns it into abort).
- setOperationAction(ISD::TRAP, MVT::Other, Expand);
-
- // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
- // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
- //
- setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
-
- IsLittleEndian = TD->isLittleEndian();
- PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
- memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
- memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
- maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
- maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
- = maxStoresPerMemmoveOptSize = 4;
- benefitFromCodePlacementOpt = false;
- UseUnderscoreSetJmp = false;
- UseUnderscoreLongJmp = false;
- SelectIsExpensive = false;
- IntDivIsCheap = false;
- Pow2DivIsCheap = false;
- JumpIsExpensive = false;
- predictableSelectIsExpensive = false;
- StackPointerRegisterToSaveRestore = 0;
- ExceptionPointerRegister = 0;
- ExceptionSelectorRegister = 0;
- BooleanContents = UndefinedBooleanContent;
- BooleanVectorContents = UndefinedBooleanContent;
- SchedPreferenceInfo = Sched::ILP;
- JumpBufSize = 0;
- JumpBufAlignment = 0;
- MinFunctionAlignment = 0;
- PrefFunctionAlignment = 0;
- PrefLoopAlignment = 0;
- MinStackArgumentAlignment = 1;
- ShouldFoldAtomicFences = false;
- InsertFencesForAtomic = false;
- SupportJumpTables = true;
- MinimumJumpTableEntries = 4;
-
- InitLibcallNames(LibcallRoutineNames);
- InitCmpLibcallCCs(CmpLibcallCCs);
- InitLibcallCallingConvs(LibcallCallingConvs);
-}
-
-TargetLowering::~TargetLowering() {
- delete &TLOF;
-}
-
-MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
- return MVT::getIntegerVT(8*TD->getPointerSize(0));
-}
-
-/// canOpTrap - Returns true if the operation can trap for the value type.
-/// VT must be a legal type.
-bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
- assert(isTypeLegal(VT));
- switch (Op) {
- default:
- return false;
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- return true;
- }
-}
-
-
-static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT,
- TargetLowering *TLI) {
- // Figure out the right, legal destination reg to copy into.
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType();
-
- unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
-
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
-
- NumIntermediates = NumVectorRegs;
-
- MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
- if (!TLI->isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
-
- unsigned NewVTSize = NewVT.getSizeInBits();
-
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize))
- NewVTSize = NextPowerOf2(NewVTSize);
-
- MVT DestVT = TLI->getRegisterType(NewVT);
- RegisterVT = DestVT;
- if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
-
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
-}
-
-/// isLegalRC - Return true if the value types that can be represented by the
-/// specified register class are all legal.
-bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (isTypeLegal(*I))
- return true;
- }
- return false;
-}
-
-/// findRepresentativeClass - Return the largest legal super-reg register class
-/// of the register class for the specified type and its associated "cost".
-std::pair<const TargetRegisterClass*, uint8_t>
-TargetLowering::findRepresentativeClass(MVT VT) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
- if (!RC)
- return std::make_pair(RC, 0);
-
- // Compute the set of all super-register classes.
- BitVector SuperRegRC(TRI->getNumRegClasses());
- for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
- SuperRegRC.setBitsInMask(RCI.getMask());
-
- // Find the first legal register class with the largest spill size.
- const TargetRegisterClass *BestRC = RC;
- for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
- const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
- // We want the largest possible spill size.
- if (SuperRC->getSize() <= BestRC->getSize())
- continue;
- if (!isLegalRC(SuperRC))
- continue;
- BestRC = SuperRC;
- }
- return std::make_pair(BestRC, 1);
-}
-
-/// computeRegisterProperties - Once all of the register classes are added,
-/// this allows us to compute derived properties we expose.
-void TargetLowering::computeRegisterProperties() {
- assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
- "Too many value types for ValueTypeActions to hold!");
-
- // Everything defaults to needing one register.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- NumRegistersForVT[i] = 1;
- RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
- }
- // ...except isVoid, which doesn't need any registers.
- NumRegistersForVT[MVT::isVoid] = 0;
-
- // Find the largest integer register class.
- unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
- for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
- assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
-
- // Every integer value type larger than this largest register takes twice as
- // many registers to represent as the previous ValueType.
- for (unsigned ExpandedReg = LargestIntReg + 1;
- ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
- NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
- RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
- TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
- ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
- TypeExpandInteger);
- }
-
- // Inspect all of the ValueType's smaller than the largest integer
- // register to see which ones need promotion.
- unsigned LegalIntReg = LargestIntReg;
- for (unsigned IntReg = LargestIntReg - 1;
- IntReg >= (unsigned)MVT::i1; --IntReg) {
- MVT IVT = (MVT::SimpleValueType)IntReg;
- if (isTypeLegal(IVT)) {
- LegalIntReg = IntReg;
- } else {
- RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
- (const MVT::SimpleValueType)LegalIntReg;
- ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
- }
- }
-
- // ppcf128 type is really two f64's.
- if (!isTypeLegal(MVT::ppcf128)) {
- NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
- TransformToType[MVT::ppcf128] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
- }
-
- // Decide how to handle f64. If the target does not have native f64 support,
- // expand it to i64 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
- RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
- TransformToType[MVT::f64] = MVT::i64;
- ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
- }
-
- // Decide how to handle f32. If the target does not have native support for
- // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
- if (!isTypeLegal(MVT::f32)) {
- if (isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
- TransformToType[MVT::f32] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
- } else {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
- TransformToType[MVT::f32] = MVT::i32;
- ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
- }
- }
-
- // Loop over all of the vector value types to see which need transformations.
- for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
- if (isTypeLegal(VT)) continue;
-
- // Determine if there is a legal wider type. If so, we should promote to
- // that wider vector type.
- MVT EltVT = VT.getVectorElementType();
- unsigned NElts = VT.getVectorNumElements();
- if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
- bool IsLegalWiderType = false;
- // First try to promote the elements of integer vectors. If no legal
- // promotion was found, fallback to the widen-vector method.
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
- // Promote vectors of integers to vectors with the same number
- // of elements, with a wider element type.
- if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
- && SVT.getVectorNumElements() == NElts &&
- isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
- IsLegalWiderType = true;
- break;
- }
- }
-
- if (IsLegalWiderType) continue;
-
- // Try to widen the vector.
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
- if (SVT.getVectorElementType() == EltVT &&
- SVT.getVectorNumElements() > NElts &&
- isTypeLegal(SVT)) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- IsLegalWiderType = true;
- break;
- }
- }
- if (IsLegalWiderType) continue;
- }
-
- MVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- NumRegistersForVT[i] =
- getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
- RegisterVT, this);
- RegisterTypeForVT[i] = RegisterVT;
-
- MVT NVT = VT.getPow2VectorType();
- if (NVT == VT) {
- // Type is already a power of 2. The default action is to split.
- TransformToType[i] = MVT::Other;
- unsigned NumElts = VT.getVectorNumElements();
- ValueTypeActions.setTypeAction(VT,
- NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
- } else {
- TransformToType[i] = NVT;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- }
- }
-
- // Determine the 'representative' register class for each value type.
- // An representative register class is the largest (meaning one which is
- // not a sub-register class / subreg register class) legal register class for
- // a group of value types. For example, on i386, i8, i16, and i32
- // representative would be GR32; while on x86_64 it's GR64.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- const TargetRegisterClass* RRC;
- uint8_t Cost;
- tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
- RepRegClassForVT[i] = RRC;
- RepRegClassCostForVT[i] = Cost;
- }
-}
+ : TargetLoweringBase(tm, tlof) {}
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
return NULL;
}
-EVT TargetLowering::getSetCCResultType(EVT VT) const {
- assert(!VT.isVector() && "No default SetCC type for vectors!");
- return getPointerTy(0).SimpleTy;
-}
-
-MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
- return MVT::i32; // return the default value
-}
-
/// Check whether a given call node is in tail position within its function. If
/// so, it sets Chain to the input chain of the tail call.
bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
@@ -1167,80 +417,6 @@ void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
}
}
-/// getVectorTypeBreakdown - Vector types are broken down into some number of
-/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
-/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
-/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
-///
-/// This method returns the number of registers needed, and the VT for each
-/// register. It also returns the VT and quantity of the intermediate values
-/// before they are promoted/expanded.
-///
-unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
- EVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT) const {
- unsigned NumElts = VT.getVectorNumElements();
-
- // If there is a wider vector type with the same element type as this one,
- // or a promoted vector type that has the same number of elements which
- // are wider, then we should convert to that legal vector type.
- // This handles things like <2 x float> -> <4 x float> and
- // <4 x i1> -> <4 x i32>.
- LegalizeTypeAction TA = getTypeAction(Context, VT);
- if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
- EVT RegisterEVT = getTypeToTransformTo(Context, VT);
- if (isTypeLegal(RegisterEVT)) {
- IntermediateVT = RegisterEVT;
- RegisterVT = RegisterEVT.getSimpleVT();
- NumIntermediates = 1;
- return 1;
- }
- }
-
- // Figure out the right, legal destination reg to copy into.
- EVT EltTy = VT.getVectorElementType();
-
- unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
-
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !isTypeLegal(
- EVT::getVectorVT(Context, EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
-
- NumIntermediates = NumVectorRegs;
-
- EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
- if (!isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
-
- MVT DestVT = getRegisterType(Context, NewVT);
- RegisterVT = DestVT;
- unsigned NewVTSize = NewVT.getSizeInBits();
-
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize))
- NewVTSize = NextPowerOf2(NewVTSize);
-
- if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
-
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
-}
-
/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
@@ -1291,13 +467,6 @@ void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
}
}
-/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
-/// function arguments in the caller parameter area. This is the actual
-/// alignment, not its logarithm.
-unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
- return TD->getCallFrameTypeAlignment(Ty);
-}
-
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
@@ -1354,103 +523,6 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
}
//===----------------------------------------------------------------------===//
-// TargetTransformInfo Helpers
-//===----------------------------------------------------------------------===//
-
-int TargetLowering::InstructionOpcodeToISD(unsigned Opcode) const {
- enum InstructionOpcodes {
-#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
-#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
-#include "llvm/IR/Instruction.def"
- };
- switch (static_cast<InstructionOpcodes>(Opcode)) {
- case Ret: return 0;
- case Br: return 0;
- case Switch: return 0;
- case IndirectBr: return 0;
- case Invoke: return 0;
- case Resume: return 0;
- case Unreachable: return 0;
- case Add: return ISD::ADD;
- case FAdd: return ISD::FADD;
- case Sub: return ISD::SUB;
- case FSub: return ISD::FSUB;
- case Mul: return ISD::MUL;
- case FMul: return ISD::FMUL;
- case UDiv: return ISD::UDIV;
- case SDiv: return ISD::UDIV;
- case FDiv: return ISD::FDIV;
- case URem: return ISD::UREM;
- case SRem: return ISD::SREM;
- case FRem: return ISD::FREM;
- case Shl: return ISD::SHL;
- case LShr: return ISD::SRL;
- case AShr: return ISD::SRA;
- case And: return ISD::AND;
- case Or: return ISD::OR;
- case Xor: return ISD::XOR;
- case Alloca: return 0;
- case Load: return ISD::LOAD;
- case Store: return ISD::STORE;
- case GetElementPtr: return 0;
- case Fence: return 0;
- case AtomicCmpXchg: return 0;
- case AtomicRMW: return 0;
- case Trunc: return ISD::TRUNCATE;
- case ZExt: return ISD::ZERO_EXTEND;
- case SExt: return ISD::SIGN_EXTEND;
- case FPToUI: return ISD::FP_TO_UINT;
- case FPToSI: return ISD::FP_TO_SINT;
- case UIToFP: return ISD::UINT_TO_FP;
- case SIToFP: return ISD::SINT_TO_FP;
- case FPTrunc: return ISD::FP_ROUND;
- case FPExt: return ISD::FP_EXTEND;
- case PtrToInt: return ISD::BITCAST;
- case IntToPtr: return ISD::BITCAST;
- case BitCast: return ISD::BITCAST;
- case ICmp: return ISD::SETCC;
- case FCmp: return ISD::SETCC;
- case PHI: return 0;
- case Call: return 0;
- case Select: return ISD::SELECT;
- case UserOp1: return 0;
- case UserOp2: return 0;
- case VAArg: return 0;
- case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
- case InsertElement: return ISD::INSERT_VECTOR_ELT;
- case ShuffleVector: return ISD::VECTOR_SHUFFLE;
- case ExtractValue: return ISD::MERGE_VALUES;
- case InsertValue: return ISD::MERGE_VALUES;
- case LandingPad: return 0;
- }
-
- llvm_unreachable("Unknown instruction type encountered!");
-}
-
-std::pair<unsigned, MVT>
-TargetLowering::getTypeLegalizationCost(Type *Ty) const {
- LLVMContext &C = Ty->getContext();
- EVT MTy = getValueType(Ty);
-
- unsigned Cost = 1;
- // We keep legalizing the type until we find a legal kind. We assume that
- // the only operation that costs anything is the split. After splitting
- // we need to handle two types.
- while (true) {
- LegalizeKind LK = getTypeConversion(C, MTy);
-
- if (LK.first == TypeLegal)
- return std::make_pair(Cost, MTy.getSimpleVT());
-
- if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
- Cost *= 2;
-
- // Keep legalizing the type.
- MTy = LK.second;
- }
-}
-
-//===----------------------------------------------------------------------===//
// Optimization Methods
//===----------------------------------------------------------------------===//
@@ -2394,7 +1466,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
APInt newMask = APInt::getLowBitsSet(maskWidth, width);
for (unsigned offset=0; offset<origWidth/width; offset++) {
if ((newMask & Mask) == Mask) {
- if (!TD->isLittleEndian())
+ if (!getDataLayout()->isLittleEndian())
bestOffset = (origWidth/width - offset - 1) * (width/8);
else
bestOffset = (uint64_t)offset * (width/8);
@@ -3199,7 +2271,7 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
// Figure out which register class contains this reg.
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
E = RI->regclass_end(); RCI != E; ++RCI) {
const TargetRegisterClass *RC = *RCI;
@@ -3323,7 +2395,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
// If OpTy is not a single value, it may be a struct/union that we
// can tile with integers.
if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = TD->getTypeSizeInBits(OpTy);
+ unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
switch (BitSize) {
default: break;
case 1:
@@ -3338,7 +2410,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
}
} else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
OpInfo.ConstraintVT = MVT::getIntegerVT(
- 8*TD->getPointerSize(PT->getAddressSpace()));
+ 8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
} else {
OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
}
@@ -3633,44 +2705,6 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
}
}
-//===----------------------------------------------------------------------===//
-// Loop Strength Reduction hooks
-//===----------------------------------------------------------------------===//
-
-/// isLegalAddressingMode - Return true if the addressing mode represented
-/// by AM is legal for this target, for a load/store of the specified type.
-bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
- Type *Ty) const {
- // The default implementation of this implements a conservative RISCy, r+r and
- // r+i addr mode.
-
- // Allows a sign-extended 16-bit immediate field.
- if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
- return false;
-
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
-
- // Only support r+r,
- switch (AM.Scale) {
- case 0: // "r+i" or just "i", depending on HasBaseReg.
- break;
- case 1:
- if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
- return false;
- // Otherwise we have r+r or r+i.
- break;
- case 2:
- if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
- return false;
- // Allow 2*r as r+r.
- break;
- }
-
- return true;
-}
-
/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
/// with the multiplicative inverse of the constant.
SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
diff --git a/lib/CodeGen/SjLjEHPrepare.cpp b/lib/CodeGen/SjLjEHPrepare.cpp
index 09e923c966..b58bb85e49 100644
--- a/lib/CodeGen/SjLjEHPrepare.cpp
+++ b/lib/CodeGen/SjLjEHPrepare.cpp
@@ -43,7 +43,7 @@ STATISTIC(NumSpilled, "Number of registers live across unwind edges");
namespace {
class SjLjEHPrepare : public FunctionPass {
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
Type *FunctionContextTy;
Constant *RegisterFn;
Constant *UnregisterFn;
@@ -58,7 +58,7 @@ namespace {
AllocaInst *FuncCtx;
public:
static char ID; // Pass identification, replacement for typeid
- explicit SjLjEHPrepare(const TargetLowering *tli = NULL)
+ explicit SjLjEHPrepare(const TargetLoweringBase *tli = NULL)
: FunctionPass(ID), TLI(tli) { }
bool doInitialization(Module &M);
bool runOnFunction(Function &F);
@@ -82,7 +82,7 @@ namespace {
char SjLjEHPrepare::ID = 0;
// Public Interface To the SjLjEHPrepare pass.
-FunctionPass *llvm::createSjLjEHPreparePass(const TargetLowering *TLI) {
+FunctionPass *llvm::createSjLjEHPreparePass(const TargetLoweringBase *TLI) {
return new SjLjEHPrepare(TLI);
}
// doInitialization - Set up decalarations and types needed to process
diff --git a/lib/CodeGen/StackProtector.cpp b/lib/CodeGen/StackProtector.cpp
index 665388b625..e242804417 100644
--- a/lib/CodeGen/StackProtector.cpp
+++ b/lib/CodeGen/StackProtector.cpp
@@ -36,7 +36,7 @@ namespace {
class StackProtector : public FunctionPass {
/// TLI - Keep a pointer of a TargetLowering to consult for determining
/// target type sizes.
- const TargetLowering *TLI;
+ const TargetLoweringBase *TLI;
Function *F;
Module *M;
@@ -68,7 +68,7 @@ namespace {
StackProtector() : FunctionPass(ID), TLI(0) {
initializeStackProtectorPass(*PassRegistry::getPassRegistry());
}
- StackProtector(const TargetLowering *tli)
+ StackProtector(const TargetLoweringBase *tli)
: FunctionPass(ID), TLI(tli) {
initializeStackProtectorPass(*PassRegistry::getPassRegistry());
}
@@ -85,7 +85,7 @@ char StackProtector::ID = 0;
INITIALIZE_PASS(StackProtector, "stack-protector",
"Insert stack protectors", false, false)
-FunctionPass *llvm::createStackProtectorPass(const TargetLowering *tli) {
+FunctionPass *llvm::createStackProtectorPass(const TargetLoweringBase *tli) {
return new StackProtector(tli);
}
diff --git a/lib/CodeGen/TargetLoweringBase.cpp b/lib/CodeGen/TargetLoweringBase.cpp
new file mode 100644
index 0000000000..6284d520f5
--- /dev/null
+++ b/lib/CodeGen/TargetLoweringBase.cpp
@@ -0,0 +1,1274 @@
+//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLoweringBase class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <cctype>
+using namespace llvm;
+
+/// InitLibcallNames - Set default libcall names.
+///
+static void InitLibcallNames(const char **Names) {
+ Names[RTLIB::SHL_I16] = "__ashlhi3";
+ Names[RTLIB::SHL_I32] = "__ashlsi3";
+ Names[RTLIB::SHL_I64] = "__ashldi3";
+ Names[RTLIB::SHL_I128] = "__ashlti3";
+ Names[RTLIB::SRL_I16] = "__lshrhi3";
+ Names[RTLIB::SRL_I32] = "__lshrsi3";
+ Names[RTLIB::SRL_I64] = "__lshrdi3";
+ Names[RTLIB::SRL_I128] = "__lshrti3";
+ Names[RTLIB::SRA_I16] = "__ashrhi3";
+ Names[RTLIB::SRA_I32] = "__ashrsi3";
+ Names[RTLIB::SRA_I64] = "__ashrdi3";
+ Names[RTLIB::SRA_I128] = "__ashrti3";
+ Names[RTLIB::MUL_I8] = "__mulqi3";
+ Names[RTLIB::MUL_I16] = "__mulhi3";
+ Names[RTLIB::MUL_I32] = "__mulsi3";
+ Names[RTLIB::MUL_I64] = "__muldi3";
+ Names[RTLIB::MUL_I128] = "__multi3";
+ Names[RTLIB::MULO_I32] = "__mulosi4";
+ Names[RTLIB::MULO_I64] = "__mulodi4";
+ Names[RTLIB::MULO_I128] = "__muloti4";
+ Names[RTLIB::SDIV_I8] = "__divqi3";
+ Names[RTLIB::SDIV_I16] = "__divhi3";
+ Names[RTLIB::SDIV_I32] = "__divsi3";
+ Names[RTLIB::SDIV_I64] = "__divdi3";
+ Names[RTLIB::SDIV_I128] = "__divti3";
+ Names[RTLIB::UDIV_I8] = "__udivqi3";
+ Names[RTLIB::UDIV_I16] = "__udivhi3";
+ Names[RTLIB::UDIV_I32] = "__udivsi3";
+ Names[RTLIB::UDIV_I64] = "__udivdi3";
+ Names[RTLIB::UDIV_I128] = "__udivti3";
+ Names[RTLIB::SREM_I8] = "__modqi3";
+ Names[RTLIB::SREM_I16] = "__modhi3";
+ Names[RTLIB::SREM_I32] = "__modsi3";
+ Names[RTLIB::SREM_I64] = "__moddi3";
+ Names[RTLIB::SREM_I128] = "__modti3";
+ Names[RTLIB::UREM_I8] = "__umodqi3";
+ Names[RTLIB::UREM_I16] = "__umodhi3";
+ Names[RTLIB::UREM_I32] = "__umodsi3";
+ Names[RTLIB::UREM_I64] = "__umoddi3";
+ Names[RTLIB::UREM_I128] = "__umodti3";
+
+ // These are generally not available.
+ Names[RTLIB::SDIVREM_I8] = 0;
+ Names[RTLIB::SDIVREM_I16] = 0;
+ Names[RTLIB::SDIVREM_I32] = 0;
+ Names[RTLIB::SDIVREM_I64] = 0;
+ Names[RTLIB::SDIVREM_I128] = 0;
+ Names[RTLIB::UDIVREM_I8] = 0;
+ Names[RTLIB::UDIVREM_I16] = 0;
+ Names[RTLIB::UDIVREM_I32] = 0;
+ Names[RTLIB::UDIVREM_I64] = 0;
+ Names[RTLIB::UDIVREM_I128] = 0;
+
+ Names[RTLIB::NEG_I32] = "__negsi2";
+ Names[RTLIB::NEG_I64] = "__negdi2";
+ Names[RTLIB::ADD_F32] = "__addsf3";
+ Names[RTLIB::ADD_F64] = "__adddf3";
+ Names[RTLIB::ADD_F80] = "__addxf3";
+ Names[RTLIB::ADD_F128] = "__addtf3";
+ Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
+ Names[RTLIB::SUB_F32] = "__subsf3";
+ Names[RTLIB::SUB_F64] = "__subdf3";
+ Names[RTLIB::SUB_F80] = "__subxf3";
+ Names[RTLIB::SUB_F128] = "__subtf3";
+ Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
+ Names[RTLIB::MUL_F32] = "__mulsf3";
+ Names[RTLIB::MUL_F64] = "__muldf3";
+ Names[RTLIB::MUL_F80] = "__mulxf3";
+ Names[RTLIB::MUL_F128] = "__multf3";
+ Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
+ Names[RTLIB::DIV_F32] = "__divsf3";
+ Names[RTLIB::DIV_F64] = "__divdf3";
+ Names[RTLIB::DIV_F80] = "__divxf3";
+ Names[RTLIB::DIV_F128] = "__divtf3";
+ Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
+ Names[RTLIB::REM_F32] = "fmodf";
+ Names[RTLIB::REM_F64] = "fmod";
+ Names[RTLIB::REM_F80] = "fmodl";
+ Names[RTLIB::REM_F128] = "fmodl";
+ Names[RTLIB::REM_PPCF128] = "fmodl";
+ Names[RTLIB::FMA_F32] = "fmaf";
+ Names[RTLIB::FMA_F64] = "fma";
+ Names[RTLIB::FMA_F80] = "fmal";
+ Names[RTLIB::FMA_F128] = "fmal";
+ Names[RTLIB::FMA_PPCF128] = "fmal";
+ Names[RTLIB::POWI_F32] = "__powisf2";
+ Names[RTLIB::POWI_F64] = "__powidf2";
+ Names[RTLIB::POWI_F80] = "__powixf2";
+ Names[RTLIB::POWI_F128] = "__powitf2";
+ Names[RTLIB::POWI_PPCF128] = "__powitf2";
+ Names[RTLIB::SQRT_F32] = "sqrtf";
+ Names[RTLIB::SQRT_F64] = "sqrt";
+ Names[RTLIB::SQRT_F80] = "sqrtl";
+ Names[RTLIB::SQRT_F128] = "sqrtl";
+ Names[RTLIB::SQRT_PPCF128] = "sqrtl";
+ Names[RTLIB::LOG_F32] = "logf";
+ Names[RTLIB::LOG_F64] = "log";
+ Names[RTLIB::LOG_F80] = "logl";
+ Names[RTLIB::LOG_F128] = "logl";
+ Names[RTLIB::LOG_PPCF128] = "logl";
+ Names[RTLIB::LOG2_F32] = "log2f";
+ Names[RTLIB::LOG2_F64] = "log2";
+ Names[RTLIB::LOG2_F80] = "log2l";
+ Names[RTLIB::LOG2_F128] = "log2l";
+ Names[RTLIB::LOG2_PPCF128] = "log2l";
+ Names[RTLIB::LOG10_F32] = "log10f";
+ Names[RTLIB::LOG10_F64] = "log10";
+ Names[RTLIB::LOG10_F80] = "log10l";
+ Names[RTLIB::LOG10_F128] = "log10l";
+ Names[RTLIB::LOG10_PPCF128] = "log10l";
+ Names[RTLIB::EXP_F32] = "expf";
+ Names[RTLIB::EXP_F64] = "exp";
+ Names[RTLIB::EXP_F80] = "expl";
+ Names[RTLIB::EXP_F128] = "expl";
+ Names[RTLIB::EXP_PPCF128] = "expl";
+ Names[RTLIB::EXP2_F32] = "exp2f";
+ Names[RTLIB::EXP2_F64] = "exp2";
+ Names[RTLIB::EXP2_F80] = "exp2l";
+ Names[RTLIB::EXP2_F128] = "exp2l";
+ Names[RTLIB::EXP2_PPCF128] = "exp2l";
+ Names[RTLIB::SIN_F32] = "sinf";
+ Names[RTLIB::SIN_F64] = "sin";
+ Names[RTLIB::SIN_F80] = "sinl";
+ Names[RTLIB::SIN_F128] = "sinl";
+ Names[RTLIB::SIN_PPCF128] = "sinl";
+ Names[RTLIB::COS_F32] = "cosf";
+ Names[RTLIB::COS_F64] = "cos";
+ Names[RTLIB::COS_F80] = "cosl";
+ Names[RTLIB::COS_F128] = "cosl";
+ Names[RTLIB::COS_PPCF128] = "cosl";
+ Names[RTLIB::POW_F32] = "powf";
+ Names[RTLIB::POW_F64] = "pow";
+ Names[RTLIB::POW_F80] = "powl";
+ Names[RTLIB::POW_F128] = "powl";
+ Names[RTLIB::POW_PPCF128] = "powl";
+ Names[RTLIB::CEIL_F32] = "ceilf";
+ Names[RTLIB::CEIL_F64] = "ceil";
+ Names[RTLIB::CEIL_F80] = "ceill";
+ Names[RTLIB::CEIL_F128] = "ceill";
+ Names[RTLIB::CEIL_PPCF128] = "ceill";
+ Names[RTLIB::TRUNC_F32] = "truncf";
+ Names[RTLIB::TRUNC_F64] = "trunc";
+ Names[RTLIB::TRUNC_F80] = "truncl";
+ Names[RTLIB::TRUNC_F128] = "truncl";
+ Names[RTLIB::TRUNC_PPCF128] = "truncl";
+ Names[RTLIB::RINT_F32] = "rintf";
+ Names[RTLIB::RINT_F64] = "rint";
+ Names[RTLIB::RINT_F80] = "rintl";
+ Names[RTLIB::RINT_F128] = "rintl";
+ Names[RTLIB::RINT_PPCF128] = "rintl";
+ Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
+ Names[RTLIB::NEARBYINT_F64] = "nearbyint";
+ Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
+ Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
+ Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
+ Names[RTLIB::FLOOR_F32] = "floorf";
+ Names[RTLIB::FLOOR_F64] = "floor";
+ Names[RTLIB::FLOOR_F80] = "floorl";
+ Names[RTLIB::FLOOR_F128] = "floorl";
+ Names[RTLIB::FLOOR_PPCF128] = "floorl";
+ Names[RTLIB::COPYSIGN_F32] = "copysignf";
+ Names[RTLIB::COPYSIGN_F64] = "copysign";
+ Names[RTLIB::COPYSIGN_F80] = "copysignl";
+ Names[RTLIB::COPYSIGN_F128] = "copysignl";
+ Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
+ Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
+ Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
+ Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
+ Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
+ Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
+ Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
+ Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
+ Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
+ Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
+ Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
+ Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
+ Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
+ Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
+ Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
+ Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
+ Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
+ Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
+ Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
+ Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
+ Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
+ Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
+ Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
+ Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
+ Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
+ Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
+ Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
+ Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
+ Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
+ Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
+ Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
+ Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
+ Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
+ Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
+ Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
+ Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
+ Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
+ Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
+ Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
+ Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
+ Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
+ Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
+ Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
+ Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
+ Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
+ Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
+ Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
+ Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
+ Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
+ Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
+ Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
+ Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
+ Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
+ Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
+ Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
+ Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
+ Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
+ Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
+ Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
+ Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
+ Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
+ Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
+ Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
+ Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
+ Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
+ Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
+ Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
+ Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
+ Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
+ Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
+ Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
+ Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
+ Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
+ Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
+ Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
+ Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
+ Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
+ Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
+ Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
+ Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
+ Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
+ Names[RTLIB::OEQ_F32] = "__eqsf2";
+ Names[RTLIB::OEQ_F64] = "__eqdf2";
+ Names[RTLIB::OEQ_F128] = "__eqtf2";
+ Names[RTLIB::UNE_F32] = "__nesf2";
+ Names[RTLIB::UNE_F64] = "__nedf2";
+ Names[RTLIB::UNE_F128] = "__netf2";
+ Names[RTLIB::OGE_F32] = "__gesf2";
+ Names[RTLIB::OGE_F64] = "__gedf2";
+ Names[RTLIB::OGE_F128] = "__getf2";
+ Names[RTLIB::OLT_F32] = "__ltsf2";
+ Names[RTLIB::OLT_F64] = "__ltdf2";
+ Names[RTLIB::OLT_F128] = "__lttf2";
+ Names[RTLIB::OLE_F32] = "__lesf2";
+ Names[RTLIB::OLE_F64] = "__ledf2";
+ Names[RTLIB::OLE_F128] = "__letf2";
+ Names[RTLIB::OGT_F32] = "__gtsf2";
+ Names[RTLIB::OGT_F64] = "__gtdf2";
+ Names[RTLIB::OGT_F128] = "__gttf2";
+ Names[RTLIB::UO_F32] = "__unordsf2";
+ Names[RTLIB::UO_F64] = "__unorddf2";
+ Names[RTLIB::UO_F128] = "__unordtf2";
+ Names[RTLIB::O_F32] = "__unordsf2";
+ Names[RTLIB::O_F64] = "__unorddf2";
+ Names[RTLIB::O_F128] = "__unordtf2";
+ Names[RTLIB::MEMCPY] = "memcpy";
+ Names[RTLIB::MEMMOVE] = "memmove";
+ Names[RTLIB::MEMSET] = "memset";
+ Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
+ Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
+ Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
+ Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
+ Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
+ Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
+ Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
+ Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
+ Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
+}
+
+/// InitLibcallCallingConvs - Set default libcall CallingConvs.
+///
+static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
+ CCs[i] = CallingConv::C;
+ }
+}
+
+/// getFPEXT - Return the FPEXT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::f64)
+ return FPEXT_F32_F64;
+ if (RetVT == MVT::f128)
+ return FPEXT_F32_F128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::f128)
+ return FPEXT_F64_F128;
+ }
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPROUND - Return the FPROUND_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
+ if (RetVT == MVT::f32) {
+ if (OpVT == MVT::f64)
+ return FPROUND_F64_F32;
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F32;
+ if (OpVT == MVT::f128)
+ return FPROUND_F128_F32;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F32;
+ } else if (RetVT == MVT::f64) {
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F64;
+ if (OpVT == MVT::f128)
+ return FPROUND_F128_F64;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F64;
+ }
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::i8)
+ return FPTOSINT_F32_I8;
+ if (RetVT == MVT::i16)
+ return FPTOSINT_F32_I16;
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F32_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F32_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F32_I128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::i8)
+ return FPTOSINT_F64_I8;
+ if (RetVT == MVT::i16)
+ return FPTOSINT_F64_I16;
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F64_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F64_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F64_I128;
+ } else if (OpVT == MVT::f80) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F80_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F80_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F80_I128;
+ } else if (OpVT == MVT::f128) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F128_I128;
+ } else if (OpVT == MVT::ppcf128) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_PPCF128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_PPCF128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_PPCF128_I128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::i8)
+ return FPTOUINT_F32_I8;
+ if (RetVT == MVT::i16)
+ return FPTOUINT_F32_I16;
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F32_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F32_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F32_I128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::i8)
+ return FPTOUINT_F64_I8;
+ if (RetVT == MVT::i16)
+ return FPTOUINT_F64_I16;
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F64_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F64_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F64_I128;
+ } else if (OpVT == MVT::f80) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F80_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F80_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F80_I128;
+ } else if (OpVT == MVT::f128) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F128_I128;
+ } else if (OpVT == MVT::ppcf128) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_PPCF128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_PPCF128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_PPCF128_I128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::i32) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I32_F32;
+ if (RetVT == MVT::f64)
+ return SINTTOFP_I32_F64;
+ if (RetVT == MVT::f80)
+ return SINTTOFP_I32_F80;
+ if (RetVT == MVT::f128)
+ return SINTTOFP_I32_F128;
+ if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I32_PPCF128;
+ } else if (OpVT == MVT::i64) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I64_F32;
+ if (RetVT == MVT::f64)
+ return SINTTOFP_I64_F64;
+ if (RetVT == MVT::f80)
+ return SINTTOFP_I64_F80;
+ if (RetVT == MVT::f128)
+ return SINTTOFP_I64_F128;
+ if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I64_PPCF128;
+ } else if (OpVT == MVT::i128) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I128_F32;
+ if (RetVT == MVT::f64)
+ return SINTTOFP_I128_F64;
+ if (RetVT == MVT::f80)
+ return SINTTOFP_I128_F80;
+ if (RetVT == MVT::f128)
+ return SINTTOFP_I128_F128;
+ if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I128_PPCF128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::i32) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I32_F32;
+ if (RetVT == MVT::f64)
+ return UINTTOFP_I32_F64;
+ if (RetVT == MVT::f80)
+ return UINTTOFP_I32_F80;
+ if (RetVT == MVT::f128)
+ return UINTTOFP_I32_F128;
+ if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I32_PPCF128;
+ } else if (OpVT == MVT::i64) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I64_F32;
+ if (RetVT == MVT::f64)
+ return UINTTOFP_I64_F64;
+ if (RetVT == MVT::f80)
+ return UINTTOFP_I64_F80;
+ if (RetVT == MVT::f128)
+ return UINTTOFP_I64_F128;
+ if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I64_PPCF128;
+ } else if (OpVT == MVT::i128) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I128_F32;
+ if (RetVT == MVT::f64)
+ return UINTTOFP_I128_F64;
+ if (RetVT == MVT::f80)
+ return UINTTOFP_I128_F80;
+ if (RetVT == MVT::f128)
+ return UINTTOFP_I128_F128;
+ if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I128_PPCF128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// InitCmpLibcallCCs - Set default comparison libcall CC.
+///
+static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
+ memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
+ CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
+ CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
+ CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
+ CCs[RTLIB::UNE_F32] = ISD::SETNE;
+ CCs[RTLIB::UNE_F64] = ISD::SETNE;
+ CCs[RTLIB::UNE_F128] = ISD::SETNE;
+ CCs[RTLIB::OGE_F32] = ISD::SETGE;
+ CCs[RTLIB::OGE_F64] = ISD::SETGE;
+ CCs[RTLIB::OGE_F128] = ISD::SETGE;
+ CCs[RTLIB::OLT_F32] = ISD::SETLT;
+ CCs[RTLIB::OLT_F64] = ISD::SETLT;
+ CCs[RTLIB::OLT_F128] = ISD::SETLT;
+ CCs[RTLIB::OLE_F32] = ISD::SETLE;
+ CCs[RTLIB::OLE_F64] = ISD::SETLE;
+ CCs[RTLIB::OLE_F128] = ISD::SETLE;
+ CCs[RTLIB::OGT_F32] = ISD::SETGT;
+ CCs[RTLIB::OGT_F64] = ISD::SETGT;
+ CCs[RTLIB::OGT_F128] = ISD::SETGT;
+ CCs[RTLIB::UO_F32] = ISD::SETNE;
+ CCs[RTLIB::UO_F64] = ISD::SETNE;
+ CCs[RTLIB::UO_F128] = ISD::SETNE;
+ CCs[RTLIB::O_F32] = ISD::SETEQ;
+ CCs[RTLIB::O_F64] = ISD::SETEQ;
+ CCs[RTLIB::O_F128] = ISD::SETEQ;
+}
+
+/// NOTE: The constructor takes ownership of TLOF.
+TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
+ const TargetLoweringObjectFile *tlof)
+ : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
+ // All operations default to being supported.
+ memset(OpActions, 0, sizeof(OpActions));
+ memset(LoadExtActions, 0, sizeof(LoadExtActions));
+ memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
+ memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
+ memset(CondCodeActions, 0, sizeof(CondCodeActions));
+
+ // Set default actions for various operations.
+ for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
+ // Default all indexed load / store to expand.
+ for (unsigned IM = (unsigned)ISD::PRE_INC;
+ IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
+ setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
+ setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // These operations default to expand.
+ setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // Most targets ignore the @llvm.prefetch intrinsic.
+ setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
+
+ // ConstantFP nodes default to expand. Targets can either change this to
+ // Legal, in which case all fp constants are legal, or use isFPImmLegal()
+ // to optimize expansions for certain constants.
+ setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
+
+ // These library functions default to expand.
+ setOperationAction(ISD::FLOG , MVT::f16, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f16, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f16, Expand);
+ setOperationAction(ISD::FEXP , MVT::f16, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f16, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f16, Expand);
+ setOperationAction(ISD::FRINT, MVT::f16, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
+ setOperationAction(ISD::FLOG , MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP , MVT::f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG , MVT::f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f64, Expand);
+ setOperationAction(ISD::FEXP , MVT::f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG , MVT::f128, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f128, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f128, Expand);
+ setOperationAction(ISD::FEXP , MVT::f128, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f128, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f128, Expand);
+ setOperationAction(ISD::FRINT, MVT::f128, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
+
+ // Default ISD::TRAP to expand (which turns it into abort).
+ setOperationAction(ISD::TRAP, MVT::Other, Expand);
+
+ // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
+ // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
+ //
+ setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
+
+ IsLittleEndian = TD->isLittleEndian();
+ PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
+ memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
+ memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
+ maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
+ maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
+ = maxStoresPerMemmoveOptSize = 4;
+ benefitFromCodePlacementOpt = false;
+ UseUnderscoreSetJmp = false;
+ UseUnderscoreLongJmp = false;
+ SelectIsExpensive = false;
+ IntDivIsCheap = false;
+ Pow2DivIsCheap = false;
+ JumpIsExpensive = false;
+ predictableSelectIsExpensive = false;
+ StackPointerRegisterToSaveRestore = 0;
+ ExceptionPointerRegister = 0;
+ ExceptionSelectorRegister = 0;
+ BooleanContents = UndefinedBooleanContent;
+ BooleanVectorContents = UndefinedBooleanContent;
+ SchedPreferenceInfo = Sched::ILP;
+ JumpBufSize = 0;
+ JumpBufAlignment = 0;
+ MinFunctionAlignment = 0;
+ PrefFunctionAlignment = 0;
+ PrefLoopAlignment = 0;
+ MinStackArgumentAlignment = 1;
+ ShouldFoldAtomicFences = false;
+ InsertFencesForAtomic = false;
+ SupportJumpTables = true;
+ MinimumJumpTableEntries = 4;
+
+ InitLibcallNames(LibcallRoutineNames);
+ InitCmpLibcallCCs(CmpLibcallCCs);
+ InitLibcallCallingConvs(LibcallCallingConvs);
+}
+
+TargetLoweringBase::~TargetLoweringBase() {
+ delete &TLOF;
+}
+
+MVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
+ return MVT::getIntegerVT(8*TD->getPointerSize(0));
+}
+
+/// canOpTrap - Returns true if the operation can trap for the value type.
+/// VT must be a legal type.
+bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
+ assert(isTypeLegal(VT));
+ switch (Op) {
+ default:
+ return false;
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ return true;
+ }
+}
+
+
+static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ MVT &RegisterVT,
+ TargetLoweringBase *TLI) {
+ // Figure out the right, legal destination reg to copy into.
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
+ if (!TLI->isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ unsigned NewVTSize = NewVT.getSizeInBits();
+
+ // Convert sizes such as i33 to i64.
+ if (!isPowerOf2_32(NewVTSize))
+ NewVTSize = NextPowerOf2(NewVTSize);
+
+ MVT DestVT = TLI->getRegisterType(NewVT);
+ RegisterVT = DestVT;
+ if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
+
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+}
+
+/// isLegalRC - Return true if the value types that can be represented by the
+/// specified register class are all legal.
+bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
+ for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+ I != E; ++I) {
+ if (isTypeLegal(*I))
+ return true;
+ }
+ return false;
+}
+
+/// findRepresentativeClass - Return the largest legal super-reg register class
+/// of the register class for the specified type and its associated "cost".
+std::pair<const TargetRegisterClass*, uint8_t>
+TargetLoweringBase::findRepresentativeClass(MVT VT) const {
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
+ if (!RC)
+ return std::make_pair(RC, 0);
+
+ // Compute the set of all super-register classes.
+ BitVector SuperRegRC(TRI->getNumRegClasses());
+ for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
+ SuperRegRC.setBitsInMask(RCI.getMask());
+
+ // Find the first legal register class with the largest spill size.
+ const TargetRegisterClass *BestRC = RC;
+ for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
+ const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
+ // We want the largest possible spill size.
+ if (SuperRC->getSize() <= BestRC->getSize())
+ continue;
+ if (!isLegalRC(SuperRC))
+ continue;
+ BestRC = SuperRC;
+ }
+ return std::make_pair(BestRC, 1);
+}
+
+/// computeRegisterProperties - Once all of the register classes are added,
+/// this allows us to compute derived properties we expose.
+void TargetLoweringBase::computeRegisterProperties() {
+ assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
+ "Too many value types for ValueTypeActions to hold!");
+
+ // Everything defaults to needing one register.
+ for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+ NumRegistersForVT[i] = 1;
+ RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
+ }
+ // ...except isVoid, which doesn't need any registers.
+ NumRegistersForVT[MVT::isVoid] = 0;
+
+ // Find the largest integer register class.
+ unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
+ for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
+ assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
+
+ // Every integer value type larger than this largest register takes twice as
+ // many registers to represent as the previous ValueType.
+ for (unsigned ExpandedReg = LargestIntReg + 1;
+ ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
+ NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
+ RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
+ TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
+ ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
+ TypeExpandInteger);
+ }
+
+ // Inspect all of the ValueType's smaller than the largest integer
+ // register to see which ones need promotion.
+ unsigned LegalIntReg = LargestIntReg;
+ for (unsigned IntReg = LargestIntReg - 1;
+ IntReg >= (unsigned)MVT::i1; --IntReg) {
+ MVT IVT = (MVT::SimpleValueType)IntReg;
+ if (isTypeLegal(IVT)) {
+ LegalIntReg = IntReg;
+ } else {
+ RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
+ (const MVT::SimpleValueType)LegalIntReg;
+ ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
+ }
+ }
+
+ // ppcf128 type is really two f64's.
+ if (!isTypeLegal(MVT::ppcf128)) {
+ NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
+ RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
+ TransformToType[MVT::ppcf128] = MVT::f64;
+ ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
+ }
+
+ // Decide how to handle f64. If the target does not have native f64 support,
+ // expand it to i64 and we will be generating soft float library calls.
+ if (!isTypeLegal(MVT::f64)) {
+ NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
+ RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
+ TransformToType[MVT::f64] = MVT::i64;
+ ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
+ }
+
+ // Decide how to handle f32. If the target does not have native support for
+ // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
+ if (!isTypeLegal(MVT::f32)) {
+ if (isTypeLegal(MVT::f64)) {
+ NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
+ RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
+ TransformToType[MVT::f32] = MVT::f64;
+ ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
+ } else {
+ NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
+ RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
+ TransformToType[MVT::f32] = MVT::i32;
+ ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
+ }
+ }
+
+ // Loop over all of the vector value types to see which need transformations.
+ for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+ if (isTypeLegal(VT)) continue;
+
+ // Determine if there is a legal wider type. If so, we should promote to
+ // that wider vector type.
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NElts = VT.getVectorNumElements();
+ if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
+ bool IsLegalWiderType = false;
+ // First try to promote the elements of integer vectors. If no legal
+ // promotion was found, fallback to the widen-vector method.
+ for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+ MVT SVT = (MVT::SimpleValueType)nVT;
+ // Promote vectors of integers to vectors with the same number
+ // of elements, with a wider element type.
+ if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
+ && SVT.getVectorNumElements() == NElts &&
+ isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
+ TransformToType[i] = SVT;
+ RegisterTypeForVT[i] = SVT;
+ NumRegistersForVT[i] = 1;
+ ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
+ IsLegalWiderType = true;
+ break;
+ }
+ }
+
+ if (IsLegalWiderType) continue;
+
+ // Try to widen the vector.
+ for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+ MVT SVT = (MVT::SimpleValueType)nVT;
+ if (SVT.getVectorElementType() == EltVT &&
+ SVT.getVectorNumElements() > NElts &&
+ isTypeLegal(SVT)) {
+ TransformToType[i] = SVT;
+ RegisterTypeForVT[i] = SVT;
+ NumRegistersForVT[i] = 1;
+ ValueTypeActions.setTypeAction(VT, TypeWidenVector);
+ IsLegalWiderType = true;
+ break;
+ }
+ }
+ if (IsLegalWiderType) continue;
+ }
+
+ MVT IntermediateVT;
+ MVT RegisterVT;
+ unsigned NumIntermediates;
+ NumRegistersForVT[i] =
+ getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
+ RegisterVT, this);
+ RegisterTypeForVT[i] = RegisterVT;
+
+ MVT NVT = VT.getPow2VectorType();
+ if (NVT == VT) {
+ // Type is already a power of 2. The default action is to split.
+ TransformToType[i] = MVT::Other;
+ unsigned NumElts = VT.getVectorNumElements();
+ ValueTypeActions.setTypeAction(VT,
+ NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
+ } else {
+ TransformToType[i] = NVT;
+ ValueTypeActions.setTypeAction(VT, TypeWidenVector);
+ }
+ }
+
+ // Determine the 'representative' register class for each value type.
+ // An representative register class is the largest (meaning one which is
+ // not a sub-register class / subreg register class) legal register class for
+ // a group of value types. For example, on i386, i8, i16, and i32
+ // representative would be GR32; while on x86_64 it's GR64.
+ for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+ const TargetRegisterClass* RRC;
+ uint8_t Cost;
+ tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
+ RepRegClassForVT[i] = RRC;
+ RepRegClassCostForVT[i] = Cost;
+ }
+}
+
+EVT TargetLoweringBase::getSetCCResultType(EVT VT) const {
+ assert(!VT.isVector() && "No default SetCC type for vectors!");
+ return getPointerTy(0).SimpleTy;
+}
+
+MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
+ return MVT::i32; // return the default value
+}
+
+/// getVectorTypeBreakdown - Vector types are broken down into some number of
+/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
+/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
+///
+/// This method returns the number of registers needed, and the VT for each
+/// register. It also returns the VT and quantity of the intermediate values
+/// before they are promoted/expanded.
+///
+unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
+ EVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ MVT &RegisterVT) const {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // If there is a wider vector type with the same element type as this one,
+ // or a promoted vector type that has the same number of elements which
+ // are wider, then we should convert to that legal vector type.
+ // This handles things like <2 x float> -> <4 x float> and
+ // <4 x i1> -> <4 x i32>.
+ LegalizeTypeAction TA = getTypeAction(Context, VT);
+ if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
+ EVT RegisterEVT = getTypeToTransformTo(Context, VT);
+ if (isTypeLegal(RegisterEVT)) {
+ IntermediateVT = RegisterEVT;
+ RegisterVT = RegisterEVT.getSimpleVT();
+ NumIntermediates = 1;
+ return 1;
+ }
+ }
+
+ // Figure out the right, legal destination reg to copy into.
+ EVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !isTypeLegal(
+ EVT::getVectorVT(Context, EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
+ if (!isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ MVT DestVT = getRegisterType(Context, NewVT);
+ RegisterVT = DestVT;
+ unsigned NewVTSize = NewVT.getSizeInBits();
+
+ // Convert sizes such as i33 to i64.
+ if (!isPowerOf2_32(NewVTSize))
+ NewVTSize = NextPowerOf2(NewVTSize);
+
+ if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
+
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+}
+
+/// Get the EVTs and ArgFlags collections that represent the legalized return
+/// type of the given function. This does not require a DAG or a return value,
+/// and is suitable for use before any DAGs for the function are constructed.
+/// TODO: Move this out of TargetLowering.cpp.
+void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
+ SmallVectorImpl<ISD::OutputArg> &Outs,
+ const TargetLowering &TLI) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, ReturnType, ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0) return;
+
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // FIXME: C calling convention requires the return type to be promoted to
+ // at least 32-bit. But this is not necessary for non-C calling
+ // conventions. The frontend should mark functions whose return values
+ // require promoting with signext or zeroext attributes.
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+ MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
+ MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
+
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+ Flags.setSExt();
+ else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i)
+ Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
+ }
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. This is the actual
+/// alignment, not its logarithm.
+unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
+ return TD->getCallFrameTypeAlignment(Ty);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetTransformInfo Helpers
+//===----------------------------------------------------------------------===//
+
+int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
+ enum InstructionOpcodes {
+#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
+#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
+#include "llvm/IR/Instruction.def"
+ };
+ switch (static_cast<InstructionOpcodes>(Opcode)) {
+ case Ret: return 0;
+ case Br: return 0;
+ case Switch: return 0;
+ case IndirectBr: return 0;
+ case Invoke: return 0;
+ case Resume: return 0;
+ case Unreachable: return 0;
+ case Add: return ISD::ADD;
+ case FAdd: return ISD::FADD;
+ case Sub: return ISD::SUB;
+ case FSub: return ISD::FSUB;
+ case Mul: return ISD::MUL;
+ case FMul: return ISD::FMUL;
+ case UDiv: return ISD::UDIV;
+ case SDiv: return ISD::UDIV;
+ case FDiv: return ISD::FDIV;
+ case URem: return ISD::UREM;
+ case SRem: return ISD::SREM;
+ case FRem: return ISD::FREM;
+ case Shl: return ISD::SHL;
+ case LShr: return ISD::SRL;
+ case AShr: return ISD::SRA;
+ case And: return ISD::AND;
+ case Or: return ISD::OR;
+ case Xor: return ISD::XOR;
+ case Alloca: return 0;
+ case Load: return ISD::LOAD;
+ case Store: return ISD::STORE;
+ case GetElementPtr: return 0;
+ case Fence: return 0;
+ case AtomicCmpXchg: return 0;
+ case AtomicRMW: return 0;
+ case Trunc: return ISD::TRUNCATE;
+ case ZExt: return ISD::ZERO_EXTEND;
+ case SExt: return ISD::SIGN_EXTEND;
+ case FPToUI: return ISD::FP_TO_UINT;
+ case FPToSI: return ISD::FP_TO_SINT;
+ case UIToFP: return ISD::UINT_TO_FP;
+ case SIToFP: return ISD::SINT_TO_FP;
+ case FPTrunc: return ISD::FP_ROUND;
+ case FPExt: return ISD::FP_EXTEND;
+ case PtrToInt: return ISD::BITCAST;
+ case IntToPtr: return ISD::BITCAST;
+ case BitCast: return ISD::BITCAST;
+ case ICmp: return ISD::SETCC;
+ case FCmp: return ISD::SETCC;
+ case PHI: return 0;
+ case Call: return 0;
+ case Select: return ISD::SELECT;
+ case UserOp1: return 0;
+ case UserOp2: return 0;
+ case VAArg: return 0;
+ case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
+ case InsertElement: return ISD::INSERT_VECTOR_ELT;
+ case ShuffleVector: return ISD::VECTOR_SHUFFLE;
+ case ExtractValue: return ISD::MERGE_VALUES;
+ case InsertValue: return ISD::MERGE_VALUES;
+ case LandingPad: return 0;
+ }
+
+ llvm_unreachable("Unknown instruction type encountered!");
+}
+
+std::pair<unsigned, MVT>
+TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
+ LLVMContext &C = Ty->getContext();
+ EVT MTy = getValueType(Ty);
+
+ unsigned Cost = 1;
+ // We keep legalizing the type until we find a legal kind. We assume that
+ // the only operation that costs anything is the split. After splitting
+ // we need to handle two types.
+ while (true) {
+ LegalizeKind LK = getTypeConversion(C, MTy);
+
+ if (LK.first == TypeLegal)
+ return std::make_pair(Cost, MTy.getSimpleVT());
+
+ if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
+ Cost *= 2;
+
+ // Keep legalizing the type.
+ MTy = LK.second;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Loop Strength Reduction hooks
+//===----------------------------------------------------------------------===//
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // The default implementation of this implements a conservative RISCy, r+r and
+ // r+i addr mode.
+
+ // Allows a sign-extended 16-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // Only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ }
+
+ return true;
+}