summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/ExecutionEngine.cpp
diff options
context:
space:
mode:
authorDaniel Dunbar <daniel@zuster.org>2010-11-13 02:48:57 +0000
committerDaniel Dunbar <daniel@zuster.org>2010-11-13 02:48:57 +0000
commit48dd875be12006060260526e4a1df0bae48dd5c9 (patch)
treee136d103d8036bcfb9787231e6614b588d010b21 /lib/ExecutionEngine/ExecutionEngine.cpp
parentafd693cff38ea76188f8f895c75fdf24c90c606a (diff)
downloadllvm-48dd875be12006060260526e4a1df0bae48dd5c9.tar.gz
llvm-48dd875be12006060260526e4a1df0bae48dd5c9.tar.bz2
llvm-48dd875be12006060260526e4a1df0bae48dd5c9.tar.xz
JIT: More nitty style tweakage, aka territory marking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118973 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp332
1 files changed, 140 insertions, 192 deletions
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
index 275f02e34c..fc5cb926e3 100644
--- a/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -19,6 +19,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -51,7 +52,7 @@ ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
ExecutionEngine::ExecutionEngine(Module *M)
: EEState(*this),
LazyFunctionCreator(0),
- ExceptionTableRegister(0),
+ ExceptionTableRegister(0),
ExceptionTableDeregister(0) {
CompilingLazily = false;
GVCompilationDisabled = false;
@@ -68,24 +69,23 @@ ExecutionEngine::~ExecutionEngine() {
void ExecutionEngine::DeregisterAllTables() {
if (ExceptionTableDeregister) {
- std::vector<void*>::iterator it = AllExceptionTables.begin();
- std::vector<void*>::iterator ite = AllExceptionTables.end();
- for (; it != ite; ++it)
+ for (std::vector<void*>::iterator it = AllExceptionTables.begin(),
+ ie = AllExceptionTables.end(); it != ie; ++it)
ExceptionTableDeregister(*it);
AllExceptionTables.clear();
}
}
namespace {
-// This class automatically deletes the memory block when the GlobalVariable is
-// destroyed.
+/// \brief Helper class which uses a value handler to automatically deletes the
+/// memory block when the GlobalVariable is destroyed.
class GVMemoryBlock : public CallbackVH {
GVMemoryBlock(const GlobalVariable *GV)
: CallbackVH(const_cast<GlobalVariable*>(GV)) {}
public:
- // Returns the address the GlobalVariable should be written into. The
- // GVMemoryBlock object prefixes that.
+ /// \brief Returns the address the GlobalVariable should be written into. The
+ /// GVMemoryBlock object prefixes that.
static char *Create(const GlobalVariable *GV, const TargetData& TD) {
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
@@ -107,13 +107,12 @@ public:
};
} // anonymous namespace
-char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
+char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
return GVMemoryBlock::Create(GV, *getTargetData());
}
-/// removeModule - Remove a Module from the list of modules.
bool ExecutionEngine::removeModule(Module *M) {
- for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
+ for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
E = Modules.end(); I != E; ++I) {
Module *Found = *I;
if (Found == M) {
@@ -125,9 +124,6 @@ bool ExecutionEngine::removeModule(Module *M) {
return false;
}
-/// FindFunctionNamed - Search all of the active modules to find the one that
-/// defines FnName. This is very slow operation and shouldn't be used for
-/// general code.
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
if (Function *F = Modules[i]->getFunction(FnName))
@@ -137,10 +133,13 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
}
-void *ExecutionEngineState::RemoveMapping(
- const MutexGuard &, const GlobalValue *ToUnmap) {
+void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
+ const GlobalValue *ToUnmap) {
GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
void *OldVal;
+
+ // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
+ // GlobalAddressMap.
if (I == GlobalAddressMap.end())
OldVal = 0;
else {
@@ -152,21 +151,16 @@ void *ExecutionEngineState::RemoveMapping(
return OldVal;
}
-/// addGlobalMapping - Tell the execution engine that the specified global is
-/// at the specified location. This is used internally as functions are JIT'd
-/// and as global variables are laid out in memory. It can and should also be
-/// used by clients of the EE that want to have an LLVM global overlay
-/// existing data in memory.
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
- DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
+ DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
<< "\' to [" << Addr << "]\n";);
void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
CurVal = Addr;
-
- // If we are using the reverse mapping, add it too
+
+ // If we are using the reverse mapping, add it too.
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
@@ -175,32 +169,23 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
}
}
-/// clearAllGlobalMappings - Clear all global mappings and start over again
-/// use in dynamic compilation scenarios when you want to move globals
void ExecutionEngine::clearAllGlobalMappings() {
MutexGuard locked(lock);
-
+
EEState.getGlobalAddressMap(locked).clear();
EEState.getGlobalAddressReverseMap(locked).clear();
}
-/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
-/// particular module, because it has been removed from the JIT.
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
MutexGuard locked(lock);
-
- for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
+
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
EEState.RemoveMapping(locked, FI);
- }
- for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
- GI != GE; ++GI) {
+ for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
+ GI != GE; ++GI)
EEState.RemoveMapping(locked, GI);
- }
}
-/// updateGlobalMapping - Replace an existing mapping for GV with a new
-/// address. This updates both maps as required. If "Addr" is null, the
-/// entry for the global is removed from the mappings.
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
@@ -208,18 +193,17 @@ void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
EEState.getGlobalAddressMap(locked);
// Deleting from the mapping?
- if (Addr == 0) {
+ if (Addr == 0)
return EEState.RemoveMapping(locked, GV);
- }
-
+
void *&CurVal = Map[GV];
void *OldVal = CurVal;
if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
CurVal = Addr;
-
- // If we are using the reverse mapping, add it too
+
+ // If we are using the reverse mapping, add it too.
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
@@ -229,20 +213,14 @@ void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
return OldVal;
}
-/// getPointerToGlobalIfAvailable - This returns the address of the specified
-/// global value if it is has already been codegen'd, otherwise it returns null.
-///
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
MutexGuard locked(lock);
-
+
ExecutionEngineState::GlobalAddressMapTy::iterator I =
EEState.getGlobalAddressMap(locked).find(GV);
return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
}
-/// getGlobalValueAtAddress - Return the LLVM global value object that starts
-/// at the specified address.
-///
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
MutexGuard locked(lock);
@@ -311,54 +289,50 @@ void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
return Array;
}
-
-/// runStaticConstructorsDestructors - This method is used to execute all of
-/// the static constructors or destructors for a module, depending on the
-/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
-
- // Execute global ctors/dtors for each module in the program.
-
- GlobalVariable *GV = module->getNamedGlobal(Name);
-
- // If this global has internal linkage, or if it has a use, then it must be
- // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
- // this is the case, don't execute any of the global ctors, __main will do
- // it.
- if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
-
- // Should be an array of '{ int, void ()* }' structs. The first value is
- // the init priority, which we ignore.
- ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
- if (!InitList) return;
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
- if (ConstantStruct *CS =
- dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
- if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
-
- Constant *FP = CS->getOperand(1);
- if (FP->isNullValue())
- break; // Found a null terminator, exit.
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
- if (CE->isCast())
- FP = CE->getOperand(0);
- if (Function *F = dyn_cast<Function>(FP)) {
- // Execute the ctor/dtor function!
- runFunction(F, std::vector<GenericValue>());
- }
- }
+ GlobalVariable *GV = module->getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
+
+ // Should be an array of '{ int, void ()* }' structs. The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList) return;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
+ ConstantStruct *CS =
+ dyn_cast<ConstantStruct>(InitList->getOperand(i));
+ if (!CS) continue;
+ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
+
+ Constant *FP = CS->getOperand(1);
+ if (FP->isNullValue())
+ break; // Found a null terminator, exit.
+
+ // Strip off constant expression casts.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+
+ // Execute the ctor/dtor function!
+ if (Function *F = dyn_cast<Function>(FP))
+ runFunction(F, std::vector<GenericValue>());
+
+ // FIXME: It is marginally lame that we just do nothing here if we see an
+ // entry we don't recognize. It might not be unreasonable for the verifier
+ // to not even allow this and just assert here.
+ }
}
-/// runStaticConstructorsDestructors - This method is used to execute all of
-/// the static constructors or destructors for a program, depending on the
-/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
- for (unsigned m = 0, e = Modules.size(); m != e; ++m)
- runStaticConstructorsDestructors(Modules[m], isDtors);
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ runStaticConstructorsDestructors(Modules[i], isDtors);
}
#ifndef NDEBUG
@@ -372,9 +346,6 @@ static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
}
#endif
-/// runFunctionAsMain - This is a helper function which wraps runFunction to
-/// handle the common task of starting up main with the specified argc, argv,
-/// and envp parameters.
int ExecutionEngine::runFunctionAsMain(Function *Fn,
const std::vector<std::string> &argv,
const char * const * envp) {
@@ -386,32 +357,20 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
const FunctionType *FTy = Fn->getFunctionType();
const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
- switch (NumArgs) {
- case 3:
- if (FTy->getParamType(2) != PPInt8Ty) {
- report_fatal_error("Invalid type for third argument of main() supplied");
- }
- // FALLS THROUGH
- case 2:
- if (FTy->getParamType(1) != PPInt8Ty) {
- report_fatal_error("Invalid type for second argument of main() supplied");
- }
- // FALLS THROUGH
- case 1:
- if (!FTy->getParamType(0)->isIntegerTy(32)) {
- report_fatal_error("Invalid type for first argument of main() supplied");
- }
- // FALLS THROUGH
- case 0:
- if (!FTy->getReturnType()->isIntegerTy() &&
- !FTy->getReturnType()->isVoidTy()) {
- report_fatal_error("Invalid return type of main() supplied");
- }
- break;
- default:
- report_fatal_error("Invalid number of arguments of main() supplied");
- }
-
+
+ // Check the argument types.
+ if (NumArgs > 3)
+ report_fatal_error("Invalid number of arguments of main() supplied");
+ if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
+ report_fatal_error("Invalid type for third argument of main() supplied");
+ if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
+ report_fatal_error("Invalid type for second argument of main() supplied");
+ if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
+ report_fatal_error("Invalid type for first argument of main() supplied");
+ if (!FTy->getReturnType()->isIntegerTy() &&
+ !FTy->getReturnType()->isVoidTy())
+ report_fatal_error("Invalid return type of main() supplied");
+
ArgvArray CArgv;
ArgvArray CEnv;
if (NumArgs) {
@@ -430,13 +389,10 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
}
}
}
+
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
}
-/// If possible, create a JIT, unless the caller specifically requests an
-/// Interpreter or there's an error. If even an Interpreter cannot be created,
-/// NULL is returned.
-///
ExecutionEngine *ExecutionEngine::create(Module *M,
bool ForceInterpreter,
std::string *ErrorStr,
@@ -496,21 +452,18 @@ ExecutionEngine *EngineBuilder::create() {
if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
- }
+ }
+
return 0;
}
-/// getPointerToGlobal - This returns the address of the specified global
-/// value. This may involve code generation if it's a function.
-///
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
return getPointerToFunction(F);
MutexGuard locked(lock);
- void *p = EEState.getGlobalAddressMap(locked)[GV];
- if (p)
- return p;
+ if (void *P = EEState.getGlobalAddressMap(locked)[GV])
+ return P;
// Global variable might have been added since interpreter started.
if (GlobalVariable *GVar =
@@ -518,12 +471,12 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
EmitGlobalVariable(GVar);
else
llvm_unreachable("Global hasn't had an address allocated yet!");
+
return EEState.getGlobalAddressMap(locked)[GV];
}
-/// This function converts a Constant* into a GenericValue. The interesting
-/// part is if C is a ConstantExpr.
-/// @brief Get a GenericValue for a Constant*
+/// \brief Converts a Constant* into a GenericValue, including handling of
+/// ConstantExpr values.
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// If its undefined, return the garbage.
if (isa<UndefValue>(C)) {
@@ -543,12 +496,12 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
return Result;
}
- // If the value is a ConstantExpr
+ // Otherwise, if the value is a ConstantExpr...
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Constant *Op0 = CE->getOperand(0);
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
- // Compute the index
+ // Compute the index
GenericValue Result = getConstantValue(Op0);
SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
uint64_t Offset =
@@ -597,7 +550,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
- (void)apf.convertFromAPInt(GV.IntVal,
+ (void)apf.convertFromAPInt(GV.IntVal,
false,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
@@ -613,7 +566,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = { 0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
- (void)apf.convertFromAPInt(GV.IntVal,
+ (void)apf.convertFromAPInt(GV.IntVal,
true,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
@@ -633,7 +586,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
uint64_t v;
bool ignored;
(void)apf.convertToInteger(&v, BitWidth,
- CE->getOpcode()==Instruction::FPToSI,
+ CE->getOpcode()==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
GV.IntVal = v; // endian?
}
@@ -666,7 +619,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (DestTy->isDoubleTy())
GV.DoubleVal = GV.IntVal.bitsToDouble();
break;
- case Type::FloatTyID:
+ case Type::FloatTyID:
assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
GV.IntVal.floatToBits(GV.FloatVal);
break;
@@ -722,9 +675,9 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
case Instruction::FMul:
GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
- case Instruction::FDiv:
+ case Instruction::FDiv:
GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
- case Instruction::FRem:
+ case Instruction::FRem:
GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
}
break;
@@ -737,9 +690,9 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
case Instruction::FMul:
GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
- case Instruction::FDiv:
+ case Instruction::FDiv:
GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
- case Instruction::FRem:
+ case Instruction::FRem:
GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
}
break;
@@ -761,11 +714,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
- case Instruction::FDiv:
+ case Instruction::FDiv:
apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
- case Instruction::FRem:
+ case Instruction::FRem:
apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
@@ -778,16 +731,18 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
default:
break;
}
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "ConstantExpr not handled: " << *CE;
- report_fatal_error(Msg.str());
+
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ConstantExpr not handled: " << *CE;
+ report_fatal_error(OS.str());
}
+ // Otherwise, we have a simple constant.
GenericValue Result;
switch (C->getType()->getTypeID()) {
- case Type::FloatTyID:
- Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
+ case Type::FloatTyID:
+ Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
break;
case Type::DoubleTyID:
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
@@ -814,11 +769,12 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
llvm_unreachable("Unknown constant pointer type!");
break;
default:
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
- report_fatal_error(Msg.str());
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ERROR: Constant unimplemented for type: " << *C->getType();
+ report_fatal_error(OS.str());
}
+
return Result;
}
@@ -829,11 +785,11 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
uint8_t *Src = (uint8_t *)IntVal.getRawData();
- if (sys::isLittleEndianHost())
+ if (sys::isLittleEndianHost()) {
// Little-endian host - the source is ordered from LSB to MSB. Order the
// destination from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, StoreBytes);
- else {
+ } else {
// Big-endian host - the source is an array of 64 bit words ordered from
// LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
// from MSB to LSB: Reverse the word order, but not the bytes in a word.
@@ -848,10 +804,6 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
}
}
-/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
-/// is the address of the memory at which to store Val, cast to GenericValue *.
-/// It is not a pointer to a GenericValue containing the address at which to
-/// store Val.
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
GenericValue *Ptr, const Type *Ty) {
const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
@@ -942,16 +894,13 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
break;
}
default:
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Cannot load value of type " << *Ty << "!";
- report_fatal_error(Msg.str());
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "Cannot load value of type " << *Ty << "!";
+ report_fatal_error(OS.str());
}
}
-// InitializeMemory - Recursive function to apply a Constant value into the
-// specified memory location...
-//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
DEBUG(Init->dump());
@@ -984,20 +933,17 @@ void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
return;
}
- dbgs() << "Bad Type: " << *Init->getType() << "\n";
+ DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
llvm_unreachable("Unknown constant type to initialize memory with!");
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
-///
void ExecutionEngine::emitGlobals() {
-
// Loop over all of the global variables in the program, allocating the memory
// to hold them. If there is more than one module, do a prepass over globals
// to figure out how the different modules should link together.
- //
std::map<std::pair<std::string, const Type*>,
const GlobalValue*> LinkedGlobalsMap;
@@ -1010,8 +956,8 @@ void ExecutionEngine::emitGlobals() {
if (GV->hasLocalLinkage() || GV->isDeclaration() ||
GV->hasAppendingLinkage() || !GV->hasName())
continue;// Ignore external globals and globals with internal linkage.
-
- const GlobalValue *&GVEntry =
+
+ const GlobalValue *&GVEntry =
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
// If this is the first time we've seen this global, it is the canonical
@@ -1020,13 +966,13 @@ void ExecutionEngine::emitGlobals() {
GVEntry = GV;
continue;
}
-
+
// If the existing global is strong, never replace it.
if (GVEntry->hasExternalLinkage() ||
GVEntry->hasDLLImportLinkage() ||
GVEntry->hasDLLExportLinkage())
continue;
-
+
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
// symbol. FIXME is this right for common?
if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
@@ -1034,7 +980,7 @@ void ExecutionEngine::emitGlobals() {
}
}
}
-
+
std::vector<const GlobalValue*> NonCanonicalGlobals;
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
Module &M = *Modules[m];
@@ -1042,7 +988,7 @@ void ExecutionEngine::emitGlobals() {
I != E; ++I) {
// In the multi-module case, see what this global maps to.
if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry =
+ if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
// If something else is the canonical global, ignore this one.
if (GVEntry != &*I) {
@@ -1051,7 +997,7 @@ void ExecutionEngine::emitGlobals() {
}
}
}
-
+
if (!I->isDeclaration()) {
addGlobalMapping(I, getMemoryForGV(I));
} else {
@@ -1066,7 +1012,7 @@ void ExecutionEngine::emitGlobals() {
}
}
}
-
+
// If there are multiple modules, map the non-canonical globals to their
// canonical location.
if (!NonCanonicalGlobals.empty()) {
@@ -1079,14 +1025,14 @@ void ExecutionEngine::emitGlobals() {
addGlobalMapping(GV, Ptr);
}
}
-
- // Now that all of the globals are set up in memory, loop through them all
+
+ // Now that all of the globals are set up in memory, loop through them all
// and initialize their contents.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->isDeclaration()) {
if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry =
+ if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
if (GVEntry != &*I) // Not the canonical variable.
continue;
@@ -1108,11 +1054,11 @@ void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
GA = getMemoryForGV(GV);
addGlobalMapping(GV, GA);
}
-
+
// Don't initialize if it's thread local, let the client do it.
if (!GV->isThreadLocal())
InitializeMemory(GV->getInitializer(), GA);
-
+
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
NumInitBytes += (unsigned)GVSize;
@@ -1123,18 +1069,20 @@ ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
: EE(EE), GlobalAddressMap(this) {
}
-sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
- ExecutionEngineState *EES) {
+sys::Mutex *
+ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
return &EES->EE.lock;
}
-void ExecutionEngineState::AddressMapConfig::onDelete(
- ExecutionEngineState *EES, const GlobalValue *Old) {
+
+void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
+ const GlobalValue *Old) {
void *OldVal = EES->GlobalAddressMap.lookup(Old);
EES->GlobalAddressReverseMap.erase(OldVal);
}
-void ExecutionEngineState::AddressMapConfig::onRAUW(
- ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
+void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
+ const GlobalValue *,
+ const GlobalValue *) {
assert(false && "The ExecutionEngine doesn't know how to handle a"
" RAUW on a value it has a global mapping for.");
}