summaryrefslogtreecommitdiff
path: root/lib/Support
diff options
context:
space:
mode:
authorEvan Cheng <evan.cheng@apple.com>2008-05-02 21:15:08 +0000
committerEvan Cheng <evan.cheng@apple.com>2008-05-02 21:15:08 +0000
commit48e8c80e1791adb7a07b8fd6e27edcdfbb756950 (patch)
tree980d5dc4eec0cf8e316288fc47b9ff465264244b /lib/Support
parente818f770bb4f6617612e5b61cc067aa7da9e1395 (diff)
downloadllvm-48e8c80e1791adb7a07b8fd6e27edcdfbb756950.tar.gz
llvm-48e8c80e1791adb7a07b8fd6e27edcdfbb756950.tar.bz2
llvm-48e8c80e1791adb7a07b8fd6e27edcdfbb756950.tar.xz
Suppress -Wshorten-64-to-32 warnings for 64-bit hosts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50590 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Support')
-rw-r--r--lib/Support/APFloat.cpp48
-rw-r--r--lib/Support/APInt.cpp41
2 files changed, 46 insertions, 43 deletions
diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp
index 35de71497a..7d6c4dc0bf 100644
--- a/lib/Support/APFloat.cpp
+++ b/lib/Support/APFloat.cpp
@@ -163,9 +163,9 @@ namespace {
static int
totalExponent(const char *p, int exponentAdjustment)
{
- integerPart unsignedExponent;
+ int unsignedExponent;
bool negative, overflow;
- long exponent;
+ int exponent;
/* Move past the exponent letter and sign to the digits. */
p++;
@@ -280,9 +280,10 @@ namespace {
while (*p == '.');
/* Adjust the exponents for any decimal point. */
- D->exponent += (dot - p) - (dot > p);
- D->normalizedExponent = (D->exponent + (p - D->firstSigDigit)
- - (dot > D->firstSigDigit && dot < p));
+ D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
+ D->normalizedExponent = (D->exponent +
+ static_cast<exponent_t>((p - D->firstSigDigit)
+ - (dot > D->firstSigDigit && dot < p)));
}
D->lastSigDigit = p;
@@ -2002,7 +2003,7 @@ APFloat::convertFromHexadecimalString(const char *p,
firstSignificantDigit = p;
for(;;) {
- integerPart hex_value;
+ unsigned int hex_value;
if(*p == '.') {
assert(dot == 0);
@@ -2043,7 +2044,7 @@ APFloat::convertFromHexadecimalString(const char *p,
/* Calculate the exponent adjustment implicit in the number of
significant digits. */
- expAdjustment = dot - firstSignificantDigit;
+ expAdjustment = static_cast<int>(dot - firstSignificantDigit);
if(expAdjustment < 0)
expAdjustment++;
expAdjustment = expAdjustment * 4 - 1;
@@ -2097,7 +2098,8 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
decSig.exponent += exp;
lostFraction calcLostFraction;
- integerPart HUerr, HUdistance, powHUerr;
+ integerPart HUerr, HUdistance;
+ unsigned int powHUerr;
if (exp >= 0) {
/* multiplySignificand leaves the precision-th bit set to 1. */
@@ -2113,7 +2115,7 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
excessPrecision = calcSemantics.precision;
}
/* Extra half-ulp lost in reciprocal of exponent. */
- powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0: 2;
+ powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
}
/* Both multiplySignificand and divideSignificand return the
@@ -2190,7 +2192,7 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
N-digit decimal integer is N * 196 / 59. Allocate enough space
to hold the full significand, and an extra part required by
tcMultiplyPart. */
- partCount = (D.lastSigDigit - D.firstSigDigit) + 1;
+ partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
partCount = partCountForBits(1 + 196 * partCount / 59);
decSignificand = new integerPart[partCount + 1];
partCount = 0;
@@ -2320,7 +2322,7 @@ APFloat::convertToHexString(char *dst, unsigned int hexDigits,
*dst = 0;
- return dst - p;
+ return static_cast<unsigned int>(dst - p);
}
/* Does the hard work of outputting the correctly rounded hexadecimal
@@ -2443,7 +2445,7 @@ APFloat::getHashValue() const
uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
const integerPart* p = significandParts();
for (int i=partCount(); i>0; i--, p++)
- hash ^= ((uint32_t)*p) ^ (*p)>>32;
+ hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
return hash;
}
}
@@ -2483,8 +2485,8 @@ APFloat::convertF80LongDoubleAPFloatToAPInt() const
}
uint64_t words[2];
- words[0] = (((uint64_t)sign & 1) << 63) |
- ((myexponent & 0x7fff) << 48) |
+ words[0] = ((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7fffLL) << 48) |
((mysignificand >>16) & 0xffffffffffffLL);
words[1] = mysignificand & 0xffff;
return APInt(80, 2, words);
@@ -2526,10 +2528,10 @@ APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
}
uint64_t words[2];
- words[0] = (((uint64_t)sign & 1) << 63) |
+ words[0] = ((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7ff) << 52) |
(mysignificand & 0xfffffffffffffLL);
- words[1] = (((uint64_t)sign2 & 1) << 63) |
+ words[1] = ((uint64_t)(sign2 & 1) << 63) |
((myexponent2 & 0x7ff) << 52) |
(mysignificand2 & 0xfffffffffffffLL);
return APInt(128, 2, words);
@@ -2560,7 +2562,7 @@ APFloat::convertDoubleAPFloatToAPInt() const
mysignificand = *significandParts();
}
- return APInt(64, (((((uint64_t)sign & 1) << 63) |
+ return APInt(64, ((((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7ff) << 52) |
(mysignificand & 0xfffffffffffffLL))));
}
@@ -2575,7 +2577,7 @@ APFloat::convertFloatAPFloatToAPInt() const
if (category==fcNormal) {
myexponent = exponent+127; //bias
- mysignificand = *significandParts();
+ mysignificand = (uint32_t)*significandParts();
if (myexponent == 1 && !(mysignificand & 0x800000))
myexponent = 0; // denormal
} else if (category==fcZero) {
@@ -2587,7 +2589,7 @@ APFloat::convertFloatAPFloatToAPInt() const
} else {
assert(category == fcNaN && "Unknown category!");
myexponent = 0xff;
- mysignificand = *significandParts();
+ mysignificand = (uint32_t)*significandParts();
}
return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
@@ -2649,7 +2651,7 @@ APFloat::initFromF80LongDoubleAPInt(const APInt &api)
initialize(&APFloat::x87DoubleExtended);
assert(partCount()==2);
- sign = i1>>63;
+ sign = static_cast<unsigned int>(i1>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
@@ -2685,8 +2687,8 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
initialize(&APFloat::PPCDoubleDouble);
assert(partCount()==2);
- sign = i1>>63;
- sign2 = i2>>63;
+ sign = static_cast<unsigned int>(i1>>63);
+ sign2 = static_cast<unsigned int>(i2>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
// exponent2 and significand2 are required to be 0; we don't check
@@ -2732,7 +2734,7 @@ APFloat::initFromDoubleAPInt(const APInt &api)
initialize(&APFloat::IEEEdouble);
assert(partCount()==1);
- sign = i>>63;
+ sign = static_cast<unsigned int>(i>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
index 615fcac8a6..ef35e1c554 100644
--- a/lib/Support/APInt.cpp
+++ b/lib/Support/APInt.cpp
@@ -99,7 +99,7 @@ APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
assert(!Val.empty() && "String empty?");
- fromString(numbits, Val.c_str(), Val.size(), radix);
+ fromString(numbits, Val.c_str(), (uint32_t)Val.size(), radix);
}
APInt::APInt(const APInt& that)
@@ -905,7 +905,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
// Otherwise, we have to shift the mantissa bits up to the right location
APInt Tmp(width, mantissa);
- Tmp = Tmp.shl(exp - 52);
+ Tmp = Tmp.shl((uint32_t)exp - 52);
return isNeg ? -Tmp : Tmp;
}
@@ -1086,7 +1086,7 @@ APInt &APInt::sextOrTrunc(uint32_t width) {
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(const APInt &shiftAmt) const {
- return ashr(shiftAmt.getLimitedValue(BitWidth));
+ return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
}
/// Arithmetic right-shift this APInt by shiftAmt.
@@ -1175,7 +1175,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(const APInt &shiftAmt) const {
- return lshr(shiftAmt.getLimitedValue(BitWidth));
+ return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
}
/// Logical right-shift this APInt by shiftAmt.
@@ -1244,7 +1244,7 @@ APInt APInt::lshr(uint32_t shiftAmt) const {
/// @brief Left-shift function.
APInt APInt::shl(const APInt &shiftAmt) const {
// It's undefined behavior in C to shift by BitWidth or greater, but
- return shl(shiftAmt.getLimitedValue(BitWidth));
+ return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
}
/// Left-shift this APInt by shiftAmt.
@@ -1307,7 +1307,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
}
APInt APInt::rotl(const APInt &rotateAmt) const {
- return rotl(rotateAmt.getLimitedValue(BitWidth));
+ return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
}
APInt APInt::rotl(uint32_t rotateAmt) const {
@@ -1322,7 +1322,7 @@ APInt APInt::rotl(uint32_t rotateAmt) const {
}
APInt APInt::rotr(const APInt &rotateAmt) const {
- return rotr(rotateAmt.getLimitedValue(BitWidth));
+ return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
}
APInt APInt::rotr(uint32_t rotateAmt) const {
@@ -1517,8 +1517,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
uint64_t result = u_tmp - subtrahend;
uint32_t k = j + i;
- u[k++] = result & (b-1); // subtract low word
- u[k++] = result >> 32; // subtract high word
+ u[k++] = (uint32_t)(result & (b-1)); // subtract low word
+ u[k++] = (uint32_t)(result >> 32); // subtract high word
while (borrow && k <= m+n) { // deal with borrow to the left
borrow = u[k] == 0;
u[k]--;
@@ -1549,7 +1549,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
- q[j] = qp;
+ q[j] = (uint32_t)qp;
if (isNeg) {
// D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
@@ -1645,8 +1645,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
memset(U, 0, (m+n+1)*sizeof(uint32_t));
for (unsigned i = 0; i < lhsWords; ++i) {
uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
- U[i * 2] = tmp & mask;
- U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
+ U[i * 2] = (uint32_t)(tmp & mask);
+ U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
}
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
@@ -1654,8 +1654,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
memset(V, 0, (n)*sizeof(uint32_t));
for (unsigned i = 0; i < rhsWords; ++i) {
uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
- V[i * 2] = tmp & mask;
- V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
+ V[i * 2] = (uint32_t)(tmp & mask);
+ V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
}
// initialize the quotient and remainder
@@ -1691,13 +1691,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
remainder = 0;
} else if (partial_dividend < divisor) {
Q[i] = 0;
- remainder = partial_dividend;
+ remainder = (uint32_t)partial_dividend;
} else if (partial_dividend == divisor) {
Q[i] = 1;
remainder = 0;
} else {
- Q[i] = partial_dividend / divisor;
- remainder = partial_dividend - (Q[i] * divisor);
+ Q[i] = (uint32_t)(partial_dividend / divisor);
+ remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
}
}
if (R)
@@ -1991,7 +1991,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
memset(buf, 0, 65);
uint64_t v = VAL;
while (bits_used) {
- uint32_t bit = v & 1;
+ uint32_t bit = (uint32_t)v & 1;
bits_used--;
buf[bits_used] = digits[bit][0];
v >>=1;
@@ -2026,7 +2026,8 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
uint64_t mask = radix - 1;
APInt zero(tmp.getBitWidth(), 0);
while (tmp.ne(zero)) {
- unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
+ unsigned digit =
+ (unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask);
result.insert(insert_at, digits[digit]);
tmp = tmp.lshr(shift);
}
@@ -2054,7 +2055,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
APInt tmp2(tmp.getBitWidth(), 0);
divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
- uint32_t digit = APdigit.getZExtValue();
+ uint32_t digit = (uint32_t)APdigit.getZExtValue();
assert(digit < radix && "divide failed");
result.insert(insert_at,digits[digit]);
tmp = tmp2;