summaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonMachineScheduler.cpp
diff options
context:
space:
mode:
authorSergei Larin <slarin@codeaurora.org>2012-09-04 14:49:56 +0000
committerSergei Larin <slarin@codeaurora.org>2012-09-04 14:49:56 +0000
commit3e59040810d0e6e04269ac8f781fa44df6088458 (patch)
tree20a1bc053a71a390be8cdd95b05c709d7565db87 /lib/Target/Hexagon/HexagonMachineScheduler.cpp
parent67514e90669ec9ffd954c1fcb6f8979bafcabe8a (diff)
downloadllvm-3e59040810d0e6e04269ac8f781fa44df6088458.tar.gz
llvm-3e59040810d0e6e04269ac8f781fa44df6088458.tar.bz2
llvm-3e59040810d0e6e04269ac8f781fa44df6088458.tar.xz
Porting Hexagon MI Scheduler to the new API.
Change current Hexagon MI scheduler to use new converging scheduler. Integrates DFA resource model into it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163137 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/Hexagon/HexagonMachineScheduler.cpp')
-rw-r--r--lib/Target/Hexagon/HexagonMachineScheduler.cpp874
1 files changed, 874 insertions, 0 deletions
diff --git a/lib/Target/Hexagon/HexagonMachineScheduler.cpp b/lib/Target/Hexagon/HexagonMachineScheduler.cpp
new file mode 100644
index 0000000000..6a37639889
--- /dev/null
+++ b/lib/Target/Hexagon/HexagonMachineScheduler.cpp
@@ -0,0 +1,874 @@
+//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachineScheduler schedules machine instructions after phi elimination. It
+// preserves LiveIntervals so it can be invoked before register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "misched"
+
+#include "HexagonMachineScheduler.h"
+
+#include <queue>
+
+using namespace llvm;
+
+static cl::opt<bool> ForceTopDown("vliw-misched-topdown", cl::Hidden,
+ cl::desc("Force top-down list scheduling"));
+static cl::opt<bool> ForceBottomUp("vliw-misched-bottomup", cl::Hidden,
+ cl::desc("Force bottom-up list scheduling"));
+
+#ifndef NDEBUG
+static cl::opt<bool> ViewMISchedDAGs("vliw-view-misched-dags", cl::Hidden,
+ cl::desc("Pop up a window to show MISched dags after they are processed"));
+
+static cl::opt<unsigned> MISchedCutoff("vliw-misched-cutoff", cl::Hidden,
+ cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
+#else
+static bool ViewMISchedDAGs = false;
+#endif // NDEBUG
+
+/// Decrement this iterator until reaching the top or a non-debug instr.
+static MachineBasicBlock::iterator
+priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
+ assert(I != Beg && "reached the top of the region, cannot decrement");
+ while (--I != Beg) {
+ if (!I->isDebugValue())
+ break;
+ }
+ return I;
+}
+
+/// If this iterator is a debug value, increment until reaching the End or a
+/// non-debug instruction.
+static MachineBasicBlock::iterator
+nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
+ for(; I != End; ++I) {
+ if (!I->isDebugValue())
+ break;
+ }
+ return I;
+}
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
+/// NumPredsLeft reaches zero, release the successor node.
+///
+/// FIXME: Adjust SuccSU height based on MinLatency.
+void VLIWMachineScheduler::releaseSucc(SUnit *SU, SDep *SuccEdge) {
+ SUnit *SuccSU = SuccEdge->getSUnit();
+
+#ifndef NDEBUG
+ if (SuccSU->NumPredsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ SuccSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(0);
+ }
+#endif
+ --SuccSU->NumPredsLeft;
+ if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
+ SchedImpl->releaseTopNode(SuccSU);
+}
+
+/// releaseSuccessors - Call releaseSucc on each of SU's successors.
+void VLIWMachineScheduler::releaseSuccessors(SUnit *SU) {
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ releaseSucc(SU, &*I);
+ }
+}
+
+/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
+/// NumSuccsLeft reaches zero, release the predecessor node.
+///
+/// FIXME: Adjust PredSU height based on MinLatency.
+void VLIWMachineScheduler::releasePred(SUnit *SU, SDep *PredEdge) {
+ SUnit *PredSU = PredEdge->getSUnit();
+
+#ifndef NDEBUG
+ if (PredSU->NumSuccsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ PredSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(0);
+ }
+#endif
+ --PredSU->NumSuccsLeft;
+ if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
+ SchedImpl->releaseBottomNode(PredSU);
+}
+
+/// releasePredecessors - Call releasePred on each of SU's predecessors.
+void VLIWMachineScheduler::releasePredecessors(SUnit *SU) {
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ releasePred(SU, &*I);
+ }
+}
+
+void VLIWMachineScheduler::moveInstruction(MachineInstr *MI,
+ MachineBasicBlock::iterator InsertPos) {
+ // Advance RegionBegin if the first instruction moves down.
+ if (&*RegionBegin == MI)
+ ++RegionBegin;
+
+ // Update the instruction stream.
+ BB->splice(InsertPos, BB, MI);
+
+ // Update LiveIntervals
+ LIS->handleMove(MI);
+
+ // Recede RegionBegin if an instruction moves above the first.
+ if (RegionBegin == InsertPos)
+ RegionBegin = MI;
+}
+
+bool VLIWMachineScheduler::checkSchedLimit() {
+#ifndef NDEBUG
+ if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
+ CurrentTop = CurrentBottom;
+ return false;
+ }
+ ++NumInstrsScheduled;
+#endif
+ return true;
+}
+
+/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
+/// crossing a scheduling boundary. [begin, end) includes all instructions in
+/// the region, including the boundary itself and single-instruction regions
+/// that don't get scheduled.
+void VLIWMachineScheduler::enterRegion(MachineBasicBlock *bb,
+ MachineBasicBlock::iterator begin,
+ MachineBasicBlock::iterator end,
+ unsigned endcount)
+{
+ ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
+
+ // For convenience remember the end of the liveness region.
+ LiveRegionEnd =
+ (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
+}
+
+// Setup the register pressure trackers for the top scheduled top and bottom
+// scheduled regions.
+void VLIWMachineScheduler::initRegPressure() {
+ TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
+ BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+
+ // Close the RPTracker to finalize live ins.
+ RPTracker.closeRegion();
+
+ DEBUG(RPTracker.getPressure().dump(TRI));
+
+ // Initialize the live ins and live outs.
+ TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
+ BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
+
+ // Close one end of the tracker so we can call
+ // getMaxUpward/DownwardPressureDelta before advancing across any
+ // instructions. This converts currently live regs into live ins/outs.
+ TopRPTracker.closeTop();
+ BotRPTracker.closeBottom();
+
+ // Account for liveness generated by the region boundary.
+ if (LiveRegionEnd != RegionEnd)
+ BotRPTracker.recede();
+
+ assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
+
+ // Cache the list of excess pressure sets in this region. This will also track
+ // the max pressure in the scheduled code for these sets.
+ RegionCriticalPSets.clear();
+ std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
+ for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
+ unsigned Limit = TRI->getRegPressureSetLimit(i);
+ if (RegionPressure[i] > Limit)
+ RegionCriticalPSets.push_back(PressureElement(i, 0));
+ }
+ DEBUG(dbgs() << "Excess PSets: ";
+ for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
+ dbgs() << TRI->getRegPressureSetName(
+ RegionCriticalPSets[i].PSetID) << " ";
+ dbgs() << "\n");
+
+ // Reset resource state.
+ TopResourceModel->resetPacketState();
+ TopResourceModel->resetDFA();
+ BotResourceModel->resetPacketState();
+ BotResourceModel->resetDFA();
+ TotalPackets = 0;
+}
+
+// FIXME: When the pressure tracker deals in pressure differences then we won't
+// iterate over all RegionCriticalPSets[i].
+void VLIWMachineScheduler::
+updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
+ for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
+ unsigned ID = RegionCriticalPSets[i].PSetID;
+ int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
+ if ((int)NewMaxPressure[ID] > MaxUnits)
+ MaxUnits = NewMaxPressure[ID];
+ }
+}
+
+/// Check if scheduling of this SU is possible
+/// in the current packet.
+/// It is _not_ precise (statefull), it is more like
+/// another heuristic. Many corner cases are figured
+/// empirically.
+bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
+ if (!SU || !SU->getInstr())
+ return false;
+
+ // First see if the pipeline could receive this instruction
+ // in the current cycle.
+ switch (SU->getInstr()->getOpcode()) {
+ default:
+ if (!ResourcesModel->canReserveResources(SU->getInstr()))
+ return false;
+ case TargetOpcode::EXTRACT_SUBREG:
+ case TargetOpcode::INSERT_SUBREG:
+ case TargetOpcode::SUBREG_TO_REG:
+ case TargetOpcode::REG_SEQUENCE:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::COPY:
+ case TargetOpcode::INLINEASM:
+ break;
+ }
+
+ // Now see if there are no other dependencies to instructions already
+ // in the packet.
+ for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
+ if (Packet[i]->Succs.size() == 0)
+ continue;
+ for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
+ E = Packet[i]->Succs.end(); I != E; ++I) {
+ // Since we do not add pseudos to packets, might as well
+ // ignore order dependencies.
+ if (I->isCtrl())
+ continue;
+
+ if (I->getSUnit() == SU)
+ return false;
+ }
+ }
+ return true;
+}
+
+/// Keep track of available resources.
+void VLIWResourceModel::reserveResources(SUnit *SU) {
+ // If this SU does not fit in the packet
+ // start a new one.
+ if (!isResourceAvailable(SU)) {
+ ResourcesModel->clearResources();
+ Packet.clear();
+ TotalPackets++;
+ }
+
+ switch (SU->getInstr()->getOpcode()) {
+ default:
+ ResourcesModel->reserveResources(SU->getInstr());
+ break;
+ case TargetOpcode::EXTRACT_SUBREG:
+ case TargetOpcode::INSERT_SUBREG:
+ case TargetOpcode::SUBREG_TO_REG:
+ case TargetOpcode::REG_SEQUENCE:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case TargetOpcode::PROLOG_LABEL:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::COPY:
+ case TargetOpcode::INLINEASM:
+ break;
+ }
+ Packet.push_back(SU);
+
+#ifndef NDEBUG
+ DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
+ for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
+ DEBUG(dbgs() << "\t[" << i << "] SU(");
+ DEBUG(dbgs() << Packet[i]->NodeNum << ")\n");
+ }
+#endif
+
+ // If packet is now full, reset the state so in the next cycle
+ // we start fresh.
+ if (Packet.size() >= InstrItins->SchedModel->IssueWidth) {
+ ResourcesModel->clearResources();
+ Packet.clear();
+ TotalPackets++;
+ }
+}
+
+// Release all DAG roots for scheduling.
+void VLIWMachineScheduler::releaseRoots() {
+ SmallVector<SUnit*, 16> BotRoots;
+
+ for (std::vector<SUnit>::iterator
+ I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
+ // A SUnit is ready to top schedule if it has no predecessors.
+ if (I->Preds.empty())
+ SchedImpl->releaseTopNode(&(*I));
+ // A SUnit is ready to bottom schedule if it has no successors.
+ if (I->Succs.empty())
+ BotRoots.push_back(&(*I));
+ }
+ // Release bottom roots in reverse order so the higher priority nodes appear
+ // first. This is more natural and slightly more efficient.
+ for (SmallVectorImpl<SUnit*>::const_reverse_iterator
+ I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I)
+ SchedImpl->releaseBottomNode(*I);
+}
+
+/// schedule - Called back from MachineScheduler::runOnMachineFunction
+/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
+/// only includes instructions that have DAG nodes, not scheduling boundaries.
+void VLIWMachineScheduler::schedule() {
+ DEBUG(dbgs()
+ << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
+ << " " << BB->getName()
+ << " in_func " << BB->getParent()->getFunction()->getName()
+ << " at loop depth " << MLI->getLoopDepth(BB)
+ << " \n");
+
+ // Initialize the register pressure tracker used by buildSchedGraph.
+ RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+
+ // Account for liveness generate by the region boundary.
+ if (LiveRegionEnd != RegionEnd)
+ RPTracker.recede();
+
+ // Build the DAG, and compute current register pressure.
+ buildSchedGraph(AA, &RPTracker);
+
+ // Initialize top/bottom trackers after computing region pressure.
+ initRegPressure();
+
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this));
+
+ if (ViewMISchedDAGs) viewGraph();
+
+ SchedImpl->initialize(this);
+
+ // Release edges from the special Entry node or to the special Exit node.
+ releaseSuccessors(&EntrySU);
+ releasePredecessors(&ExitSU);
+
+ // Release all DAG roots for scheduling.
+ releaseRoots();
+
+ CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
+ CurrentBottom = RegionEnd;
+ bool IsTopNode = false;
+ while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
+ if (!checkSchedLimit())
+ break;
+
+ // Move the instruction to its new location in the instruction stream.
+ MachineInstr *MI = SU->getInstr();
+
+ if (IsTopNode) {
+ assert(SU->isTopReady() && "node still has unscheduled dependencies");
+ if (&*CurrentTop == MI)
+ CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
+ else {
+ moveInstruction(MI, CurrentTop);
+ TopRPTracker.setPos(MI);
+ }
+
+ // Update top scheduled pressure.
+ TopRPTracker.advance();
+ assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
+ updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
+
+ // Update DFA state.
+ TopResourceModel->reserveResources(SU);
+
+ // Release dependent instructions for scheduling.
+ releaseSuccessors(SU);
+ }
+ else {
+ assert(SU->isBottomReady() && "node still has unscheduled dependencies");
+ MachineBasicBlock::iterator priorII =
+ priorNonDebug(CurrentBottom, CurrentTop);
+ if (&*priorII == MI)
+ CurrentBottom = priorII;
+ else {
+ if (&*CurrentTop == MI) {
+ CurrentTop = nextIfDebug(++CurrentTop, priorII);
+ TopRPTracker.setPos(CurrentTop);
+ }
+ moveInstruction(MI, CurrentBottom);
+ CurrentBottom = MI;
+ }
+ // Update bottom scheduled pressure.
+ BotRPTracker.recede();
+ assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
+ updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
+
+ // Update DFA state.
+ BotResourceModel->reserveResources(SU);
+
+ // Release dependent instructions for scheduling.
+ releasePredecessors(SU);
+ }
+ SU->isScheduled = true;
+ SchedImpl->schedNode(SU, IsTopNode);
+ }
+ assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+
+ DEBUG(dbgs() << "Final schedule has " << TopResourceModel->getTotalPackets() +
+ BotResourceModel->getTotalPackets()<< "packets.\n");
+
+ placeDebugValues();
+}
+
+/// Reinsert any remaining debug_values, just like the PostRA scheduler.
+void VLIWMachineScheduler::placeDebugValues() {
+ // If first instruction was a DBG_VALUE then put it back.
+ if (FirstDbgValue) {
+ BB->splice(RegionBegin, BB, FirstDbgValue);
+ RegionBegin = FirstDbgValue;
+ }
+
+ for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
+ DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
+ std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
+ MachineInstr *DbgValue = P.first;
+ MachineBasicBlock::iterator OrigPrevMI = P.second;
+ BB->splice(++OrigPrevMI, BB, DbgValue);
+ if (OrigPrevMI == llvm::prior(RegionEnd))
+ RegionEnd = DbgValue;
+ }
+ DbgValues.clear();
+ FirstDbgValue = NULL;
+}
+
+void ConvergingVLIWScheduler::initialize(VLIWMachineScheduler *dag) {
+ DAG = dag;
+ TRI = DAG->TRI;
+ Top.DAG = dag;
+ Bot.DAG = dag;
+
+ // Initialize the HazardRecognizers.
+ const TargetMachine &TM = DAG->MF.getTarget();
+ const InstrItineraryData *Itin = TM.getInstrItineraryData();
+ Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+
+ assert((!ForceTopDown || !ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+}
+
+void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
+ unsigned MinLatency = I->getMinLatency();
+#ifndef NDEBUG
+ Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
+#endif
+ if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
+ SU->TopReadyCycle = PredReadyCycle + MinLatency;
+ }
+ Top.releaseNode(SU, SU->TopReadyCycle);
+}
+
+void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ assert(SU->getInstr() && "Scheduled SUnit must have instr");
+
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
+ unsigned MinLatency = I->getMinLatency();
+#ifndef NDEBUG
+ Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
+#endif
+ if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
+ SU->BotReadyCycle = SuccReadyCycle + MinLatency;
+ }
+ Bot.releaseNode(SU, SU->BotReadyCycle);
+}
+
+/// Does this SU have a hazard within the current instruction group.
+///
+/// The scheduler supports two modes of hazard recognition. The first is the
+/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
+/// supports highly complicated in-order reservation tables
+/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
+///
+/// The second is a streamlined mechanism that checks for hazards based on
+/// simple counters that the scheduler itself maintains. It explicitly checks
+/// for instruction dispatch limitations, including the number of micro-ops that
+/// can dispatch per cycle.
+///
+/// TODO: Also check whether the SU must start a new group.
+bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
+ if (HazardRec->isEnabled())
+ return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
+
+ if (IssueCount + DAG->getNumMicroOps(SU->getInstr()) > DAG->getIssueWidth())
+ return true;
+
+ return false;
+}
+
+void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
+ unsigned ReadyCycle) {
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ // Check for interlocks first. For the purpose of other heuristics, an
+ // instruction that cannot issue appears as if it's not in the ReadyQueue.
+ if (ReadyCycle > CurrCycle || checkHazard(SU))
+
+ Pending.push(SU);
+ else
+ Available.push(SU);
+}
+
+/// Move the boundary of scheduled code by one cycle.
+void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
+ unsigned Width = DAG->getIssueWidth();
+ IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
+
+ assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
+ unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
+
+ if (!HazardRec->isEnabled()) {
+ // Bypass HazardRec virtual calls.
+ CurrCycle = NextCycle;
+ }
+ else {
+ // Bypass getHazardType calls in case of long latency.
+ for (; CurrCycle != NextCycle; ++CurrCycle) {
+ if (isTop())
+ HazardRec->AdvanceCycle();
+ else
+ HazardRec->RecedeCycle();
+ }
+ }
+ CheckPending = true;
+
+ DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
+ << CurrCycle << '\n');
+}
+
+/// Move the boundary of scheduled code by one SUnit.
+void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
+
+ // Update the reservation table.
+ if (HazardRec->isEnabled()) {
+ if (!isTop() && SU->isCall) {
+ // Calls are scheduled with their preceding instructions. For bottom-up
+ // scheduling, clear the pipeline state before emitting.
+ HazardRec->Reset();
+ }
+ HazardRec->EmitInstruction(SU);
+ }
+ // Check the instruction group dispatch limit.
+ // TODO: Check if this SU must end a dispatch group.
+ IssueCount += DAG->getNumMicroOps(SU->getInstr());
+ if (IssueCount >= DAG->getIssueWidth()) {
+ DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
+ bumpCycle();
+ }
+}
+
+/// Release pending ready nodes in to the available queue. This makes them
+/// visible to heuristics.
+void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
+ // If the available queue is empty, it is safe to reset MinReadyCycle.
+ if (Available.empty())
+ MinReadyCycle = UINT_MAX;
+
+ // Check to see if any of the pending instructions are ready to issue. If
+ // so, add them to the available queue.
+ for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
+ SUnit *SU = *(Pending.begin()+i);
+ unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
+
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ if (ReadyCycle > CurrCycle)
+ continue;
+
+ if (checkHazard(SU))
+ continue;
+
+ Available.push(SU);
+ Pending.remove(Pending.begin()+i);
+ --i; --e;
+ }
+ CheckPending = false;
+}
+
+/// Remove SU from the ready set for this boundary.
+void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
+ if (Available.isInQueue(SU))
+ Available.remove(Available.find(SU));
+ else {
+ assert(Pending.isInQueue(SU) && "bad ready count");
+ Pending.remove(Pending.find(SU));
+ }
+}
+
+/// If this queue only has one ready candidate, return it. As a side effect,
+/// advance the cycle until at least one node is ready. If multiple instructions
+/// are ready, return NULL.
+SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
+ if (CheckPending)
+ releasePending();
+
+ for (unsigned i = 0; Available.empty(); ++i) {
+ assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
+ "permanent hazard"); (void)i;
+ bumpCycle();
+ releasePending();
+ }
+ if (Available.size() == 1)
+ return *Available.begin();
+ return NULL;
+}
+
+#ifndef NDEBUG
+void ConvergingVLIWScheduler::traceCandidate(const char *Label, const ReadyQueue &Q,
+ SUnit *SU, PressureElement P) {
+ dbgs() << Label << " " << Q.getName() << " ";
+ if (P.isValid())
+ dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
+ << " ";
+ else
+ dbgs() << " ";
+ SU->dump(DAG);
+}
+#endif
+
+// Constants used to denote relative importance of
+// heuristic components for cost computation.
+static const unsigned PriorityOne = 200;
+static const unsigned PriorityThree = 50;
+static const unsigned ScaleTwo = 10;
+static const unsigned FactorOne = 2;
+
+/// Single point to compute overall scheduling cost.
+/// TODO: More heuristics will be used soon.
+int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
+ SchedCandidate &Candidate,
+ RegPressureDelta &Delta,
+ bool verbose) {
+ // Initial trivial priority.
+ int ResCount = 1;
+
+ // Do not waste time on a node that is already scheduled.
+ if (!SU || SU->isScheduled)
+ return ResCount;
+
+ // Forced priority is high.
+ if (SU->isScheduleHigh)
+ ResCount += PriorityOne;
+
+ // Critical path first.
+ if (Q.getID() == TopQID)
+ ResCount += (SU->getHeight() * ScaleTwo);
+ else
+ ResCount += (SU->getDepth() * ScaleTwo);
+
+ // If resources are available for it, multiply the
+ // chance of scheduling.
+ if (DAG->getTopResourceModel()->isResourceAvailable(SU))
+ ResCount <<= FactorOne;
+
+ // Factor in reg pressure as a heuristic.
+ ResCount -= (Delta.Excess.UnitIncrease * PriorityThree);
+ ResCount -= (Delta.CriticalMax.UnitIncrease * PriorityThree);
+
+ DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
+
+ return ResCount;
+}
+
+/// Pick the best candidate from the top queue.
+///
+/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
+/// DAG building. To adjust for the current scheduling location we need to
+/// maintain the number of vreg uses remaining to be top-scheduled.
+ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
+pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
+ SchedCandidate &Candidate) {
+ DEBUG(Q.dump());
+
+ // getMaxPressureDelta temporarily modifies the tracker.
+ RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
+
+ // BestSU remains NULL if no top candidates beat the best existing candidate.
+ CandResult FoundCandidate = NoCand;
+ for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
+ RegPressureDelta RPDelta;
+ TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+
+ int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
+
+ // Initialize the candidate if needed.
+ if (!Candidate.SU) {
+ Candidate.SU = *I;
+ Candidate.RPDelta = RPDelta;
+ Candidate.SCost = CurrentCost;
+ FoundCandidate = NodeOrder;
+ continue;
+ }
+
+
+ // Best cost.
+ if (CurrentCost > Candidate.SCost) {
+ DEBUG(traceCandidate("CCAND", Q, *I));
+ Candidate.SU = *I;
+ Candidate.RPDelta = RPDelta;
+ Candidate.SCost = CurrentCost;
+ FoundCandidate = BestCost;
+ continue;
+ }
+
+ // Fall through to original instruction order.
+ // Only consider node order if Candidate was chosen from this Q.
+ if (FoundCandidate == NoCand)
+ continue;
+ }
+ return FoundCandidate;
+}
+
+/// Pick the best candidate node from either the top or bottom queue.
+SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
+ // Schedule as far as possible in the direction of no choice. This is most
+ // efficient, but also provides the best heuristics for CriticalPSets.
+ if (SUnit *SU = Bot.pickOnlyChoice()) {
+ IsTopNode = false;
+ return SU;
+ }
+ if (SUnit *SU = Top.pickOnlyChoice()) {
+ IsTopNode = true;
+ return SU;
+ }
+ SchedCandidate BotCand;
+ // Prefer bottom scheduling when heuristics are silent.
+ CandResult BotResult = pickNodeFromQueue(Bot.Available,
+ DAG->getBotRPTracker(), BotCand);
+ assert(BotResult != NoCand && "failed to find the first candidate");
+
+ // If either Q has a single candidate that provides the least increase in
+ // Excess pressure, we can immediately schedule from that Q.
+ //
+ // RegionCriticalPSets summarizes the pressure within the scheduled region and
+ // affects picking from either Q. If scheduling in one direction must
+ // increase pressure for one of the excess PSets, then schedule in that
+ // direction first to provide more freedom in the other direction.
+ if (BotResult == SingleExcess || BotResult == SingleCritical) {
+ IsTopNode = false;
+ return BotCand.SU;
+ }
+ // Check if the top Q has a better candidate.
+ SchedCandidate TopCand;
+ CandResult TopResult = pickNodeFromQueue(Top.Available,
+ DAG->getTopRPTracker(), TopCand);
+ assert(TopResult != NoCand && "failed to find the first candidate");
+
+ if (TopResult == SingleExcess || TopResult == SingleCritical) {
+ IsTopNode = true;
+ return TopCand.SU;
+ }
+ // If either Q has a single candidate that minimizes pressure above the
+ // original region's pressure pick it.
+ if (BotResult == SingleMax) {
+ IsTopNode = false;
+ return BotCand.SU;
+ }
+ if (TopResult == SingleMax) {
+ IsTopNode = true;
+ return TopCand.SU;
+ }
+ if (TopCand.SCost > BotCand.SCost) {
+ IsTopNode = true;
+ return TopCand.SU;
+ }
+ // Otherwise prefer the bottom candidate in node order.
+ IsTopNode = false;
+ return BotCand.SU;
+}
+
+/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
+SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
+ if (DAG->top() == DAG->bottom()) {
+ assert(Top.Available.empty() && Top.Pending.empty() &&
+ Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
+ return NULL;
+ }
+ SUnit *SU;
+ if (ForceTopDown) {
+ SU = Top.pickOnlyChoice();
+ if (!SU) {
+ SchedCandidate TopCand;
+ CandResult TopResult =
+ pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
+ assert(TopResult != NoCand && "failed to find the first candidate");
+ (void)TopResult;
+ SU = TopCand.SU;
+ }
+ IsTopNode = true;
+ } else if (ForceBottomUp) {
+ SU = Bot.pickOnlyChoice();
+ if (!SU) {
+ SchedCandidate BotCand;
+ CandResult BotResult =
+ pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
+ assert(BotResult != NoCand && "failed to find the first candidate");
+ (void)BotResult;
+ SU = BotCand.SU;
+ }
+ IsTopNode = false;
+ } else {
+ SU = pickNodeBidrectional(IsTopNode);
+ }
+ if (SU->isTopReady())
+ Top.removeReady(SU);
+ if (SU->isBottomReady())
+ Bot.removeReady(SU);
+
+ DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
+ << " Scheduling Instruction in cycle "
+ << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
+ SU->dump(DAG));
+ return SU;
+}
+
+/// Update the scheduler's state after scheduling a node. This is the same node
+/// that was just returned by pickNode(). However, VLIWMachineScheduler needs to update
+/// it's state based on the current cycle before MachineSchedStrategy does.
+void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+ if (IsTopNode) {
+ SU->TopReadyCycle = Top.CurrCycle;
+ Top.bumpNode(SU);
+ }
+ else {
+ SU->BotReadyCycle = Bot.CurrCycle;
+ Bot.bumpNode(SU);
+ }
+}
+