summaryrefslogtreecommitdiff
path: root/lib/Target
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2003-10-19 21:09:10 +0000
committerChris Lattner <sabre@nondot.org>2003-10-19 21:09:10 +0000
commitb2acc51bb28a6cff3789d4eb3ff4547a05b9bbe9 (patch)
tree8f7b2a8a41d1d8cbbf7443707e067d7c19c8f886 /lib/Target
parentf634a103ee3212d1f3030916a6ed204e47c57392 (diff)
downloadllvm-b2acc51bb28a6cff3789d4eb3ff4547a05b9bbe9.tar.gz
llvm-b2acc51bb28a6cff3789d4eb3ff4547a05b9bbe9.tar.bz2
llvm-b2acc51bb28a6cff3789d4eb3ff4547a05b9bbe9.tar.xz
* Multiplications by 2^X are turned into shifts. This factors code out of the
getelementptr code path for use by other code paths (like malloc and alloca). * Optimize comparisons with zero * Generate neg, not, inc, and dec instructions, when possible. This gives some code size wins, which might translate into performance. We'll see tommorow in the nightly tester. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9267 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target')
-rw-r--r--lib/Target/X86/InstSelectSimple.cpp296
-rw-r--r--lib/Target/X86/X86ISelSimple.cpp296
2 files changed, 402 insertions, 190 deletions
diff --git a/lib/Target/X86/InstSelectSimple.cpp b/lib/Target/X86/InstSelectSimple.cpp
index ca59109f40..7394d8f2e1 100644
--- a/lib/Target/X86/InstSelectSimple.cpp
+++ b/lib/Target/X86/InstSelectSimple.cpp
@@ -140,6 +140,10 @@ namespace {
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
unsigned DestReg, const Type *DestTy,
unsigned Op0Reg, unsigned Op1Reg);
+ void doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned DestReg, const Type *DestTy,
+ unsigned Op0Reg, unsigned Op1Val);
void visitMul(BinaryOperator &B);
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
@@ -153,10 +157,10 @@ namespace {
// Comparison operators...
void visitSetCondInst(SetCondInst &I);
- bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator &MBBI);
-
+ unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &MBBI);
+
// Memory Instructions
MachineInstr *doFPLoad(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &MBBI,
@@ -360,7 +364,7 @@ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
default:
std::cerr << "Offending expr: " << C << "\n";
- assert(0 && "Constant expressions not yet handled!\n");
+ assert(0 && "Constant expression not yet handled!\n");
}
}
@@ -599,17 +603,23 @@ static unsigned getSetCCNumber(unsigned Opcode) {
// setge -> setge setae
// setgt -> setg seta
// setle -> setle setbe
-static const unsigned SetCCOpcodeTab[2][6] = {
- {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
- {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
+// ----
+// sets // Used by comparison with 0 optimization
+// setns
+static const unsigned SetCCOpcodeTab[2][8] = {
+ { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
+ 0, 0 },
+ { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
+ X86::SETSr, X86::SETNSr },
};
-bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator &IP) {
+// EmitComparison - This function emits a comparison of the two operands,
+// returning the extended setcc code to use.
+unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &IP) {
// The arguments are already supposed to be of the same type.
const Type *CompTy = Op0->getType();
- bool isSigned = CompTy->isSigned();
unsigned Class = getClassB(CompTy);
unsigned Op0r = getReg(Op0, MBB, IP);
@@ -621,14 +631,26 @@ bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
// Mask off any upper bits of the constant, if there are any...
Op1v &= (1ULL << (8 << Class)) - 1;
- switch (Class) {
- case cByte: BMI(MBB,IP, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
- case cShort: BMI(MBB,IP, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
- case cInt: BMI(MBB,IP, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
- default:
- assert(0 && "Invalid class!");
+ // If this is a comparison against zero, emit more efficient code. We
+ // can't handle unsigned comparisons against zero unless they are == or
+ // !=. These should have been strength reduced already anyway.
+ if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
+ static const unsigned TESTTab[] = {
+ X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
+ };
+ BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
+
+ if (OpNum == 2) return 6; // Map jl -> js
+ if (OpNum == 3) return 7; // Map jg -> jns
+ return OpNum;
}
- return isSigned;
+
+ static const unsigned CMPTab[] = {
+ X86::CMPri8, X86::CMPri16, X86::CMPri32
+ };
+
+ BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
+ return OpNum;
}
unsigned Op1r = getReg(Op1, MBB, IP);
@@ -650,7 +672,6 @@ bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
BMI(MBB, IP, X86::FNSTSWr8, 0);
BMI(MBB, IP, X86::SAHF, 1);
- isSigned = false; // Compare with unsigned operators
break;
case cLong:
@@ -679,16 +700,16 @@ bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
- BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
+ BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
// NOTE: visitSetCondInst knows that the value is dumped into the BL
// register at this point for long values...
- return isSigned;
+ return OpNum;
}
}
- return isSigned;
+ return OpNum;
}
@@ -711,9 +732,13 @@ void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Value *Op0, Value *Op1, unsigned Opcode,
unsigned TargetReg) {
unsigned OpNum = getSetCCNumber(Opcode);
- bool isSigned = EmitComparisonGetSignedness(OpNum, Op0, Op1, MBB, IP);
+ OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
- if (getClassB(Op0->getType()) != cLong || OpNum < 2) {
+ const Type *CompTy = Op0->getType();
+ unsigned CompClass = getClassB(CompTy);
+ bool isSigned = CompTy->isSigned() && CompClass != cFP;
+
+ if (CompClass != cLong || OpNum < 2) {
// Handle normal comparisons with a setcc instruction...
BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
} else {
@@ -845,9 +870,12 @@ void ISel::visitBranchInst(BranchInst &BI) {
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
MachineBasicBlock::iterator MII = BB->end();
- bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
- SCI->getOperand(1), BB, MII);
+ OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB, MII);
+
+ const Type *CompTy = SCI->getOperand(0)->getType();
+ bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
+
// LLVM -> X86 signed X86 unsigned
// ----- ---------- ------------
// seteq -> je je
@@ -856,9 +884,14 @@ void ISel::visitBranchInst(BranchInst &BI) {
// setge -> jge jae
// setgt -> jg ja
// setle -> jle jbe
- static const unsigned OpcodeTab[2][6] = {
- { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
- { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
+ // ----
+ // js // Used by comparison with 0 optimization
+ // jns
+
+ static const unsigned OpcodeTab[2][8] = {
+ { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
+ { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
+ X86::JS, X86::JNS },
};
if (BI.getSuccessor(0) != NextBB) {
@@ -1049,17 +1082,38 @@ void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
OperatorClass, DestReg);
}
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
-/// 4 for Xor.
+/// emitSimpleBinaryOperation - Implement simple binary operators for integral
+/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
+/// Or, 4 for Xor.
///
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
-void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
+///
+void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &IP,
Value *Op0, Value *Op1,
- unsigned OperatorClass,unsigned TargetReg){
+ unsigned OperatorClass, unsigned DestReg) {
unsigned Class = getClassB(Op0->getType());
+
+ // sub 0, X -> neg X
+ if (OperatorClass == 1 && Class != cLong)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
+ if (CI->isNullValue()) {
+ unsigned op1Reg = getReg(Op1, MBB, IP);
+ switch (Class) {
+ default: assert(0 && "Unknown class for this function!");
+ case cByte:
+ BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
+ return;
+ case cShort:
+ BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
+ return;
+ case cInt:
+ BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
+ return;
+ }
+ }
+
if (!isa<ConstantInt>(Op1) || Class == cLong) {
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
@@ -1080,41 +1134,63 @@ void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
- unsigned Op0r = getReg(Op0, BB, IP);
- unsigned Op1r = getReg(Op1, BB, IP);
- BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
if (isLong) { // Handle the upper 32 bits of long values...
static const unsigned TopTab[] = {
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
};
- BMI(BB, IP, TopTab[OperatorClass], 2,
- TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
+ BMI(MBB, IP, TopTab[OperatorClass], 2,
+ DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
}
- } else {
- // Special case: op Reg, <const>
- ConstantInt *Op1C = cast<ConstantInt>(Op1);
+ return;
+ }
- static const unsigned OpcodeTab[][3] = {
- // Arithmetic operators
- { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
- { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
-
- // Bitwise operators
- { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
- { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
- { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
- };
+ // Special case: op Reg, <const>
+ ConstantInt *Op1C = cast<ConstantInt>(Op1);
+ unsigned Op0r = getReg(Op0, MBB, IP);
- assert(Class < 3 && "General code handles 64-bit integer types!");
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
- unsigned Op0r = getReg(Op0, BB, IP);
- uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
+ // xor X, -1 -> not X
+ if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
+ static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
+ BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
+ return;
+ }
- // Mask off any upper bits of the constant, if there are any...
- Op1v &= (1ULL << (8 << Class)) - 1;
- BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
+ // add X, -1 -> dec X
+ if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
+ static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
+ BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
+ return;
}
+
+ // add X, 1 -> inc X
+ if (OperatorClass == 0 && Op1C->equalsInt(1)) {
+ static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
+ BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
+ return;
+ }
+
+ static const unsigned OpcodeTab[][3] = {
+ // Arithmetic operators
+ { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
+ { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
+
+ // Bitwise operators
+ { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
+ { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
+ { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
+ };
+
+ assert(Class < 3 && "General code handles 64-bit integer types!");
+ unsigned Opcode = OpcodeTab[OperatorClass][Class];
+ uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
+
+ // Mask off any upper bits of the constant, if there are any...
+ Op1v &= (1ULL << (8 << Class)) - 1;
+ BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
}
/// doMultiply - Emit appropriate instructions to multiply together the
@@ -1145,19 +1221,75 @@ void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
}
}
+// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
+// returns zero when the input is not exactly a power of two.
+static unsigned ExactLog2(unsigned Val) {
+ if (Val == 0) return 0;
+ unsigned Count = 0;
+ while (Val != 1) {
+ if (Val & 1) return 0;
+ Val >>= 1;
+ ++Count;
+ }
+ return Count+1;
+}
+
+void ISel::doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &IP,
+ unsigned DestReg, const Type *DestTy,
+ unsigned op0Reg, unsigned ConstRHS) {
+ unsigned Class = getClass(DestTy);
+
+ // If the element size is exactly a power of 2, use a shift to get it.
+ if (unsigned Shift = ExactLog2(ConstRHS)) {
+ switch (Class) {
+ default: assert(0 && "Unknown class for this function!");
+ case cByte:
+ BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
+ return;
+ case cShort:
+ BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
+ return;
+ case cInt:
+ BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
+ return;
+ }
+ }
+
+ // Most general case, emit a normal multiply...
+ static const unsigned MOVirTab[] = {
+ X86::MOVir8, X86::MOVir16, X86::MOVir32
+ };
+
+ unsigned TmpReg = makeAnotherReg(DestTy);
+ BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
+
+ // Emit a MUL to multiply the register holding the index by
+ // elementSize, putting the result in OffsetReg.
+ doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
+}
+
/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
unsigned Op0Reg = getReg(I.getOperand(0));
- unsigned Op1Reg = getReg(I.getOperand(1));
unsigned DestReg = getReg(I);
// Simple scalar multiply?
if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
+ unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
+ MachineBasicBlock::iterator MBBI = BB->end();
+ doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
+ } else {
+ unsigned Op1Reg = getReg(I.getOperand(1));
+ MachineBasicBlock::iterator MBBI = BB->end();
+ doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
+ }
} else {
+ unsigned Op1Reg = getReg(I.getOperand(1));
+
// Long value. We have to do things the hard way...
// Multiply the two low parts... capturing carry into EDX
BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
@@ -1949,19 +2081,6 @@ void ISel::visitVAArgInst(VAArgInst &I) {
}
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
- if (Val == 0) return 0;
- unsigned Count = 0;
- while (Val != 1) {
- if (Val & 1) return 0;
- Val >>= 1;
- ++Count;
- }
- return Count+1;
-}
-
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
unsigned outputReg = getReg(I);
MachineBasicBlock::iterator MI = BB->end();
@@ -2040,19 +2159,9 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
} else {
unsigned idxReg = getReg(idx, MBB, IP);
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
- if (unsigned Shift = ExactLog2(elementSize)) {
- // If the element size is exactly a power of 2, use a shift to get it.
- BMI(MBB, IP, X86::SHLir32, 2,
- OffsetReg).addReg(idxReg).addZImm(Shift-1);
- } else {
- // Most general case, emit a multiply...
- unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
- BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
-
- // Emit a MUL to multiply the register holding the index by
- // elementSize, putting the result in OffsetReg.
- doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
- }
+
+ doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
+
// Emit an ADD to add OffsetReg to the basePtr.
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
@@ -2097,12 +2206,10 @@ void ISel::visitAllocaInst(AllocaInst &I) {
// constant by the variable amount.
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
unsigned SrcReg1 = getReg(I.getArraySize());
- unsigned SizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
// TotalSizeReg = mul <numelements>, <TypeSize>
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
+ doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
// AddedSize = add <TotalSizeReg>, 15
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
@@ -2135,10 +2242,9 @@ void ISel::visitMallocInst(MallocInst &I) {
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
} else {
Arg = makeAnotherReg(Type::UIntTy);
- unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
- unsigned Op1Reg = getReg(I.getOperand(0));
+ unsigned Op0Reg = getReg(I.getOperand(0));
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
+ doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
}
std::vector<ValueRecord> Args;
diff --git a/lib/Target/X86/X86ISelSimple.cpp b/lib/Target/X86/X86ISelSimple.cpp
index ca59109f40..7394d8f2e1 100644
--- a/lib/Target/X86/X86ISelSimple.cpp
+++ b/lib/Target/X86/X86ISelSimple.cpp
@@ -140,6 +140,10 @@ namespace {
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
unsigned DestReg, const Type *DestTy,
unsigned Op0Reg, unsigned Op1Reg);
+ void doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &MBBI,
+ unsigned DestReg, const Type *DestTy,
+ unsigned Op0Reg, unsigned Op1Val);
void visitMul(BinaryOperator &B);
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
@@ -153,10 +157,10 @@ namespace {
// Comparison operators...
void visitSetCondInst(SetCondInst &I);
- bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator &MBBI);
-
+ unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &MBBI);
+
// Memory Instructions
MachineInstr *doFPLoad(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &MBBI,
@@ -360,7 +364,7 @@ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
default:
std::cerr << "Offending expr: " << C << "\n";
- assert(0 && "Constant expressions not yet handled!\n");
+ assert(0 && "Constant expression not yet handled!\n");
}
}
@@ -599,17 +603,23 @@ static unsigned getSetCCNumber(unsigned Opcode) {
// setge -> setge setae
// setgt -> setg seta
// setle -> setle setbe
-static const unsigned SetCCOpcodeTab[2][6] = {
- {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
- {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
+// ----
+// sets // Used by comparison with 0 optimization
+// setns
+static const unsigned SetCCOpcodeTab[2][8] = {
+ { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
+ 0, 0 },
+ { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
+ X86::SETSr, X86::SETNSr },
};
-bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator &IP) {
+// EmitComparison - This function emits a comparison of the two operands,
+// returning the extended setcc code to use.
+unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &IP) {
// The arguments are already supposed to be of the same type.
const Type *CompTy = Op0->getType();
- bool isSigned = CompTy->isSigned();
unsigned Class = getClassB(CompTy);
unsigned Op0r = getReg(Op0, MBB, IP);
@@ -621,14 +631,26 @@ bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
// Mask off any upper bits of the constant, if there are any...
Op1v &= (1ULL << (8 << Class)) - 1;
- switch (Class) {
- case cByte: BMI(MBB,IP, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
- case cShort: BMI(MBB,IP, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
- case cInt: BMI(MBB,IP, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
- default:
- assert(0 && "Invalid class!");
+ // If this is a comparison against zero, emit more efficient code. We
+ // can't handle unsigned comparisons against zero unless they are == or
+ // !=. These should have been strength reduced already anyway.
+ if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
+ static const unsigned TESTTab[] = {
+ X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
+ };
+ BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
+
+ if (OpNum == 2) return 6; // Map jl -> js
+ if (OpNum == 3) return 7; // Map jg -> jns
+ return OpNum;
}
- return isSigned;
+
+ static const unsigned CMPTab[] = {
+ X86::CMPri8, X86::CMPri16, X86::CMPri32
+ };
+
+ BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
+ return OpNum;
}
unsigned Op1r = getReg(Op1, MBB, IP);
@@ -650,7 +672,6 @@ bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
BMI(MBB, IP, X86::FNSTSWr8, 0);
BMI(MBB, IP, X86::SAHF, 1);
- isSigned = false; // Compare with unsigned operators
break;
case cLong:
@@ -679,16 +700,16 @@ bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
- BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
+ BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
// NOTE: visitSetCondInst knows that the value is dumped into the BL
// register at this point for long values...
- return isSigned;
+ return OpNum;
}
}
- return isSigned;
+ return OpNum;
}
@@ -711,9 +732,13 @@ void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Value *Op0, Value *Op1, unsigned Opcode,
unsigned TargetReg) {
unsigned OpNum = getSetCCNumber(Opcode);
- bool isSigned = EmitComparisonGetSignedness(OpNum, Op0, Op1, MBB, IP);
+ OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
- if (getClassB(Op0->getType()) != cLong || OpNum < 2) {
+ const Type *CompTy = Op0->getType();
+ unsigned CompClass = getClassB(CompTy);
+ bool isSigned = CompTy->isSigned() && CompClass != cFP;
+
+ if (CompClass != cLong || OpNum < 2) {
// Handle normal comparisons with a setcc instruction...
BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
} else {
@@ -845,9 +870,12 @@ void ISel::visitBranchInst(BranchInst &BI) {
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
MachineBasicBlock::iterator MII = BB->end();
- bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
- SCI->getOperand(1), BB, MII);
+ OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB, MII);
+
+ const Type *CompTy = SCI->getOperand(0)->getType();
+ bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
+
// LLVM -> X86 signed X86 unsigned
// ----- ---------- ------------
// seteq -> je je
@@ -856,9 +884,14 @@ void ISel::visitBranchInst(BranchInst &BI) {
// setge -> jge jae
// setgt -> jg ja
// setle -> jle jbe
- static const unsigned OpcodeTab[2][6] = {
- { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
- { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
+ // ----
+ // js // Used by comparison with 0 optimization
+ // jns
+
+ static const unsigned OpcodeTab[2][8] = {
+ { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
+ { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
+ X86::JS, X86::JNS },
};
if (BI.getSuccessor(0) != NextBB) {
@@ -1049,17 +1082,38 @@ void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
OperatorClass, DestReg);
}
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
-/// 4 for Xor.
+/// emitSimpleBinaryOperation - Implement simple binary operators for integral
+/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
+/// Or, 4 for Xor.
///
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
-void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
+///
+void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &IP,
Value *Op0, Value *Op1,
- unsigned OperatorClass,unsigned TargetReg){
+ unsigned OperatorClass, unsigned DestReg) {
unsigned Class = getClassB(Op0->getType());
+
+ // sub 0, X -> neg X
+ if (OperatorClass == 1 && Class != cLong)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
+ if (CI->isNullValue()) {
+ unsigned op1Reg = getReg(Op1, MBB, IP);
+ switch (Class) {
+ default: assert(0 && "Unknown class for this function!");
+ case cByte:
+ BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
+ return;
+ case cShort:
+ BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
+ return;
+ case cInt:
+ BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
+ return;
+ }
+ }
+
if (!isa<ConstantInt>(Op1) || Class == cLong) {
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
@@ -1080,41 +1134,63 @@ void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
- unsigned Op0r = getReg(Op0, BB, IP);
- unsigned Op1r = getReg(Op1, BB, IP);
- BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
if (isLong) { // Handle the upper 32 bits of long values...
static const unsigned TopTab[] = {
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
};
- BMI(BB, IP, TopTab[OperatorClass], 2,
- TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
+ BMI(MBB, IP, TopTab[OperatorClass], 2,
+ DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
}
- } else {
- // Special case: op Reg, <const>
- ConstantInt *Op1C = cast<ConstantInt>(Op1);
+ return;
+ }
- static const unsigned OpcodeTab[][3] = {
- // Arithmetic operators
- { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
- { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
-
- // Bitwise operators
- { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
- { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
- { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
- };
+ // Special case: op Reg, <const>
+ ConstantInt *Op1C = cast<ConstantInt>(Op1);
+ unsigned Op0r = getReg(Op0, MBB, IP);
- assert(Class < 3 && "General code handles 64-bit integer types!");
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
- unsigned Op0r = getReg(Op0, BB, IP);
- uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
+ // xor X, -1 -> not X
+ if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
+ static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
+ BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
+ return;
+ }
- // Mask off any upper bits of the constant, if there are any...
- Op1v &= (1ULL << (8 << Class)) - 1;
- BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
+ // add X, -1 -> dec X
+ if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
+ static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
+ BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
+ return;
}
+
+ // add X, 1 -> inc X
+ if (OperatorClass == 0 && Op1C->equalsInt(1)) {
+ static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
+ BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
+ return;
+ }
+
+ static const unsigned OpcodeTab[][3] = {
+ // Arithmetic operators
+ { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
+ { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
+
+ // Bitwise operators
+ { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
+ { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
+ { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
+ };
+
+ assert(Class < 3 && "General code handles 64-bit integer types!");
+ unsigned Opcode = OpcodeTab[OperatorClass][Class];
+ uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
+
+ // Mask off any upper bits of the constant, if there are any...
+ Op1v &= (1ULL << (8 << Class)) - 1;
+ BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
}
/// doMultiply - Emit appropriate instructions to multiply together the
@@ -1145,19 +1221,75 @@ void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
}
}
+// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
+// returns zero when the input is not exactly a power of two.
+static unsigned ExactLog2(unsigned Val) {
+ if (Val == 0) return 0;
+ unsigned Count = 0;
+ while (Val != 1) {
+ if (Val & 1) return 0;
+ Val >>= 1;
+ ++Count;
+ }
+ return Count+1;
+}
+
+void ISel::doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &IP,
+ unsigned DestReg, const Type *DestTy,
+ unsigned op0Reg, unsigned ConstRHS) {
+ unsigned Class = getClass(DestTy);
+
+ // If the element size is exactly a power of 2, use a shift to get it.
+ if (unsigned Shift = ExactLog2(ConstRHS)) {
+ switch (Class) {
+ default: assert(0 && "Unknown class for this function!");
+ case cByte:
+ BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
+ return;
+ case cShort:
+ BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
+ return;
+ case cInt:
+ BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
+ return;
+ }
+ }
+
+ // Most general case, emit a normal multiply...
+ static const unsigned MOVirTab[] = {
+ X86::MOVir8, X86::MOVir16, X86::MOVir32
+ };
+
+ unsigned TmpReg = makeAnotherReg(DestTy);
+ BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
+
+ // Emit a MUL to multiply the register holding the index by
+ // elementSize, putting the result in OffsetReg.
+ doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
+}
+
/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
unsigned Op0Reg = getReg(I.getOperand(0));
- unsigned Op1Reg = getReg(I.getOperand(1));
unsigned DestReg = getReg(I);
// Simple scalar multiply?
if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
+ unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
+ MachineBasicBlock::iterator MBBI = BB->end();
+ doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
+ } else {
+ unsigned Op1Reg = getReg(I.getOperand(1));
+ MachineBasicBlock::iterator MBBI = BB->end();
+ doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
+ }
} else {
+ unsigned Op1Reg = getReg(I.getOperand(1));
+
// Long value. We have to do things the hard way...
// Multiply the two low parts... capturing carry into EDX
BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
@@ -1949,19 +2081,6 @@ void ISel::visitVAArgInst(VAArgInst &I) {
}
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
- if (Val == 0) return 0;
- unsigned Count = 0;
- while (Val != 1) {
- if (Val & 1) return 0;
- Val >>= 1;
- ++Count;
- }
- return Count+1;
-}
-
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
unsigned outputReg = getReg(I);
MachineBasicBlock::iterator MI = BB->end();
@@ -2040,19 +2159,9 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
} else {
unsigned idxReg = getReg(idx, MBB, IP);
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
- if (unsigned Shift = ExactLog2(elementSize)) {
- // If the element size is exactly a power of 2, use a shift to get it.
- BMI(MBB, IP, X86::SHLir32, 2,
- OffsetReg).addReg(idxReg).addZImm(Shift-1);
- } else {
- // Most general case, emit a multiply...
- unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
- BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
-
- // Emit a MUL to multiply the register holding the index by
- // elementSize, putting the result in OffsetReg.
- doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
- }
+
+ doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
+
// Emit an ADD to add OffsetReg to the basePtr.
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
@@ -2097,12 +2206,10 @@ void ISel::visitAllocaInst(AllocaInst &I) {
// constant by the variable amount.
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
unsigned SrcReg1 = getReg(I.getArraySize());
- unsigned SizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
// TotalSizeReg = mul <numelements>, <TypeSize>
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
+ doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
// AddedSize = add <TotalSizeReg>, 15
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
@@ -2135,10 +2242,9 @@ void ISel::visitMallocInst(MallocInst &I) {
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
} else {
Arg = makeAnotherReg(Type::UIntTy);
- unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
- unsigned Op1Reg = getReg(I.getOperand(0));
+ unsigned Op0Reg = getReg(I.getOperand(0));
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
+ doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
}
std::vector<ValueRecord> Args;