summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/DeadTypeElimination.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2002-04-10 20:33:11 +0000
committerChris Lattner <sabre@nondot.org>2002-04-10 20:33:11 +0000
commit265b083e84f09473de0693221b1b1777813d6e33 (patch)
tree097cf2005371ce8932cc83c2d915f29a66e994f8 /lib/Transforms/IPO/DeadTypeElimination.cpp
parent5648b58a194edf3e1a31d266c9f446c52c57150b (diff)
downloadllvm-265b083e84f09473de0693221b1b1777813d6e33.tar.gz
llvm-265b083e84f09473de0693221b1b1777813d6e33.tar.bz2
llvm-265b083e84f09473de0693221b1b1777813d6e33.tar.xz
* Add documentation
* Split the CleanGCC pass into two passes, a global pass and an IP pass. Before it was just a global pass, but it did illegal things to the module, which broke other passes that were being scheduled with it by gccld. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2224 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/IPO/DeadTypeElimination.cpp')
-rw-r--r--lib/Transforms/IPO/DeadTypeElimination.cpp418
1 files changed, 208 insertions, 210 deletions
diff --git a/lib/Transforms/IPO/DeadTypeElimination.cpp b/lib/Transforms/IPO/DeadTypeElimination.cpp
index 955e9e672a..4f2e24d462 100644
--- a/lib/Transforms/IPO/DeadTypeElimination.cpp
+++ b/lib/Transforms/IPO/DeadTypeElimination.cpp
@@ -1,4 +1,4 @@
-//===- CleanupGCCOutput.cpp - Cleanup GCC Output ----------------------------=//
+//===- CleanupGCCOutput.cpp - Cleanup GCC Output --------------------------===//
//
// This pass is used to cleanup the output of GCC. GCC's output is
// unneccessarily gross for a couple of reasons. This pass does the following
@@ -6,6 +6,8 @@
//
// * Eliminate names for GCC types that we know can't be needed by the user.
// * Eliminate names for types that are unused in the entire translation unit
+// * Fix various problems that we might have in PHI nodes and casts
+// * Link uses of 'void %foo(...)' to 'void %foo(sometypes)'
//
// Note: This code produces dead declarations, it is a good idea to run DCE
// after this pass.
@@ -60,194 +62,11 @@ namespace {
};
}
-
-
-// ConvertCallTo - Convert a call to a varargs function with no arg types
-// specified to a concrete nonvarargs function.
-//
-static void ConvertCallTo(CallInst *CI, Function *Dest) {
- const FunctionType::ParamTypes &ParamTys =
- Dest->getFunctionType()->getParamTypes();
- BasicBlock *BB = CI->getParent();
-
- // Get an iterator to where we want to insert cast instructions if the
- // argument types don't agree.
- //
- BasicBlock::iterator BBI = find(BB->begin(), BB->end(), CI);
- assert(BBI != BB->end() && "CallInst not in parent block?");
-
- assert(CI->getNumOperands()-1 == ParamTys.size()&&
- "Function calls resolved funny somehow, incompatible number of args");
-
- vector<Value*> Params;
-
- // Convert all of the call arguments over... inserting cast instructions if
- // the types are not compatible.
- for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
- Value *V = CI->getOperand(i);
-
- if (V->getType() != ParamTys[i-1]) { // Must insert a cast...
- Instruction *Cast = new CastInst(V, ParamTys[i-1]);
- BBI = BB->getInstList().insert(BBI, Cast)+1;
- V = Cast;
- }
-
- Params.push_back(V);
- }
-
- // Replace the old call instruction with a new call instruction that calls
- // the real function.
- //
- ReplaceInstWithInst(BB->getInstList(), BBI, new CallInst(Dest, Params));
+Pass *createCleanupGCCOutputPass() {
+ return new CleanupGCCOutput();
}
-// PatchUpFunctionReferences - Go over the functions that are in the module and
-// look for functions that have the same name. More often than not, there will
-// be things like:
-// void "foo"(...)
-// void "foo"(int, int)
-// because of the way things are declared in C. If this is the case, patch
-// things up.
-//
-static bool PatchUpFunctionReferences(Module *M) {
- SymbolTable *ST = M->getSymbolTable();
- if (!ST) return false;
-
- std::map<string, vector<Function*> > Functions;
-
- // Loop over the entries in the symbol table. If an entry is a func pointer,
- // then add it to the Functions map. We do a two pass algorithm here to avoid
- // problems with iterators getting invalidated if we did a one pass scheme.
- //
- for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
- if (const PointerType *PT = dyn_cast<PointerType>(I->first))
- if (isa<FunctionType>(PT->getElementType())) {
- SymbolTable::VarMap &Plane = I->second;
- for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
- PI != PE; ++PI) {
- const string &Name = PI->first;
- Functions[Name].push_back(cast<Function>(PI->second));
- }
- }
-
- bool Changed = false;
-
- // Now we have a list of all functions with a particular name. If there is
- // more than one entry in a list, merge the functions together.
- //
- for (std::map<string, vector<Function*> >::iterator I = Functions.begin(),
- E = Functions.end(); I != E; ++I) {
- vector<Function*> &Functions = I->second;
- Function *Implementation = 0; // Find the implementation
- Function *Concrete = 0;
- for (unsigned i = 0; i < Functions.size(); ) {
- if (!Functions[i]->isExternal()) { // Found an implementation
- assert(Implementation == 0 && "Multiple definitions of the same"
- " function. Case not handled yet!");
- Implementation = Functions[i];
- } else {
- // Ignore functions that are never used so they don't cause spurious
- // warnings... here we will actually DCE the function so that it isn't
- // used later.
- //
- if (Functions[i]->use_size() == 0) {
- M->getFunctionList().remove(Functions[i]);
- delete Functions[i];
- Functions.erase(Functions.begin()+i);
- Changed = true;
- continue;
- }
- }
-
- if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) {
- if (Concrete) { // Found two different functions types. Can't choose
- Concrete = 0;
- break;
- }
- Concrete = Functions[i];
- }
- ++i;
- }
-
- if (Functions.size() > 1) { // Found a multiply defined function...
- // We should find exactly one non-vararg function definition, which is
- // probably the implementation. Change all of the function definitions
- // and uses to use it instead.
- //
- if (!Concrete) {
- cerr << "Warning: Found functions types that are not compatible:\n";
- for (unsigned i = 0; i < Functions.size(); ++i) {
- cerr << "\t" << Functions[i]->getType()->getDescription() << " %"
- << Functions[i]->getName() << "\n";
- }
- cerr << " No linkage of functions named '" << Functions[0]->getName()
- << "' performed!\n";
- } else {
- for (unsigned i = 0; i < Functions.size(); ++i)
- if (Functions[i] != Concrete) {
- Function *Old = Functions[i];
- const FunctionType *OldMT = Old->getFunctionType();
- const FunctionType *ConcreteMT = Concrete->getFunctionType();
- bool Broken = false;
-
- assert(Old->getReturnType() == Concrete->getReturnType() &&
- "Differing return types not handled yet!");
- assert(OldMT->getParamTypes().size() <=
- ConcreteMT->getParamTypes().size() &&
- "Concrete type must have more specified parameters!");
-
- // Check to make sure that if there are specified types, that they
- // match...
- //
- for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
- if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
- cerr << "Parameter types conflict for" << OldMT
- << " and " << ConcreteMT;
- Broken = true;
- }
- if (Broken) break; // Can't process this one!
-
-
- // Attempt to convert all of the uses of the old function to the
- // concrete form of the function. If there is a use of the fn
- // that we don't understand here we punt to avoid making a bad
- // transformation.
- //
- // At this point, we know that the return values are the same for
- // our two functions and that the Old function has no varargs fns
- // specified. In otherwords it's just <retty> (...)
- //
- for (unsigned i = 0; i < Old->use_size(); ) {
- User *U = *(Old->use_begin()+i);
- if (CastInst *CI = dyn_cast<CastInst>(U)) {
- // Convert casts directly
- assert(CI->getOperand(0) == Old);
- CI->setOperand(0, Concrete);
- Changed = true;
- } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // Can only fix up calls TO the argument, not args passed in.
- if (CI->getCalledValue() == Old) {
- ConvertCallTo(CI, Concrete);
- Changed = true;
- } else {
- cerr << "Couldn't cleanup this function call, must be an"
- << " argument or something!" << CI;
- ++i;
- }
- } else {
- cerr << "Cannot convert use of function: " << U << "\n";
- ++i;
- }
- }
- }
- }
- }
- }
-
- return Changed;
-}
-
// ShouldNukSymtabEntry - Return true if this module level symbol table entry
// should be eliminated.
@@ -280,13 +99,6 @@ bool CleanupGCCOutput::doInitialization(Module *M) {
if (M->hasSymbolTable()) {
SymbolTable *ST = M->getSymbolTable();
- // Go over the functions that are in the module and look for methods that
- // have the same name. More often than not, there will be things like:
- // void "foo"(...) and void "foo"(int, int) because of the way things are
- // declared in C. If this is the case, patch things up.
- //
- Changed |= PatchUpFunctionReferences(M);
-
// Check the symbol table for superfluous type entries...
//
// Grab the 'type' plane of the module symbol...
@@ -434,10 +246,10 @@ static inline void RefactorPredecessor(BasicBlock *BB, BasicBlock *Pred) {
}
-// fixLocalProblems - Loop through the function and fix problems with the PHI
-// nodes in the current function. The problem is that PHI nodes might exist
-// with multiple entries for the same predecessor. GCC sometimes generates code
-// that looks like this:
+// runOnMethod - Loop through the function and fix problems with the PHI nodes
+// in the current function. The problem is that PHI nodes might exist with
+// multiple entries for the same predecessor. GCC sometimes generates code that
+// looks like this:
//
// bb7: br bool %cond1004, label %bb8, label %bb8
// bb8: %reg119 = phi uint [ 0, %bb7 ], [ 1, %bb7 ]
@@ -450,7 +262,7 @@ static inline void RefactorPredecessor(BasicBlock *BB, BasicBlock *Pred) {
// bb8: %reg119 = phi uint [ 0, %bbX ], [ 1, %bb7 ]
//
//
-static bool fixLocalProblems(Function *M) {
+bool CleanupGCCOutput::runOnMethod(Function *M) {
bool Changed = false;
// Don't use iterators because invalidation gets messy...
for (unsigned MI = 0; MI < M->size(); ++MI) {
@@ -480,18 +292,8 @@ static bool fixLocalProblems(Function *M) {
return Changed;
}
-
-
-
-// runOnFunction - This method simplifies the specified function hopefully.
-//
-bool CleanupGCCOutput::runOnMethod(Function *F) {
- return fixLocalProblems(F);
-}
-
bool CleanupGCCOutput::doFinalization(Module *M) {
bool Changed = false;
-
if (M->hasSymbolTable()) {
SymbolTable *ST = M->getSymbolTable();
@@ -523,7 +325,203 @@ bool CleanupGCCOutput::doFinalization(Module *M) {
return Changed;
}
-Pass *createCleanupGCCOutputPass() {
- return new CleanupGCCOutput();
+
+//===----------------------------------------------------------------------===//
+//
+// FunctionResolvingPass - Go over the functions that are in the module and
+// look for functions that have the same name. More often than not, there will
+// be things like:
+// void "foo"(...)
+// void "foo"(int, int)
+// because of the way things are declared in C. If this is the case, patch
+// things up.
+//
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct FunctionResolvingPass : public Pass {
+ bool run(Module *M);
+ };
}
+// ConvertCallTo - Convert a call to a varargs function with no arg types
+// specified to a concrete nonvarargs function.
+//
+static void ConvertCallTo(CallInst *CI, Function *Dest) {
+ const FunctionType::ParamTypes &ParamTys =
+ Dest->getFunctionType()->getParamTypes();
+ BasicBlock *BB = CI->getParent();
+
+ // Get an iterator to where we want to insert cast instructions if the
+ // argument types don't agree.
+ //
+ BasicBlock::iterator BBI = find(BB->begin(), BB->end(), CI);
+ assert(BBI != BB->end() && "CallInst not in parent block?");
+
+ assert(CI->getNumOperands()-1 == ParamTys.size()&&
+ "Function calls resolved funny somehow, incompatible number of args");
+
+ vector<Value*> Params;
+
+ // Convert all of the call arguments over... inserting cast instructions if
+ // the types are not compatible.
+ for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
+ Value *V = CI->getOperand(i);
+
+ if (V->getType() != ParamTys[i-1]) { // Must insert a cast...
+ Instruction *Cast = new CastInst(V, ParamTys[i-1]);
+ BBI = BB->getInstList().insert(BBI, Cast)+1;
+ V = Cast;
+ }
+
+ Params.push_back(V);
+ }
+
+ // Replace the old call instruction with a new call instruction that calls
+ // the real function.
+ //
+ ReplaceInstWithInst(BB->getInstList(), BBI, new CallInst(Dest, Params));
+}
+
+
+bool FunctionResolvingPass::run(Module *M) {
+ SymbolTable *ST = M->getSymbolTable();
+ if (!ST) return false;
+
+ std::map<string, vector<Function*> > Functions;
+
+ // Loop over the entries in the symbol table. If an entry is a func pointer,
+ // then add it to the Functions map. We do a two pass algorithm here to avoid
+ // problems with iterators getting invalidated if we did a one pass scheme.
+ //
+ for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
+ if (const PointerType *PT = dyn_cast<PointerType>(I->first))
+ if (isa<FunctionType>(PT->getElementType())) {
+ SymbolTable::VarMap &Plane = I->second;
+ for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
+ PI != PE; ++PI) {
+ const string &Name = PI->first;
+ Functions[Name].push_back(cast<Function>(PI->second));
+ }
+ }
+
+ bool Changed = false;
+
+ // Now we have a list of all functions with a particular name. If there is
+ // more than one entry in a list, merge the functions together.
+ //
+ for (std::map<string, vector<Function*> >::iterator I = Functions.begin(),
+ E = Functions.end(); I != E; ++I) {
+ vector<Function*> &Functions = I->second;
+ Function *Implementation = 0; // Find the implementation
+ Function *Concrete = 0;
+ for (unsigned i = 0; i < Functions.size(); ) {
+ if (!Functions[i]->isExternal()) { // Found an implementation
+ assert(Implementation == 0 && "Multiple definitions of the same"
+ " function. Case not handled yet!");
+ Implementation = Functions[i];
+ } else {
+ // Ignore functions that are never used so they don't cause spurious
+ // warnings... here we will actually DCE the function so that it isn't
+ // used later.
+ //
+ if (Functions[i]->use_size() == 0) {
+ M->getFunctionList().remove(Functions[i]);
+ delete Functions[i];
+ Functions.erase(Functions.begin()+i);
+ Changed = true;
+ continue;
+ }
+ }
+
+ if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) {
+ if (Concrete) { // Found two different functions types. Can't choose
+ Concrete = 0;
+ break;
+ }
+ Concrete = Functions[i];
+ }
+ ++i;
+ }
+
+ if (Functions.size() > 1) { // Found a multiply defined function...
+ // We should find exactly one non-vararg function definition, which is
+ // probably the implementation. Change all of the function definitions
+ // and uses to use it instead.
+ //
+ if (!Concrete) {
+ cerr << "Warning: Found functions types that are not compatible:\n";
+ for (unsigned i = 0; i < Functions.size(); ++i) {
+ cerr << "\t" << Functions[i]->getType()->getDescription() << " %"
+ << Functions[i]->getName() << "\n";
+ }
+ cerr << " No linkage of functions named '" << Functions[0]->getName()
+ << "' performed!\n";
+ } else {
+ for (unsigned i = 0; i < Functions.size(); ++i)
+ if (Functions[i] != Concrete) {
+ Function *Old = Functions[i];
+ const FunctionType *OldMT = Old->getFunctionType();
+ const FunctionType *ConcreteMT = Concrete->getFunctionType();
+ bool Broken = false;
+
+ assert(Old->getReturnType() == Concrete->getReturnType() &&
+ "Differing return types not handled yet!");
+ assert(OldMT->getParamTypes().size() <=
+ ConcreteMT->getParamTypes().size() &&
+ "Concrete type must have more specified parameters!");
+
+ // Check to make sure that if there are specified types, that they
+ // match...
+ //
+ for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
+ if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
+ cerr << "Parameter types conflict for" << OldMT
+ << " and " << ConcreteMT;
+ Broken = true;
+ }
+ if (Broken) break; // Can't process this one!
+
+
+ // Attempt to convert all of the uses of the old function to the
+ // concrete form of the function. If there is a use of the fn
+ // that we don't understand here we punt to avoid making a bad
+ // transformation.
+ //
+ // At this point, we know that the return values are the same for
+ // our two functions and that the Old function has no varargs fns
+ // specified. In otherwords it's just <retty> (...)
+ //
+ for (unsigned i = 0; i < Old->use_size(); ) {
+ User *U = *(Old->use_begin()+i);
+ if (CastInst *CI = dyn_cast<CastInst>(U)) {
+ // Convert casts directly
+ assert(CI->getOperand(0) == Old);
+ CI->setOperand(0, Concrete);
+ Changed = true;
+ } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ // Can only fix up calls TO the argument, not args passed in.
+ if (CI->getCalledValue() == Old) {
+ ConvertCallTo(CI, Concrete);
+ Changed = true;
+ } else {
+ cerr << "Couldn't cleanup this function call, must be an"
+ << " argument or something!" << CI;
+ ++i;
+ }
+ } else {
+ cerr << "Cannot convert use of function: " << U << "\n";
+ ++i;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return Changed;
+}
+
+Pass *createFunctionResolvingPass() {
+ return new FunctionResolvingPass();
+}