summaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO
diff options
context:
space:
mode:
authorMatthijs Kooijman <matthijs@stdin.nl>2008-06-24 16:30:26 +0000
committerMatthijs Kooijman <matthijs@stdin.nl>2008-06-24 16:30:26 +0000
commit1d9a27776101ed4c2b71b6b910803c63100209f4 (patch)
tree2c4bacdf5aa354e749226768f75c51453933edbf /lib/Transforms/IPO
parent5b80c663e7662fcf24c764f0cd1b2671958689b8 (diff)
downloadllvm-1d9a27776101ed4c2b71b6b910803c63100209f4.tar.gz
llvm-1d9a27776101ed4c2b71b6b910803c63100209f4.tar.bz2
llvm-1d9a27776101ed4c2b71b6b910803c63100209f4.tar.xz
Commit the new DeadArgElim pass again, this time with the gcc bootstrap failures fixed.
Also add a testcase to reproduce the gcc bootstrap failure in very much reduced form. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52677 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/IPO')
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp899
1 files changed, 525 insertions, 374 deletions
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index 604a1483c4..63ac3c5e92 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -10,10 +10,10 @@
// This pass deletes dead arguments from internal functions. Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions. This
-// pass also deletes dead arguments in a similar way.
+// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
-// interprocedural passes, which add possibly-dead arguments.
+// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//
@@ -42,40 +42,72 @@ namespace {
/// DAE - The dead argument elimination pass.
///
class VISIBILITY_HIDDEN DAE : public ModulePass {
+ public:
+
+ /// Struct that represent either a (part of a) return value or a function
+ /// argument. Used so that arguments and return values can be used
+ /// interchangably.
+ struct RetOrArg {
+ RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
+ IsArg(IsArg) {}
+ const Function *F;
+ unsigned Idx;
+ bool IsArg;
+
+ /// Make RetOrArg comparable, so we can put it into a map
+ bool operator<(const RetOrArg &O) const {
+ if (F != O.F)
+ return F < O.F;
+ else if (Idx != O.Idx)
+ return Idx < O.Idx;
+ else
+ return IsArg < O.IsArg;
+ }
+
+ /// Make RetOrArg comparable, so we can easily iterate the multimap
+ bool operator==(const RetOrArg &O) const {
+ return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
+ }
+ };
+
/// Liveness enum - During our initial pass over the program, we determine
- /// that things are either definately alive, definately dead, or in need of
- /// interprocedural analysis (MaybeLive).
- ///
- enum Liveness { Live, MaybeLive, Dead };
-
- /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
- /// all of the arguments in the program. The Dead set contains arguments
- /// which are completely dead (never used in the function). The MaybeLive
- /// set contains arguments which are only passed into other function calls,
- /// thus may be live and may be dead. The Live set contains arguments which
- /// are known to be alive.
- ///
- std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;
-
- /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
- /// functions in the program. The Dead set contains functions whose return
- /// value is known to be dead. The MaybeLive set contains functions whose
- /// return values are only used by return instructions, and the Live set
- /// contains functions whose return values are used, functions that are
- /// external, and functions that already return void.
- ///
- std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;
-
- /// InstructionsToInspect - As we mark arguments and return values
- /// MaybeLive, we keep track of which instructions could make the values
- /// live here. Once the entire program has had the return value and
- /// arguments analyzed, this set is scanned to promote the MaybeLive objects
- /// to be Live if they really are used.
- std::vector<Instruction*> InstructionsToInspect;
-
- /// CallSites - Keep track of the call sites of functions that have
- /// MaybeLive arguments or return values.
- std::multimap<Function*, CallSite> CallSites;
+ /// that things are either alive or maybe alive. We don't mark anything
+ /// explicitely dead (even if we know they are), since anything not alive
+ /// with no registered uses (in Uses) will never be marked alive and will
+ /// thus become dead in the end.
+ enum Liveness { Live, MaybeLive };
+
+ /// Convenience wrapper
+ RetOrArg CreateRet(const Function *F, unsigned Idx) {
+ return RetOrArg(F, Idx, false);
+ }
+ /// Convenience wrapper
+ RetOrArg CreateArg(const Function *F, unsigned Idx) {
+ return RetOrArg(F, Idx, true);
+ }
+
+ typedef std::multimap<RetOrArg, RetOrArg> UseMap;
+ /// This map maps a return value or argument to all return values or
+ /// arguments it uses.
+ /// For example (indices are left out for clarity):
+ /// - Uses[ret F] = ret G
+ /// This means that F calls G, and F returns the value returned by G.
+ /// - Uses[arg F] = ret G
+ /// This means that some function calls G and passes its result as an
+ /// argument to F.
+ /// - Uses[ret F] = arg F
+ /// This means that F returns one of its own arguments.
+ /// - Uses[arg F] = arg G
+ /// This means that G calls F and passes one of its own (G's) arguments
+ /// directly to F.
+ UseMap Uses;
+
+ typedef std::set<RetOrArg> LiveSet;
+
+ /// This set contains all values that have been determined to be live
+ LiveSet LiveValues;
+
+ typedef SmallVector<RetOrArg, 5> UseVector;
public:
static char ID; // Pass identification, replacement for typeid
@@ -85,20 +117,21 @@ namespace {
virtual bool ShouldHackArguments() const { return false; }
private:
- Liveness getArgumentLiveness(const Argument &A);
- bool isMaybeLiveArgumentNowLive(Argument *Arg);
-
+ Liveness IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses);
+ Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
+ unsigned RetValNum = 0);
+ Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
+
+ void SurveyFunction(Function &F);
+ void MarkValue(const RetOrArg &RA, Liveness L,
+ const UseVector &MaybeLiveUses);
+ void MarkLive(RetOrArg RA);
+ bool RemoveDeadStuffFromFunction(Function *F);
bool DeleteDeadVarargs(Function &Fn);
- void SurveyFunction(Function &Fn);
-
- void MarkArgumentLive(Argument *Arg);
- void MarkRetValLive(Function *F);
- void MarkReturnInstArgumentLive(ReturnInst *RI);
-
- void RemoveDeadArgumentsFromFunction(Function *F);
};
}
+
char DAE::ID = 0;
static RegisterPass<DAE>
X("deadargelim", "Dead Argument Elimination");
@@ -155,7 +188,7 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
// remove the "..." and adjust all the calls.
// Start by computing a new prototype for the function, which is the same as
- // the old function, but has fewer arguments.
+ // the old function, but doesn't have isVarArg set.
const FunctionType *FTy = Fn.getFunctionType();
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
@@ -233,74 +266,154 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
return true;
}
-
-static inline bool CallPassesValueThoughVararg(Instruction *Call,
- const Value *Arg) {
- CallSite CS = CallSite::get(Call);
- const Type *CalledValueTy = CS.getCalledValue()->getType();
- const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
- unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
- for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
- AI != CS.arg_end(); ++AI)
- if (AI->get() == Arg)
- return true;
- return false;
+/// Convenience function that returns the number of return values. It returns 0
+/// for void functions and 1 for functions not returning a struct. It returns
+/// the number of struct elements for functions returning a struct.
+static unsigned NumRetVals(const Function *F) {
+ if (F->getReturnType() == Type::VoidTy)
+ return 0;
+ else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
+ return STy->getNumElements();
+ else
+ return 1;
}
-// getArgumentLiveness - Inspect an argument, determining if is known Live
-// (used in a computation), MaybeLive (only passed as an argument to a call), or
-// Dead (not used).
-DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
- const Function *F = A.getParent();
-
- // If this is the return value of a struct function, it's not really dead.
- if (F->hasStructRetAttr() && &*(F->arg_begin()) == &A)
+/// IsMaybeAlive - This checks Use for liveness. If Use is live, returns Live,
+/// else returns MaybeLive. Also, adds Use to MaybeLiveUses in the latter case.
+DAE::Liveness DAE::IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses) {
+ // We're live if our use is already marked as live
+ if (LiveValues.count(Use))
return Live;
-
- if (A.use_empty()) // First check, directly dead?
- return Dead;
-
- // Scan through all of the uses, looking for non-argument passing uses.
- for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
- // Return instructions do not immediately effect liveness.
- if (isa<ReturnInst>(*I))
- continue;
-
- CallSite CS = CallSite::get(const_cast<User*>(*I));
- if (!CS.getInstruction()) {
- // If its used by something that is not a call or invoke, it's alive!
- return Live;
- }
- // If it's an indirect call, mark it alive...
- Function *Callee = CS.getCalledFunction();
- if (!Callee) return Live;
-
- // Check to see if it's passed through a va_arg area: if so, we cannot
- // remove it.
- if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
- return Live; // If passed through va_arg area, we cannot remove it
- }
- return MaybeLive; // It must be used, but only as argument to a function
+ // We're maybe live otherwise, but remember that we must become live if
+ // Use becomes live.
+ MaybeLiveUses.push_back(Use);
+ return MaybeLive;
+}
+
+
+/// SurveyUse - This looks at a single use of an argument or return value
+/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
+/// if it causes the used value to become MaybeAlive.
+///
+/// RetValNum is the return value number to use when this use is used in a
+/// return instruction. This is used in the recursion, you should always leave
+/// it at 0.
+DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
+ unsigned RetValNum) {
+ Value *V = *U;
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
+ // The value is returned from another function. It's only live when the
+ // caller's return value is live
+ RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
+ // We might be live, depending on the liveness of Use
+ return IsMaybeLive(Use, MaybeLiveUses);
+ }
+ if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
+ if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
+ && IV->hasIndices())
+ // The use we are examining is inserted into an aggregate. Our liveness
+ // depends on all uses of that aggregate, but if it is used as a return
+ // value, only index at which we were inserted counts.
+ RetValNum = *IV->idx_begin();
+
+ // Note that if we are used as the aggregate operand to the insertvalue,
+ // we don't change RetValNum, but do survey all our uses.
+
+ Liveness Result = MaybeLive;
+ for (Value::use_iterator I = IV->use_begin(),
+ E = V->use_end(); I != E; ++I) {
+ Result = SurveyUse(I, MaybeLiveUses, RetValNum);
+ if (Result == Live)
+ break;
+ }
+ return Result;
+ }
+ CallSite CS = CallSite::get(V);
+ if (CS.getInstruction()) {
+ Function *F = CS.getCalledFunction();
+ if (F) {
+ // Used in a direct call
+
+ // Check for vararg. Do - 1 to skip the first operand to call (the
+ // function itself).
+ if (U.getOperandNo() - 1 >= F->getFunctionType()->getNumParams())
+ // The value is passed in through a vararg! Must be live.
+ return Live;
+
+ // Value passed to a normal call. It's only live when the corresponding
+ // argument (operand number - 1 to skip the function pointer operand) to
+ // the called function turns out live
+ RetOrArg Use = CreateArg(F, U.getOperandNo() - 1);
+ return IsMaybeLive(Use, MaybeLiveUses);
+ } else {
+ // Used in any other way? Value must be live.
+ return Live;
+ }
+ }
+ // Used in any other way? Value must be live.
+ return Live;
}
+/// SurveyUses - This looks at all the uses of the given return value
+/// (possibly a partial return value from a function returning a struct).
+/// Returns the Liveness deduced from the uses of this value.
+///
+/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses.
+DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
+ // Assume it's dead (which will only hold if there are no uses at all..)
+ Liveness Result = MaybeLive;
+ // Check each use
+ for (Value::use_iterator I = V->use_begin(),
+ E = V->use_end(); I != E; ++I) {
+ Result = SurveyUse(I, MaybeLiveUses);
+ if (Result == Live)
+ break;
+ }
+ return Result;
+}
// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value. This fills in the
-// (Dead|MaybeLive|Live)(Arguments|RetVal) sets.
+// LiveValues set and Uses map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(Function &F) {
bool FunctionIntrinsicallyLive = false;
- Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;
+ unsigned RetCount = NumRetVals(&F);
+ // Assume all return values are dead
+ typedef SmallVector<Liveness, 5> RetVals;
+ RetVals RetValLiveness(RetCount, MaybeLive);
+
+ // These vectors maps each return value to the uses that make it MaybeLive, so
+ // we can add those to the MaybeLiveRetVals list if the return value
+ // really turns out to be MaybeLive. Initializes to RetCount empty vectors
+ typedef SmallVector<UseVector, 5> RetUses;
+ // Intialized to a list of RetCount empty lists
+ RetUses MaybeLiveRetUses(RetCount);
+
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
+ if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
+ != F.getFunctionType()->getReturnType()) {
+ // We don't support old style multiple return values
+ FunctionIntrinsicallyLive = true;
+ break;
+ }
- if (!F.hasInternalLinkage() &&
- (!ShouldHackArguments() || F.isIntrinsic()))
+ if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic()))
FunctionIntrinsicallyLive = true;
- else
+
+ if (!FunctionIntrinsicallyLive) {
+ DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
+ // Keep track of the number of live retvals, so we can skip checks once all
+ // of them turn out to be live.
+ unsigned NumLiveRetVals = 0;
+ const Type *STy = dyn_cast<StructType>(F.getReturnType());
+ // Loop all uses of the function
for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
// If the function is PASSED IN as an argument, its address has been taken
if (I.getOperandNo() != 0) {
@@ -316,190 +429,142 @@ void DAE::SurveyFunction(Function &F) {
break;
}
- // Check to see if the return value is used...
- if (RetValLiveness != Live)
- for (Value::use_iterator I = TheCall->use_begin(),
- E = TheCall->use_end(); I != E; ++I)
- if (isa<ReturnInst>(cast<Instruction>(*I))) {
- RetValLiveness = MaybeLive;
- } else if (isa<CallInst>(cast<Instruction>(*I)) ||
- isa<InvokeInst>(cast<Instruction>(*I))) {
- if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
- !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
- RetValLiveness = Live;
- break;
+ // If we end up here, we are looking at a direct call to our function.
+
+ // Now, check how our return value(s) is/are used in this caller. Don't
+ // bother checking return values if all of them are live already
+ if (NumLiveRetVals != RetCount) {
+ if (STy) {
+ // Check all uses of the return value
+ for (Value::use_iterator I = TheCall->use_begin(),
+ E = TheCall->use_end(); I != E; ++I) {
+ ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
+ if (Ext && Ext->hasIndices()) {
+ // This use uses a part of our return value, survey the uses of
+ // that part and store the results for this index only.
+ unsigned Idx = *Ext->idx_begin();
+ if (RetValLiveness[Idx] != Live) {
+ RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
+ if (RetValLiveness[Idx] == Live)
+ NumLiveRetVals++;
+ }
} else {
- RetValLiveness = MaybeLive;
+ // Used by something else than extractvalue. Mark all
+ // return values as live.
+ for (unsigned i = 0; i != RetCount; ++i )
+ RetValLiveness[i] = Live;
+ NumLiveRetVals = RetCount;
+ break;
}
- } else {
- RetValLiveness = Live;
- break;
}
+ } else {
+ // Single return value
+ RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
+ if (RetValLiveness[0] == Live)
+ NumLiveRetVals = RetCount;
+ }
+ }
}
-
+ }
if (FunctionIntrinsicallyLive) {
- DOUT << " Intrinsically live fn: " << F.getName() << "\n";
+ DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
+ // Mark all arguments as live
+ unsigned i = 0;
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
- AI != E; ++AI)
- LiveArguments.insert(AI);
- LiveRetVal.insert(&F);
+ AI != E; ++AI, ++i)
+ MarkLive(CreateArg(&F, i));
+ // Mark all return values as live
+ i = 0;
+ for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i)
+ MarkLive(CreateRet(&F, i));
return;
}
- switch (RetValLiveness) {
- case Live: LiveRetVal.insert(&F); break;
- case MaybeLive: MaybeLiveRetVal.insert(&F); break;
- case Dead: DeadRetVal.insert(&F); break;
+ // Now we've inspected all callers, record the liveness of our return values.
+ for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i) {
+ RetOrArg Ret = CreateRet(&F, i);
+ // Mark the result down
+ MarkValue(Ret, RetValLiveness[i], MaybeLiveRetUses[i]);
}
-
- DOUT << " Inspecting args for fn: " << F.getName() << "\n";
-
- // If it is not intrinsically alive, we know that all users of the
- // function are call sites. Mark all of the arguments live which are
- // directly used, and keep track of all of the call sites of this function
- // if there are any arguments we assume that are dead.
- //
- bool AnyMaybeLiveArgs = false;
- for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
- AI != E; ++AI)
- switch (getArgumentLiveness(*AI)) {
- case Live:
- DOUT << " Arg live by use: " << AI->getName() << "\n";
- LiveArguments.insert(AI);
- break;
- case Dead:
- DOUT << " Arg definitely dead: " << AI->getName() <<"\n";
- DeadArguments.insert(AI);
- break;
- case MaybeLive:
- DOUT << " Arg only passed to calls: " << AI->getName() << "\n";
- AnyMaybeLiveArgs = true;
- MaybeLiveArguments.insert(AI);
- break;
- }
-
- // If there are any "MaybeLive" arguments, we need to check callees of
- // this function when/if they become alive. Record which functions are
- // callees...
- if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
- for (Value::use_iterator I = F.use_begin(), E = F.use_end();
- I != E; ++I) {
- if (AnyMaybeLiveArgs)
- CallSites.insert(std::make_pair(&F, CallSite::get(*I)));
-
- if (RetValLiveness == MaybeLive)
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI)
- InstructionsToInspect.push_back(cast<Instruction>(*UI));
- }
-}
-
-// isMaybeLiveArgumentNowLive - Check to see if Arg is alive. At this point, we
-// know that the only uses of Arg are to be passed in as an argument to a
-// function call or return. Check to see if the formal argument passed in is in
-// the LiveArguments set. If so, return true.
-//
-bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
- for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
- if (isa<ReturnInst>(*I)) {
- if (LiveRetVal.count(Arg->getParent())) return true;
- continue;
- }
-
- CallSite CS = CallSite::get(*I);
-
- // We know that this can only be used for direct calls...
- Function *Callee = CS.getCalledFunction();
-
- // Loop over all of the arguments (because Arg may be passed into the call
- // multiple times) and check to see if any are now alive...
- CallSite::arg_iterator CSAI = CS.arg_begin();
- for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
- AI != E; ++AI, ++CSAI)
- // If this is the argument we are looking for, check to see if it's alive
- if (*CSAI == Arg && LiveArguments.count(AI))
- return true;
+ DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
+
+ // Now, check all of our arguments
+ unsigned i = 0;
+ UseVector MaybeLiveArgUses;
+ for (Function::arg_iterator AI = F.arg_begin(),
+ E = F.arg_end(); AI != E; ++AI, ++i) {
+ // See what the effect of this use is (recording any uses that cause
+ // MaybeLive in MaybeLiveArgUses)
+ Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
+ RetOrArg Arg = CreateArg(&F, i);
+ // Mark the result down
+ MarkValue(Arg, Result, MaybeLiveArgUses);
+ // Clear the vector again for the next iteration
+ MaybeLiveArgUses.clear();
}
- return false;
}
-/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
-/// Mark it live in the specified sets and recursively mark arguments in callers
-/// live that are needed to pass in a value.
-///
-void DAE::MarkArgumentLive(Argument *Arg) {
- std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
- if (It == MaybeLiveArguments.end() || *It != Arg) return;
-
- DOUT << " MaybeLive argument now live: " << Arg->getName() <<"\n";
- MaybeLiveArguments.erase(It);
- LiveArguments.insert(Arg);
-
- // Loop over all of the call sites of the function, making any arguments
- // passed in to provide a value for this argument live as necessary.
- //
- Function *Fn = Arg->getParent();
- unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));
-
- std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
- for (; I != CallSites.end() && I->first == Fn; ++I) {
- CallSite CS = I->second;
- Value *ArgVal = *(CS.arg_begin()+ArgNo);
- if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
- MarkArgumentLive(ActualArg);
- } else {
- // If the value passed in at this call site is a return value computed by
- // some other call site, make sure to mark the return value at the other
- // call site as being needed.
- CallSite ArgCS = CallSite::get(ArgVal);
- if (ArgCS.getInstruction())
- if (Function *Fn = ArgCS.getCalledFunction())
- MarkRetValLive(Fn);
+/// MarkValue - This function marks the liveness of RA depending on L. If L is
+/// MaybeLive, it also records any uses in MaybeLiveUses such that RA will be
+/// marked live if any use in MaybeLiveUses gets marked live later on.
+void DAE::MarkValue(const RetOrArg &RA, Liveness L,
+ const UseVector &MaybeLiveUses) {
+ switch (L) {
+ case Live: MarkLive(RA); break;
+ case MaybeLive:
+ {
+ // Note any uses of this value, so this return value can be
+ // marked live whenever one of the uses becomes live.
+ UseMap::iterator Where = Uses.begin();
+ for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
+ UE = MaybeLiveUses.end(); UI != UE; ++UI)
+ Where = Uses.insert(Where, UseMap::value_type(*UI, RA));
+ break;
}
}
}
-/// MarkArgumentLive - The MaybeLive return value for the specified function is
-/// now known to be alive. Propagate this fact to the return instructions which
-/// produce it.
-void DAE::MarkRetValLive(Function *F) {
- assert(F && "Shame shame, we can't have null pointers here!");
-
- // Check to see if we already knew it was live
- std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
- if (I == MaybeLiveRetVal.end() || *I != F) return; // It's already alive!
-
- DOUT << " MaybeLive retval now live: " << F->getName() << "\n";
-
- MaybeLiveRetVal.erase(I);
- LiveRetVal.insert(F); // It is now known to be live!
+/// MarkLive - Mark the given return value or argument as live. Additionally,
+/// mark any values that are used by this value (according to Uses) live as
+/// well.
+void DAE::MarkLive(RetOrArg RA) {
+ if (!LiveValues.insert(RA).second)
+ return; // We were already marked Live
- // Loop over all of the functions, noticing that the return value is now live.
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
- if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
- MarkReturnInstArgumentLive(RI);
-}
-
-void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
- Value *Op = RI->getOperand(0);
- if (Argument *A = dyn_cast<Argument>(Op)) {
- MarkArgumentLive(A);
- } else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
- if (Function *F = CI->getCalledFunction())
- MarkRetValLive(F);
- } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
- if (Function *F = II->getCalledFunction())
- MarkRetValLive(F);
- }
+ if (RA.IsArg)
+ DOUT << "DAE - Marking argument " << RA.Idx << " to function "
+ << RA.F->getNameStart() << " live\n";
+ else
+ DOUT << "DAE - Marking return value " << RA.Idx << " of function "
+ << RA.F->getNameStart() << " live\n";
+
+ // We don't use upper_bound (or equal_range) here, because our recursive call
+ // to ourselves is likely to mark the upper_bound (which is the first value
+ // not belonging to RA) to become erased and the iterator invalidated.
+ UseMap::iterator Begin = Uses.lower_bound(RA);
+ UseMap::iterator E = Uses.end();
+ UseMap::iterator I;
+ for (I = Begin; I != E && I->first == RA; ++I)
+ MarkLive(I->second);
+
+ // Erase RA from the Uses map (from the lower bound to wherever we ended up
+ // after the loop).
+ Uses.erase(Begin, I);
}
-// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
+// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
+// that are not in LiveValues. This function is a noop for any Function created
+// by this function before, or any function that was not inspected for liveness.
// specified by the DeadArguments list. Transform the function and all of the
// callees of the function to not have these arguments.
//
-void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
+bool DAE::RemoveDeadStuffFromFunction(Function *F) {
+ // Quick exit path for external functions
+ if (!F->hasInternalLinkage() && (!ShouldHackArguments() || F->isIntrinsic()))
+ return false;
+
// Start by computing a new prototype for the function, which is the same as
- // the old function, but has fewer arguments.
+ // the old function, but has fewer arguments and a different return type.
const FunctionType *FTy = F->getFunctionType();
std::vector<const Type*> Params;
@@ -510,28 +575,92 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
// The existing function return attributes.
ParameterAttributes RAttrs = PAL.getParamAttrs(0);
- // Make the function return void if the return value is dead.
+
+ // Find out the new return value
+
const Type *RetTy = FTy->getReturnType();
- if (DeadRetVal.count(F)) {
- RetTy = Type::VoidTy;
- RAttrs &= ~ParamAttr::typeIncompatible(RetTy);
- DeadRetVal.erase(F);
+ const Type *NRetTy;
+ unsigned RetCount = NumRetVals(F);
+ // Explicitely track if anything changed, for debugging
+ bool Changed = false;
+ // -1 means unused, other numbers are the new index
+ SmallVector<int, 5> NewRetIdxs(RetCount, -1);
+ std::vector<const Type*> RetTypes;
+ if (RetTy != Type::VoidTy) {
+ const StructType *STy = dyn_cast<StructType>(RetTy);
+ if (STy)
+ // Look at each of the original return values individually
+ for (unsigned i = 0; i != RetCount; ++i) {
+ RetOrArg Ret = CreateRet(F, i);
+ if (LiveValues.erase(Ret)) {
+ RetTypes.push_back(STy->getElementType(i));
+ NewRetIdxs[i] = RetTypes.size() - 1;
+ } else {
+ ++NumRetValsEliminated;
+ DOUT << "DAE - Removing return value " << i << " from "
+ << F->getNameStart() << "\n";
+ Changed = true;
+ }
+ }
+ else
+ // We used to return a single value
+ if (LiveValues.erase(CreateRet(F, 0))) {
+ RetTypes.push_back(RetTy);
+ NewRetIdxs[0] = 0;
+ } else {
+ DOUT << "DAE - Removing return value from " << F->getNameStart()
+ << "\n";
+ ++NumRetValsEliminated;
+ Changed = true;
+ }
+ if (RetTypes.size() > 1 || STy && STy->getNumElements() == RetTypes.size())
+ // More than one return type? Return a struct with them. Also, if we used
+ // to return a struct and didn't change the number of return values,
+ // return a struct again. This prevents chaning {something} into something
+ // and {} into void.
+ // Make the new struct packed if we used to return a packed struct
+ // already.
+ NRetTy = StructType::get(RetTypes, STy->isPacked());
+ else if (RetTypes.size() == 1)
+ // One return type? Just a simple value then, but only if we didn't use to
+ // return a struct with that simple value before.
+ NRetTy = RetTypes.front();
+ else if (RetTypes.size() == 0)
+ // No return types? Make it void, but only if we didn't use to return {}
+ NRetTy = Type::VoidTy;
+ } else {
+ NRetTy = Type::VoidTy;
}
+ // Remove any incompatible attributes
+ RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
if (RAttrs)
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
+ // Remember which arguments are still alive
+ SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
// Construct the new parameter list from non-dead arguments. Also construct
- // a new set of parameter attributes to correspond.
- unsigned index = 1;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
- ++I, ++index)
- if (!DeadArguments.count(I)) {
+ // a new set of parameter attributes to correspond. Skip the first parameter
+ // attribute, since that belongs to the return value.
+ unsigned i = 0;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I, ++i) {
+ RetOrArg Arg = CreateArg(F, i);
+ if (LiveValues.erase(Arg)) {
Params.push_back(I->getType());
-
- if (ParameterAttributes Attrs = PAL.getParamAttrs(index))
+ ArgAlive[i] = true;
+
+ // Get the original parameter attributes (skipping the first one, that is
+ // for the return value
+ if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
+ } else {
+ ++NumArgumentsEliminated;
+ DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
+ << ") from " << F->getNameStart() << "\n";
+ Changed = true;
}
+ }
// Reconstruct the ParamAttrsList based on the vector we constructed.
PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
@@ -539,19 +668,33 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
// Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
// have zero fixed arguments.
//
+ // Not that we apply this hack for a vararg fuction that does not have any
+ // arguments anymore, but did have them before (so don't bother fixing
+ // functions that were already broken wrt CWriter).
bool ExtraArgHack = false;
- if (Params.empty() && FTy->isVarArg()) {
+ if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
ExtraArgHack = true;
Params.push_back(Type::Int32Ty);
}
// Create the new function type based on the recomputed parameters.
- FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
+ FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
+
+ // No change?
+ if (NFTy == FTy)
+ return false;
+
+ // The function type is only allowed to be different if we actually left out
+ // an argument or return value
+ assert(Changed && "Function type changed while no arguments or retrurn values"
+ "were removed!");
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage());
NF->copyAttributesFrom(F);
NF->setParamAttrs(NewPAL);
+ // Insert the new function before the old function, so we won't be processing
+ // it again
F->getParent()->getFunctionList().insert(F, NF);
NF->takeName(F);
@@ -562,6 +705,7 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
while (!F->use_empty()) {
CallSite CS = CallSite::get(F->use_back());
Instruction *Call = CS.getInstruction();
+
ParamAttrsVec.clear();
const PAListPtr &CallPAL = CS.getParamAttrs();
@@ -572,14 +716,17 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
if (RAttrs)
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
- // Loop over the operands, deleting dead ones...
- CallSite::arg_iterator AI = CS.arg_begin();
- index = 1;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
- I != E; ++I, ++AI, ++index)
- if (!DeadArguments.count(I)) { // Remove operands for dead arguments
- Args.push_back(*AI);
- if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index))
+ // Declare these outside of the loops, so we can reuse them for the second
+ // loop, which loops the varargs
+ CallSite::arg_iterator I = CS.arg_begin();
+ unsigned i = 0;
+ // Loop over those operands, corresponding to the normal arguments to the
+ // original function, and add those that are still alive.
+ for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
+ if (ArgAlive[i]) {
+ Args.push_back(*I);
+ // Get original parameter attributes, but skip return attributes
+ if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
}
@@ -587,9 +734,9 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
Args.push_back(UndefValue::get(Type::Int32Ty));
// Push any varargs arguments on the list. Don't forget their attributes.
- for (; AI != CS.arg_end(); ++AI) {
- Args.push_back(*AI);
- if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index++))
+ for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
+ Args.push_back(*I);
+ if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
}
@@ -613,11 +760,55 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
Args.clear();
if (!Call->use_empty()) {
- if (New->getType() == Type::VoidTy)
- Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
- else {
+ if (New->getType() == Call->getType()) {
+ // Return type not changed? Just replace users then
Call->replaceAllUsesWith(New);
New->takeName(Call);
+ } else if (New->getType() == Type::VoidTy) {
+ // Our return value has uses, but they will get removed later on.
+ // Replace by null for now.
+ Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
+ } else {
+ assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
+ "void. The old return type must have"
+ "been a struct!");
+ // The original return value was a struct, update all uses (which are
+ // all extractvalue instructions).
+ for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
+ I != E;) {
+ assert(isa<ExtractValueInst>(*I) && "Return value not only used by"
+ "extractvalue?");
+ ExtractValueInst *EV = cast<ExtractValueInst>(*I);
+ // Increment now, since we're about to throw away this use.
+ ++I;
+ assert(EV->hasIndices() && "Return value used by extractvalue without"
+ "indices?");
+ unsigned Idx = *EV->idx_begin();
+ if (NewRetIdxs[Idx] != -1) {
+ if (RetTypes.size() > 1) {
+ // We're still returning a struct, create a new extractvalue
+ // instruction with the first index updated
+ std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
+ NewIdxs[0] = NewRetIdxs[Idx];
+ Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
+ NewIdxs.end(), "retval",
+ EV);
+ EV->replaceAllUsesWith(NEV);
+ EV->eraseFromParent();
+ } else {
+ // We are now only returning a simple value, remove the
+ // extractvalue
+ EV->replaceAllUsesWith(New);
+ EV->eraseFromParent();
+ }
+ } else {
+ // Value unused, replace uses by null for now, they will get removed
+ // later on
+ EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
+ EV->eraseFromParent();
+ }
+ }
+ New->takeName(Call);
}
}
@@ -632,13 +823,11 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
- // the new arguments, also transfering over the names as well. While we're at
- // it, remove the dead arguments from the DeadArguments list.
- //
+ // the new arguments, also transfering over the names as well.
+ i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
- I2 = NF->arg_begin();
- I != E; ++I)
- if (!DeadArguments.count(I)) {
+ I2 = NF->arg_begin(); I != E; ++I, ++i)
+ if (ArgAlive[i]) {
// If this is a live argument, move the name and users over to the new
// version.
I->replaceAllUsesWith(I2);
@@ -646,10 +835,8 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
++I2;
} else {
// If this argument is dead, replace any uses of it with null constants
- // (these are guaranteed to only be operands to call instructions which
- // will later be simplified).
+ // (these are guaranteed to become unused later on)
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
- DeadArguments.erase(I);
}
// If we change the return value of the function we must rewrite any return
@@ -657,12 +844,47 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
if (F->getReturnType() != NF->getReturnType())
for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
- ReturnInst::Create(0, RI);
+ Value *RetVal;
+
+ if (NFTy->getReturnType() == Type::VoidTy) {
+ RetVal = 0;
+ } else {
+ assert (isa<StructType>(RetTy));
+ // The original return value was a struct, insert
+ // extractvalue/insertvalue chains to extract only the values we need
+ // to return and insert them into our new result.
+ // This does generate messy code, but we'll let it to instcombine to
+ // clean that up
+ Value *OldRet = RI->getOperand(0);
+ // Start out building up our return value from undef
+ RetVal = llvm::UndefValue::get(NRetTy);
+ for (unsigned i = 0; i != RetCount; ++i)
+ if (NewRetIdxs[i] != -1) {
+ ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
+ "newret", RI);
+ if (RetTypes.size() > 1) {
+ // We're still returning a struct, so reinsert the value into
+ // our new return value at the new index
+
+ RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
+ "oldret");
+ } else {
+ // We are now only returning a simple value, so just return the
+ // extracted value
+ RetVal = EV;
+ }
+ }
+ }
+ // Replace the return instruction with one returning the new return
+ // value (possibly 0 if we became void).
+ ReturnInst::Create(RetVal, RI);
BB->getInstList().erase(RI);
}
// Now that the old function is dead, delete it.
F->eraseFromParent();
+
+ return true;
}
bool DAE::runOnModule(Module &M) {
@@ -677,7 +899,7 @@ bool DAE::runOnModule(Module &M) {
if (F.getFunctionType()->isVarArg())
Changed |= DeleteDeadVarargs(F);
}
-
+
// Second phase:loop through the module, determining which arguments are live.
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
@@ -686,85 +908,14 @@ bool DAE::runOnModule(Module &M) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
- // Loop over the instructions to inspect, propagating liveness among arguments
- // and return values which are MaybeLive.
- while (!InstructionsToInspect.empty()) {
- Instruction *I = InstructionsToInspect.back();
- InstructionsToInspect.pop_back();
-
- if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
- // For return instructions, we just have to check to see if the return
- // value for the current function is known now to be alive. If so, any
- // arguments used by it are now alive, and any call instruction return
- // value is alive as well.
- if (LiveRetVal.count(RI->getParent()->getParent()))
- MarkReturnInstArgumentLive(RI);
-
- } else {
- CallSite CS = CallSite::get(I);
- assert(CS.getInstruction() && "Unknown instruction for the I2I list!");
-
- Function *Callee = CS.getCalledFunction();
-
- // If we found a call or invoke instruction on this list, that means that
- // an argument of the function is a call instruction. If the argument is
- // live, then the return value of the called instruction is now live.
- //
- CallSite::arg_iterator AI = CS.arg_begin(); // ActualIterator
- for (Function::arg_iterator FI = Callee->arg_begin(),
- E = Callee->arg_end(); FI != E; ++AI, ++FI) {
- // If this argument is another call...
- CallSite ArgCS = CallSite::get(*AI);
- if (ArgCS.getInstruction() && LiveArguments.count(FI))
- if (Function *Callee = ArgCS.getCalledFunction())
- MarkRetValLive(Callee);
- }
- }
- }
-
- // Now we loop over all of the MaybeLive arguments, promoting them to be live
- // arguments if one of the calls that uses the arguments to the calls they are
- // passed into requires them to be live. Of course this could make other
- // arguments live, so process callers recursively.
- //
- // Because elements can be removed from the MaybeLiveArguments set, copy it to
- // a temporary vector.
- //
- std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
- MaybeLiveArguments.end());
- for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
- Argument *MLA = TmpArgList[i];
- if (MaybeLiveArguments.count(MLA) &&
- isMaybeLiveArgumentNowLive(MLA))
- MarkArgumentLive(MLA);
+ // Now, remove all dead arguments and return values from each function in
+ // turn
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
+ // Increment now, because the function will probably get removed (ie
+ // replaced by a new one)
+ Function *F = I++;
+ Changed |= RemoveDeadStuffFromFunction(F);
}
- // Recover memory early...
- CallSites.clear();
-
- // At this point, we know that all arguments in DeadArguments and
- // MaybeLiveArguments are dead. If the two sets are empty, there is nothing
- // to do.
- if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
- MaybeLiveRetVal.empty() && DeadRetVal.empty())
- return Changed;
-
- // Otherwise, compact into one set, and start eliminating the arguments from
- // the functions.
- DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
- MaybeLiveArguments.clear();
- DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
- MaybeLiveRetVal.clear();
-
- LiveArguments.clear();
- LiveRetVal.clear();
-
- NumArgumentsEliminated += DeadArguments.size();
- NumRetValsEliminated += DeadRetVal.size();
- while (!DeadArguments.empty())
- RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());
-
- while (!DeadRetVal.empty())
- RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
- return true;
+ return Changed;
}