summaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2010-01-05 05:57:49 +0000
committerChris Lattner <sabre@nondot.org>2010-01-05 05:57:49 +0000
commit8d9b8d717e665945b31b0742b901561fb433cece (patch)
tree67a7c98edb9733bc9034ea60adb8c94bdf5293e7 /lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
parentd5da27186350345794b82f036d75f6d1e9bfbbbd (diff)
downloadllvm-8d9b8d717e665945b31b0742b901561fb433cece.tar.gz
llvm-8d9b8d717e665945b31b0742b901561fb433cece.tar.bz2
llvm-8d9b8d717e665945b31b0742b901561fb433cece.tar.xz
split out load/store/alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92685 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp613
1 files changed, 613 insertions, 0 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
new file mode 100644
index 0000000000..6c0ecc9f93
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -0,0 +1,613 @@
+//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for load, store and alloca.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+STATISTIC(NumDeadStore, "Number of dead stores eliminated");
+
+Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
+ // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
+ if (AI.isArrayAllocation()) { // Check C != 1
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
+ const Type *NewTy =
+ ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
+ assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
+ AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
+ New->setAlignment(AI.getAlignment());
+
+ // Scan to the end of the allocation instructions, to skip over a block of
+ // allocas if possible...also skip interleaved debug info
+ //
+ BasicBlock::iterator It = New;
+ while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
+
+ // Now that I is pointing to the first non-allocation-inst in the block,
+ // insert our getelementptr instruction...
+ //
+ Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
+ Value *Idx[2];
+ Idx[0] = NullIdx;
+ Idx[1] = NullIdx;
+ Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
+ New->getName()+".sub", It);
+
+ // Now make everything use the getelementptr instead of the original
+ // allocation.
+ return ReplaceInstUsesWith(AI, V);
+ } else if (isa<UndefValue>(AI.getArraySize())) {
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+ }
+ }
+
+ if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
+ // If alloca'ing a zero byte object, replace the alloca with a null pointer.
+ // Note that we only do this for alloca's, because malloc should allocate
+ // and return a unique pointer, even for a zero byte allocation.
+ if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+
+ // If the alignment is 0 (unspecified), assign it the preferred alignment.
+ if (AI.getAlignment() == 0)
+ AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
+ }
+
+ return 0;
+}
+
+
+/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
+static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
+ const TargetData *TD) {
+ User *CI = cast<User>(LI.getOperand(0));
+ Value *CastOp = CI->getOperand(0);
+
+ const PointerType *DestTy = cast<PointerType>(CI->getType());
+ const Type *DestPTy = DestTy->getElementType();
+ if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
+
+ // If the address spaces don't match, don't eliminate the cast.
+ if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
+ return 0;
+
+ const Type *SrcPTy = SrcTy->getElementType();
+
+ if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
+ isa<VectorType>(DestPTy)) {
+ // If the source is an array, the code below will not succeed. Check to
+ // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
+ // constants.
+ if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
+ if (Constant *CSrc = dyn_cast<Constant>(CastOp))
+ if (ASrcTy->getNumElements() != 0) {
+ Value *Idxs[2];
+ Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
+ Idxs[1] = Idxs[0];
+ CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
+ SrcTy = cast<PointerType>(CastOp->getType());
+ SrcPTy = SrcTy->getElementType();
+ }
+
+ if (IC.getTargetData() &&
+ (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
+ isa<VectorType>(SrcPTy)) &&
+ // Do not allow turning this into a load of an integer, which is then
+ // casted to a pointer, this pessimizes pointer analysis a lot.
+ (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
+ IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
+
+ // Okay, we are casting from one integer or pointer type to another of
+ // the same size. Instead of casting the pointer before the load, cast
+ // the result of the loaded value.
+ Value *NewLoad =
+ IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
+ // Now cast the result of the load.
+ return new BitCastInst(NewLoad, LI.getType());
+ }
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
+ Value *Op = LI.getOperand(0);
+
+ // Attempt to improve the alignment.
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
+ if (KnownAlign >
+ (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
+ LI.getAlignment()))
+ LI.setAlignment(KnownAlign);
+ }
+
+ // load (cast X) --> cast (load X) iff safe.
+ if (isa<CastInst>(Op))
+ if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+ return Res;
+
+ // None of the following transforms are legal for volatile loads.
+ if (LI.isVolatile()) return 0;
+
+ // Do really simple store-to-load forwarding and load CSE, to catch cases
+ // where there are several consequtive memory accesses to the same location,
+ // separated by a few arithmetic operations.
+ BasicBlock::iterator BBI = &LI;
+ if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
+ return ReplaceInstUsesWith(LI, AvailableVal);
+
+ // load(gep null, ...) -> unreachable
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
+ const Value *GEPI0 = GEPI->getOperand(0);
+ // TODO: Consider a target hook for valid address spaces for this xform.
+ if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
+ // Insert a new store to null instruction before the load to indicate
+ // that this code is not reachable. We do this instead of inserting
+ // an unreachable instruction directly because we cannot modify the
+ // CFG.
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
+ }
+ }
+
+ // load null/undef -> unreachable
+ // TODO: Consider a target hook for valid address spaces for this xform.
+ if (isa<UndefValue>(Op) ||
+ (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
+ // Insert a new store to null instruction before the load to indicate that
+ // this code is not reachable. We do this instead of inserting an
+ // unreachable instruction directly because we cannot modify the CFG.
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
+ }
+
+ // Instcombine load (constantexpr_cast global) -> cast (load global)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
+ if (CE->isCast())
+ if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+ return Res;
+
+ if (Op->hasOneUse()) {
+ // Change select and PHI nodes to select values instead of addresses: this
+ // helps alias analysis out a lot, allows many others simplifications, and
+ // exposes redundancy in the code.
+ //
+ // Note that we cannot do the transformation unless we know that the
+ // introduced loads cannot trap! Something like this is valid as long as
+ // the condition is always false: load (select bool %C, int* null, int* %G),
+ // but it would not be valid if we transformed it to load from null
+ // unconditionally.
+ //
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
+ // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
+ if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
+ isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
+ Value *V1 = Builder->CreateLoad(SI->getOperand(1),
+ SI->getOperand(1)->getName()+".val");
+ Value *V2 = Builder->CreateLoad(SI->getOperand(2),
+ SI->getOperand(2)->getName()+".val");
+ return SelectInst::Create(SI->getCondition(), V1, V2);
+ }
+
+ // load (select (cond, null, P)) -> load P
+ if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
+ if (C->isNullValue()) {
+ LI.setOperand(0, SI->getOperand(2));
+ return &LI;
+ }
+
+ // load (select (cond, P, null)) -> load P
+ if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
+ if (C->isNullValue()) {
+ LI.setOperand(0, SI->getOperand(1));
+ return &LI;
+ }
+ }
+ }
+ return 0;
+}
+
+/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
+/// when possible. This makes it generally easy to do alias analysis and/or
+/// SROA/mem2reg of the memory object.
+static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
+ User *CI = cast<User>(SI.getOperand(1));
+ Value *CastOp = CI->getOperand(0);
+
+ const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
+ const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
+ if (SrcTy == 0) return 0;
+
+ const Type *SrcPTy = SrcTy->getElementType();
+
+ if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
+ return 0;
+
+ /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
+ /// to its first element. This allows us to handle things like:
+ /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
+ /// on 32-bit hosts.
+ SmallVector<Value*, 4> NewGEPIndices;
+
+ // If the source is an array, the code below will not succeed. Check to
+ // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
+ // constants.
+ if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
+ // Index through pointer.
+ Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
+ NewGEPIndices.push_back(Zero);
+
+ while (1) {
+ if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
+ if (!STy->getNumElements()) /* Struct can be empty {} */
+ break;
+ NewGEPIndices.push_back(Zero);
+ SrcPTy = STy->getElementType(0);
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
+ NewGEPIndices.push_back(Zero);
+ SrcPTy = ATy->getElementType();
+ } else {
+ break;
+ }
+ }
+
+ SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
+ }
+
+ if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
+ return 0;
+
+ // If the pointers point into different address spaces or if they point to
+ // values with different sizes, we can't do the transformation.
+ if (!IC.getTargetData() ||
+ SrcTy->getAddressSpace() !=
+ cast<PointerType>(CI->getType())->getAddressSpace() ||
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
+ IC.getTargetData()->getTypeSizeInBits(DestPTy))
+ return 0;
+
+ // Okay, we are casting from one integer or pointer type to another of
+ // the same size. Instead of casting the pointer before
+ // the store, cast the value to be stored.
+ Value *NewCast;
+ Value *SIOp0 = SI.getOperand(0);
+ Instruction::CastOps opcode = Instruction::BitCast;
+ const Type* CastSrcTy = SIOp0->getType();
+ const Type* CastDstTy = SrcPTy;
+ if (isa<PointerType>(CastDstTy)) {
+ if (CastSrcTy->isInteger())
+ opcode = Instruction::IntToPtr;
+ } else if (isa<IntegerType>(CastDstTy)) {
+ if (isa<PointerType>(SIOp0->getType()))
+ opcode = Instruction::PtrToInt;
+ }
+
+ // SIOp0 is a pointer to aggregate and this is a store to the first field,
+ // emit a GEP to index into its first field.
+ if (!NewGEPIndices.empty())
+ CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
+ NewGEPIndices.end());
+
+ NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
+ SIOp0->getName()+".c");
+ return new StoreInst(NewCast, CastOp);
+}
+
+/// equivalentAddressValues - Test if A and B will obviously have the same
+/// value. This includes recognizing that %t0 and %t1 will have the same
+/// value in code like this:
+/// %t0 = getelementptr \@a, 0, 3
+/// store i32 0, i32* %t0
+/// %t1 = getelementptr \@a, 0, 3
+/// %t2 = load i32* %t1
+///
+static bool equivalentAddressValues(Value *A, Value *B) {
+ // Test if the values are trivially equivalent.
+ if (A == B) return true;
+
+ // Test if the values come form identical arithmetic instructions.
+ // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
+ // its only used to compare two uses within the same basic block, which
+ // means that they'll always either have the same value or one of them
+ // will have an undefined value.
+ if (isa<BinaryOperator>(A) ||
+ isa<CastInst>(A) ||
+ isa<PHINode>(A) ||
+ isa<GetElementPtrInst>(A))
+ if (Instruction *BI = dyn_cast<Instruction>(B))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
+ return true;
+
+ // Otherwise they may not be equivalent.
+ return false;
+}
+
+// If this instruction has two uses, one of which is a llvm.dbg.declare,
+// return the llvm.dbg.declare.
+DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
+ if (!V->hasNUses(2))
+ return 0;
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+ UI != E; ++UI) {
+ if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
+ return DI;
+ if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
+ if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
+ return DI;
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
+ Value *Val = SI.getOperand(0);
+ Value *Ptr = SI.getOperand(1);
+
+ // If the RHS is an alloca with a single use, zapify the store, making the
+ // alloca dead.
+ // If the RHS is an alloca with a two uses, the other one being a
+ // llvm.dbg.declare, zapify the store and the declare, making the
+ // alloca dead. We must do this to prevent declare's from affecting
+ // codegen.
+ if (!SI.isVolatile()) {
+ if (Ptr->hasOneUse()) {
+ if (isa<AllocaInst>(Ptr))
+ return EraseInstFromFunction(SI);
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
+ if (isa<AllocaInst>(GEP->getOperand(0))) {
+ if (GEP->getOperand(0)->hasOneUse())
+ return EraseInstFromFunction(SI);
+ if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
+ EraseInstFromFunction(*DI);
+ return EraseInstFromFunction(SI);
+ }
+ }
+ }
+ }
+ if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
+ EraseInstFromFunction(*DI);
+ return EraseInstFromFunction(SI);
+ }
+ }
+
+ // Attempt to improve the alignment.
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
+ if (KnownAlign >
+ (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
+ SI.getAlignment()))
+ SI.setAlignment(KnownAlign);
+ }
+
+ // Do really simple DSE, to catch cases where there are several consecutive
+ // stores to the same location, separated by a few arithmetic operations. This
+ // situation often occurs with bitfield accesses.
+ BasicBlock::iterator BBI = &SI;
+ for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
+ --ScanInsts) {
+ --BBI;
+ // Don't count debug info directives, lest they affect codegen,
+ // and we skip pointer-to-pointer bitcasts, which are NOPs.
+ // It is necessary for correctness to skip those that feed into a
+ // llvm.dbg.declare, as these are not present when debugging is off.
+ if (isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
+ ScanInsts++;
+ continue;
+ }
+
+ if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
+ // Prev store isn't volatile, and stores to the same location?
+ if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
+ SI.getOperand(1))) {
+ ++NumDeadStore;
+ ++BBI;
+ EraseInstFromFunction(*PrevSI);
+ continue;
+ }
+ break;
+ }
+
+ // If this is a load, we have to stop. However, if the loaded value is from
+ // the pointer we're loading and is producing the pointer we're storing,
+ // then *this* store is dead (X = load P; store X -> P).
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+ if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
+ !SI.isVolatile())
+ return EraseInstFromFunction(SI);
+
+ // Otherwise, this is a load from some other location. Stores before it
+ // may not be dead.
+ break;
+ }
+
+ // Don't skip over loads or things that can modify memory.
+ if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
+ break;
+ }
+
+
+ if (SI.isVolatile()) return 0; // Don't hack volatile stores.
+
+ // store X, null -> turns into 'unreachable' in SimplifyCFG
+ if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
+ if (!isa<UndefValue>(Val)) {
+ SI.setOperand(0, UndefValue::get(Val->getType()));
+ if (Instruction *U = dyn_cast<Instruction>(Val))
+ Worklist.Add(U); // Dropped a use.
+ }
+ return 0; // Do not modify these!
+ }
+
+ // store undef, Ptr -> noop
+ if (isa<UndefValue>(Val))
+ return EraseInstFromFunction(SI);
+
+ // If the pointer destination is a cast, see if we can fold the cast into the
+ // source instead.
+ if (isa<CastInst>(Ptr))
+ if (Instruction *Res = InstCombineStoreToCast(*this, SI))
+ return Res;
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (CE->isCast())
+ if (Instruction *Res = InstCombineStoreToCast(*this, SI))
+ return Res;
+
+
+ // If this store is the last instruction in the basic block (possibly
+ // excepting debug info instructions and the pointer bitcasts that feed
+ // into them), and if the block ends with an unconditional branch, try
+ // to move it to the successor block.
+ BBI = &SI;
+ do {
+ ++BBI;
+ } while (isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
+ if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
+ if (BI->isUnconditional())
+ if (SimplifyStoreAtEndOfBlock(SI))
+ return 0; // xform done!
+
+ return 0;
+}
+
+/// SimplifyStoreAtEndOfBlock - Turn things like:
+/// if () { *P = v1; } else { *P = v2 }
+/// into a phi node with a store in the successor.
+///
+/// Simplify things like:
+/// *P = v1; if () { *P = v2; }
+/// into a phi node with a store in the successor.
+///
+bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
+ BasicBlock *StoreBB = SI.getParent();
+
+ // Check to see if the successor block has exactly two incoming edges. If
+ // so, see if the other predecessor contains a store to the same location.
+ // if so, insert a PHI node (if needed) and move the stores down.
+ BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
+
+ // Determine whether Dest has exactly two predecessors and, if so, compute
+ // the other predecessor.
+ pred_iterator PI = pred_begin(DestBB);
+ BasicBlock *OtherBB = 0;
+ if (*PI != StoreBB)
+ OtherBB = *PI;
+ ++PI;
+ if (PI == pred_end(DestBB))
+ return false;
+
+ if (*PI != StoreBB) {
+ if (OtherBB)
+ return false;
+ OtherBB = *PI;
+ }
+ if (++PI != pred_end(DestBB))
+ return false;
+
+ // Bail out if all the relevant blocks aren't distinct (this can happen,
+ // for example, if SI is in an infinite loop)
+ if (StoreBB == DestBB || OtherBB == DestBB)
+ return false;
+
+ // Verify that the other block ends in a branch and is not otherwise empty.
+ BasicBlock::iterator BBI = OtherBB->getTerminator();
+ BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
+ if (!OtherBr || BBI == OtherBB->begin())
+ return false;
+
+ // If the other block ends in an unconditional branch, check for the 'if then
+ // else' case. there is an instruction before the branch.
+ StoreInst *OtherStore = 0;
+ if (OtherBr->isUnconditional()) {
+ --BBI;
+ // Skip over debugging info.
+ while (isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
+ if (BBI==OtherBB->begin())
+ return false;
+ --BBI;
+ }
+ // If this isn't a store, isn't a store to the same location, or if the
+ // alignments differ, bail out.
+ OtherStore = dyn_cast<StoreInst>(BBI);
+ if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
+ OtherStore->getAlignment() != SI.getAlignment())
+ return false;
+ } else {
+ // Otherwise, the other block ended with a conditional branch. If one of the
+ // destinations is StoreBB, then we have the if/then case.
+ if (OtherBr->getSuccessor(0) != StoreBB &&
+ OtherBr->getSuccessor(1) != StoreBB)
+ return false;
+
+ // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
+ // if/then triangle. See if there is a store to the same ptr as SI that
+ // lives in OtherBB.
+ for (;; --BBI) {
+ // Check to see if we find the matching store.
+ if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
+ if (OtherStore->getOperand(1) != SI.getOperand(1) ||
+ OtherStore->getAlignment() != SI.getAlignment())
+ return false;
+ break;
+ }
+ // If we find something that may be using or overwriting the stored
+ // value, or if we run out of instructions, we can't do the xform.
+ if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
+ BBI == OtherBB->begin())
+ return false;
+ }
+
+ // In order to eliminate the store in OtherBr, we have to
+ // make sure nothing reads or overwrites the stored value in
+ // StoreBB.
+ for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
+ // FIXME: This should really be AA driven.
+ if (I->mayReadFromMemory() || I->mayWriteToMemory())
+ return false;
+ }
+ }
+
+ // Insert a PHI node now if we need it.
+ Value *MergedVal = OtherStore->getOperand(0);
+ if (MergedVal != SI.getOperand(0)) {
+ PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(SI.getOperand(0), SI.getParent());
+ PN->addIncoming(OtherStore->getOperand(0), OtherBB);
+ MergedVal = InsertNewInstBefore(PN, DestBB->front());
+ }
+
+ // Advance to a place where it is safe to insert the new store and
+ // insert it.
+ BBI = DestBB->getFirstNonPHI();
+ InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
+ OtherStore->isVolatile(),
+ SI.getAlignment()), *BBI);
+
+ // Nuke the old stores.
+ EraseInstFromFunction(SI);
+ EraseInstFromFunction(*OtherStore);
+ return true;
+}