summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar
diff options
context:
space:
mode:
authorRafael Espindola <rafael.espindola@gmail.com>2014-02-21 00:06:31 +0000
committerRafael Espindola <rafael.espindola@gmail.com>2014-02-21 00:06:31 +0000
commitf116e5308d2eed4b531da795e8eed91211c01241 (patch)
treed458cab6fb15c8319e97119600478aa358d4e954 /lib/Transforms/Scalar
parent23ffb3ea10530e36f8b779570f8e1cc686708051 (diff)
downloadllvm-f116e5308d2eed4b531da795e8eed91211c01241.tar.gz
llvm-f116e5308d2eed4b531da795e8eed91211c01241.tar.bz2
llvm-f116e5308d2eed4b531da795e8eed91211c01241.tar.xz
Rename many DataLayout variables from TD to DL.
I am really sorry for the noise, but the current state where some parts of the code use TD (from the old name: TargetData) and other parts use DL makes it hard to write a patch that changes where those variables come from and how they are passed along. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201827 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Scalar')
-rw-r--r--lib/Transforms/Scalar/EarlyCSE.cpp6
-rw-r--r--lib/Transforms/Scalar/GVN.cpp150
-rw-r--r--lib/Transforms/Scalar/GlobalMerge.cpp20
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp26
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp12
-rw-r--r--lib/Transforms/Scalar/LICM.cpp6
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp20
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp48
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp16
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp182
10 files changed, 243 insertions, 243 deletions
diff --git a/lib/Transforms/Scalar/EarlyCSE.cpp b/lib/Transforms/Scalar/EarlyCSE.cpp
index 24baee72dc..ecf0335ebe 100644
--- a/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -262,7 +262,7 @@ namespace {
/// cases.
class EarlyCSE : public FunctionPass {
public:
- const DataLayout *TD;
+ const DataLayout *DL;
const TargetLibraryInfo *TLI;
DominatorTree *DT;
typedef RecyclingAllocator<BumpPtrAllocator,
@@ -432,7 +432,7 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
- if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) {
+ if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT)) {
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
@@ -557,7 +557,7 @@ bool EarlyCSE::runOnFunction(Function &F) {
std::vector<StackNode *> nodesToProcess;
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index 3acf92b8e6..fbbc1317b5 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -586,7 +586,7 @@ namespace {
bool NoLoads;
MemoryDependenceAnalysis *MD;
DominatorTree *DT;
- const DataLayout *TD;
+ const DataLayout *DL;
const TargetLibraryInfo *TLI;
SetVector<BasicBlock *> DeadBlocks;
@@ -624,7 +624,7 @@ namespace {
InstrsToErase.push_back(I);
}
- const DataLayout *getDataLayout() const { return TD; }
+ const DataLayout *getDataLayout() const { return DL; }
DominatorTree &getDominatorTree() const { return *DT; }
AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
MemoryDependenceAnalysis &getMemDep() const { return *MD; }
@@ -828,7 +828,7 @@ SpeculationFailure:
/// CoerceAvailableValueToLoadType will succeed.
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
Type *LoadTy,
- const DataLayout &TD) {
+ const DataLayout &DL) {
// If the loaded or stored value is an first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
@@ -837,8 +837,8 @@ static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
return false;
// The store has to be at least as big as the load.
- if (TD.getTypeSizeInBits(StoredVal->getType()) <
- TD.getTypeSizeInBits(LoadTy))
+ if (DL.getTypeSizeInBits(StoredVal->getType()) <
+ DL.getTypeSizeInBits(LoadTy))
return false;
return true;
@@ -853,15 +853,15 @@ static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
Type *LoadedTy,
Instruction *InsertPt,
- const DataLayout &TD) {
- if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
+ const DataLayout &DL) {
+ if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
return 0;
// If this is already the right type, just return it.
Type *StoredValTy = StoredVal->getType();
- uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
- uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
+ uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
+ uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
// If the store and reload are the same size, we can always reuse it.
if (StoreSize == LoadSize) {
@@ -872,13 +872,13 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
// Convert source pointers to integers, which can be bitcast.
if (StoredValTy->getScalarType()->isPointerTy()) {
- StoredValTy = TD.getIntPtrType(StoredValTy);
+ StoredValTy = DL.getIntPtrType(StoredValTy);
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
Type *TypeToCastTo = LoadedTy;
if (TypeToCastTo->getScalarType()->isPointerTy())
- TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
+ TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
if (StoredValTy != TypeToCastTo)
StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
@@ -897,7 +897,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
// Convert source pointers to integers, which can be manipulated.
if (StoredValTy->getScalarType()->isPointerTy()) {
- StoredValTy = TD.getIntPtrType(StoredValTy);
+ StoredValTy = DL.getIntPtrType(StoredValTy);
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
@@ -909,7 +909,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
// If this is a big-endian system, we need to shift the value down to the low
// bits so that a truncate will work.
- if (TD.isBigEndian()) {
+ if (DL.isBigEndian()) {
Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
}
@@ -940,15 +940,15 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
Value *WritePtr,
uint64_t WriteSizeInBits,
- const DataLayout &TD) {
+ const DataLayout &DL) {
// If the loaded or stored value is a first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
if (LoadTy->isStructTy() || LoadTy->isArrayTy())
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
+ Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
if (StoreBase != LoadBase)
return -1;
@@ -970,7 +970,7 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
// If the load and store don't overlap at all, the store doesn't provide
// anything to the load. In this case, they really don't alias at all, AA
// must have gotten confused.
- uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
+ uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
if ((WriteSizeInBits & 7) | (LoadSize & 7))
return -1;
@@ -1013,51 +1013,51 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
/// memdep query of a load that ends up being a clobbering store.
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
StoreInst *DepSI,
- const DataLayout &TD) {
+ const DataLayout &DL) {
// Cannot handle reading from store of first-class aggregate yet.
if (DepSI->getValueOperand()->getType()->isStructTy() ||
DepSI->getValueOperand()->getType()->isArrayTy())
return -1;
Value *StorePtr = DepSI->getPointerOperand();
- uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
+ uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
- StorePtr, StoreSize, TD);
+ StorePtr, StoreSize, DL);
}
/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
/// memdep query of a load that ends up being clobbered by another load. See if
/// the other load can feed into the second load.
static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
- LoadInst *DepLI, const DataLayout &TD){
+ LoadInst *DepLI, const DataLayout &DL){
// Cannot handle reading from store of first-class aggregate yet.
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
return -1;
Value *DepPtr = DepLI->getPointerOperand();
- uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
- int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
+ uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
+ int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
if (R != -1) return R;
// If we have a load/load clobber an DepLI can be widened to cover this load,
// then we should widen it!
int64_t LoadOffs = 0;
const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
- unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
+ unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
unsigned Size = MemoryDependenceAnalysis::
- getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
+ getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
if (Size == 0) return -1;
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
+ return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
}
static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
MemIntrinsic *MI,
- const DataLayout &TD) {
+ const DataLayout &DL) {
// If the mem operation is a non-constant size, we can't handle it.
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
if (SizeCst == 0) return -1;
@@ -1067,7 +1067,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
// of the memset..
if (MI->getIntrinsicID() == Intrinsic::memset)
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
- MemSizeInBits, TD);
+ MemSizeInBits, DL);
// If we have a memcpy/memmove, the only case we can handle is if this is a
// copy from constant memory. In that case, we can read directly from the
@@ -1077,12 +1077,12 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
Constant *Src = dyn_cast<Constant>(MTI->getSource());
if (Src == 0) return -1;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
if (GV == 0 || !GV->isConstant()) return -1;
// See if the access is within the bounds of the transfer.
int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
- MI->getDest(), MemSizeInBits, TD);
+ MI->getDest(), MemSizeInBits, DL);
if (Offset == -1)
return Offset;
@@ -1095,7 +1095,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- if (ConstantFoldLoadFromConstPtr(Src, &TD))
+ if (ConstantFoldLoadFromConstPtr(Src, &DL))
return Offset;
return -1;
}
@@ -1108,11 +1108,11 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
/// before we give up.
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
Type *LoadTy,
- Instruction *InsertPt, const DataLayout &TD){
+ Instruction *InsertPt, const DataLayout &DL){
LLVMContext &Ctx = SrcVal->getType()->getContext();
- uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
- uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
+ uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
+ uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
@@ -1120,13 +1120,13 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
// to an integer type to start with.
if (SrcVal->getType()->getScalarType()->isPointerTy())
SrcVal = Builder.CreatePtrToInt(SrcVal,
- TD.getIntPtrType(SrcVal->getType()));
+ DL.getIntPtrType(SrcVal->getType()));
if (!SrcVal->getType()->isIntegerTy())
SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
// Shift the bits to the least significant depending on endianness.
unsigned ShiftAmt;
- if (TD.isLittleEndian())
+ if (DL.isLittleEndian())
ShiftAmt = Offset*8;
else
ShiftAmt = (StoreSize-LoadSize-Offset)*8;
@@ -1137,7 +1137,7 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
if (LoadSize != StoreSize)
SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
- return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
+ return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, DL);
}
/// GetLoadValueForLoad - This function is called when we have a
@@ -1148,11 +1148,11 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
GVN &gvn) {
- const DataLayout &TD = *gvn.getDataLayout();
+ const DataLayout &DL = *gvn.getDataLayout();
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
// widen SrcVal out to a larger load.
- unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
- unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
+ unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
+ unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
if (Offset+LoadSize > SrcValSize) {
assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
@@ -1184,7 +1184,7 @@ static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
// Replace uses of the original load with the wider load. On a big endian
// system, we need to shift down to get the relevant bits.
Value *RV = NewLoad;
- if (TD.isBigEndian())
+ if (DL.isBigEndian())
RV = Builder.CreateLShr(RV,
NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
RV = Builder.CreateTrunc(RV, SrcVal->getType());
@@ -1199,7 +1199,7 @@ static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
SrcVal = NewLoad;
}
- return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
+ return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
}
@@ -1207,9 +1207,9 @@ static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
/// memdep query of a load that ends up being a clobbering mem intrinsic.
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
- const DataLayout &TD){
+ const DataLayout &DL){
LLVMContext &Ctx = LoadTy->getContext();
- uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
+ uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
@@ -1240,7 +1240,7 @@ static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
++NumBytesSet;
}
- return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
+ return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, DL);
}
// Otherwise, this is a memcpy/memmove from a constant global.
@@ -1256,7 +1256,7 @@ static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- return ConstantFoldLoadFromConstPtr(Src, &TD);
+ return ConstantFoldLoadFromConstPtr(Src, &DL);
}
@@ -1322,10 +1322,10 @@ Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) c
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
- const DataLayout *TD = gvn.getDataLayout();
- assert(TD && "Need target data to handle type mismatch case");
+ const DataLayout *DL = gvn.getDataLayout();
+ assert(DL && "Need target data to handle type mismatch case");
Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
- *TD);
+ *DL);
DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
<< *getSimpleValue() << '\n'
@@ -1344,10 +1344,10 @@ Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) c
<< *Res << '\n' << "\n\n\n");
}
} else if (isMemIntrinValue()) {
- const DataLayout *TD = gvn.getDataLayout();
- assert(TD && "Need target data to handle type mismatch case");
+ const DataLayout *DL = gvn.getDataLayout();
+ assert(DL && "Need target data to handle type mismatch case");
Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
- LoadTy, BB->getTerminator(), *TD);
+ LoadTy, BB->getTerminator(), *DL);
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
<< *Res << '\n' << "\n\n\n");
@@ -1400,9 +1400,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// read by the load, we can extract the bits we need for the load from the
// stored value.
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
- if (TD && Address) {
+ if (DL && Address) {
int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
- DepSI, *TD);
+ DepSI, *DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
DepSI->getValueOperand(),
@@ -1419,10 +1419,10 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
// If this is a clobber and L is the first instruction in its block, then
// we have the first instruction in the entry block.
- if (DepLI != LI && Address && TD) {
+ if (DepLI != LI && Address && DL) {
int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
LI->getPointerOperand(),
- DepLI, *TD);
+ DepLI, *DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
@@ -1435,9 +1435,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// If the clobbering value is a memset/memcpy/memmove, see if we can
// forward a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
- if (TD && Address) {
+ if (DL && Address) {
int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
- DepMI, *TD);
+ DepMI, *DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
Offset));
@@ -1469,8 +1469,8 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (S->getValueOperand()->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
- if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
- LI->getType(), *TD)) {
+ if (DL == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
+ LI->getType(), *DL)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
@@ -1486,7 +1486,7 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (LD->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
- if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
+ if (DL == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)){
UnavailableBlocks.push_back(DepBB);
continue;
}
@@ -1609,7 +1609,7 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
// If all preds have a single successor, then we know it is safe to insert
// the load on the pred (?!?), so we can insert code to materialize the
// pointer if it is not available.
- PHITransAddr Address(LI->getPointerOperand(), TD);
+ PHITransAddr Address(LI->getPointerOperand(), DL);
Value *LoadPtr = 0;
LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
*DT, NewInsts);
@@ -1821,7 +1821,7 @@ bool GVN::processLoad(LoadInst *L) {
// If we have a clobber and target data is around, see if this is a clobber
// that we can fix up through code synthesis.
- if (Dep.isClobber() && TD) {
+ if (Dep.isClobber() && DL) {
// Check to see if we have something like this:
// store i32 123, i32* %P
// %A = bitcast i32* %P to i8*
@@ -1836,10 +1836,10 @@ bool GVN::processLoad(LoadInst *L) {
if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
L->getPointerOperand(),
- DepSI, *TD);
+ DepSI, *DL);
if (Offset != -1)
AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
- L->getType(), L, *TD);
+ L->getType(), L, *DL);
}
// Check to see if we have something like this:
@@ -1854,7 +1854,7 @@ bool GVN::processLoad(LoadInst *L) {
int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
L->getPointerOperand(),
- DepLI, *TD);
+ DepLI, *DL);
if (Offset != -1)
AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
}
@@ -1864,9 +1864,9 @@ bool GVN::processLoad(LoadInst *L) {
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
L->getPointerOperand(),
- DepMI, *TD);
+ DepMI, *DL);
if (Offset != -1)
- AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
+ AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
}
if (AvailVal) {
@@ -1917,9 +1917,9 @@ bool GVN::processLoad(LoadInst *L) {
// actually have the same type. See if we know how to reuse the stored
// value (depending on its type).
if (StoredVal->getType() != L->getType()) {
- if (TD) {
+ if (DL) {
StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
- L, *TD);
+ L, *DL);
if (StoredVal == 0)
return false;
@@ -1946,9 +1946,9 @@ bool GVN::processLoad(LoadInst *L) {
// the same type. See if we know how to reuse the previously loaded value
// (depending on its type).
if (DepLI->getType() != L->getType()) {
- if (TD) {
+ if (DL) {
AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
- L, *TD);
+ L, *DL);
if (AvailableVal == 0)
return false;
@@ -2200,7 +2200,7 @@ bool GVN::processInstruction(Instruction *I) {
// to value numbering it. Value numbering often exposes redundancies, for
// example if it determines that %y is equal to %x then the instruction
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
- if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
+ if (Value *V = SimplifyInstruction(I, DL, TLI, DT)) {
I->replaceAllUsesWith(V);
if (MD && V->getType()->getScalarType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
@@ -2318,7 +2318,7 @@ bool GVN::runOnFunction(Function& F) {
if (!NoLoads)
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
diff --git a/lib/Transforms/Scalar/GlobalMerge.cpp b/lib/Transforms/Scalar/GlobalMerge.cpp
index a15cc84cfd..161e35a648 100644
--- a/lib/Transforms/Scalar/GlobalMerge.cpp
+++ b/lib/Transforms/Scalar/GlobalMerge.cpp
@@ -126,15 +126,15 @@ namespace {
}
struct GlobalCmp {
- const DataLayout *TD;
+ const DataLayout *DL;
- GlobalCmp(const DataLayout *td) : TD(td) { }
+ GlobalCmp(const DataLayout *DL) : DL(DL) { }
bool operator()(const GlobalVariable *GV1, const GlobalVariable *GV2) {
Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType();
- return (TD->getTypeAllocSize(Ty1) < TD->getTypeAllocSize(Ty2));
+ return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2));
}
};
};
@@ -148,7 +148,7 @@ INITIALIZE_PASS(GlobalMerge, "global-merge",
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
Module &M, bool isConst, unsigned AddrSpace) const {
const TargetLowering *TLI = TM->getTargetLowering();
- const DataLayout *TD = TLI->getDataLayout();
+ const DataLayout *DL = TLI->getDataLayout();
// FIXME: Infer the maximum possible offset depending on the actual users
// (these max offsets are different for the users inside Thumb or ARM
@@ -156,7 +156,7 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
// FIXME: Find better heuristics
- std::stable_sort(Globals.begin(), Globals.end(), GlobalCmp(TD));
+ std::stable_sort(Globals.begin(), Globals.end(), GlobalCmp(DL));
Type *Int32Ty = Type::getInt32Ty(M.getContext());
@@ -167,7 +167,7 @@ bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
std::vector<Constant*> Inits;
for (j = i; j != e; ++j) {
Type *Ty = Globals[j]->getType()->getElementType();
- MergedSize += TD->getTypeAllocSize(Ty);
+ MergedSize += DL->getTypeAllocSize(Ty);
if (MergedSize > MaxOffset) {
break;
}
@@ -242,7 +242,7 @@ bool GlobalMerge::doInitialization(Module &M) {
DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
BSSGlobals;
const TargetLowering *TLI = TM->getTargetLowering();
- const DataLayout *TD = TLI->getDataLayout();
+ const DataLayout *DL = TLI->getDataLayout();
unsigned MaxOffset = TLI->getMaximalGlobalOffset();
bool Changed = false;
setMustKeepGlobalVariables(M);
@@ -260,9 +260,9 @@ bool GlobalMerge::doInitialization(Module &M) {
unsigned AddressSpace = PT->getAddressSpace();
// Ignore fancy-aligned globals for now.
- unsigned Alignment = TD->getPreferredAlignment(I);
+ unsigned Alignment = DL->getPreferredAlignment(I);
Type *Ty = I->getType()->getElementType();
- if (Alignment > TD->getABITypeAlignment(Ty))
+ if (Alignment > DL->getABITypeAlignment(Ty))
continue;
// Ignore all 'special' globals.
@@ -274,7 +274,7 @@ bool GlobalMerge::doInitialization(Module &M) {
if (isMustKeepGlobalVariable(I))
continue;
- if (TD->getTypeAllocSize(Ty) < MaxOffset) {
+ if (DL->getTypeAllocSize(Ty) < MaxOffset) {
if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine())
.isBSSLocal())
BSSGlobals[AddressSpace].push_back(I);
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index 723af0f02c..1543e5f1eb 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -71,7 +71,7 @@ namespace {
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
- DataLayout *TD;
+ DataLayout *DL;
TargetLibraryInfo *TLI;
SmallVector<WeakVH, 16> DeadInsts;
@@ -79,7 +79,7 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
- IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
+ IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), DL(0),
Changed(false) {
initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
}
@@ -659,14 +659,14 @@ namespace {
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
- const DataLayout *TD) {
+ const DataLayout *DL) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
return;
Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
- if (TD && !TD->isLegalInteger(Width))
+ if (DL && !DL->isLegalInteger(Width))
return;
if (!WI.WidestNativeType) {
@@ -1122,15 +1122,15 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
namespace {
class IndVarSimplifyVisitor : public IVVisitor {
ScalarEvolution *SE;
- const DataLayout *TD;
+ const DataLayout *DL;
PHINode *IVPhi;
public:
WideIVInfo WI;
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const DataLayout *TData, const DominatorTree *DTree):
- SE(SCEV), TD(TData), IVPhi(IV) {
+ const DataLayout *DL, const DominatorTree *DTree):
+ SE(SCEV), DL(DL), IVPhi(IV) {
DT = DTree;
WI.NarrowIV = IVPhi;
if (ReduceLiveIVs)
@@ -1138,7 +1138,7 @@ namespace {
}
// Implement the interface used by simplifyUsersOfIV.
- virtual void visitCast(CastInst *Cast) { visitIVCast(Cast, WI, SE, TD); }
+ virtual void visitCast(CastInst *Cast) { visitIVCast(Cast, WI, SE, DL); }
};
}
@@ -1172,7 +1172,7 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
- IndVarSimplifyVisitor Visitor(CurrIV, SE, TD, DT);
+ IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
@@ -1444,7 +1444,7 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
/// could at least handle constant BECounts.
static PHINode *
FindLoopCounter(Loop *L, const SCEV *BECount,
- ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
+ ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
Value *Cond =
@@ -1473,7 +1473,7 @@ FindLoopCounter(Loop *L, const SCEV *BECount,
// AR may be wider than BECount. With eq/ne tests overflow is immaterial.
// AR may not be a narrower type, or we may never exit.
uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
- if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
+ if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
continue;
const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
@@ -1818,7 +1818,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
DeadInsts.clear();
@@ -1860,7 +1860,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
- PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
+ PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
if (IndVar) {
// Check preconditions for proper SCEVExpander operation. SCEV does not
// express SCEVExpander's dependencies, such as LoopSimplify. Instead any
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index 087944a2be..e4b088d82b 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -76,7 +76,7 @@ namespace {
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
- DataLayout *TD;
+ DataLayout *DL;
TargetLibraryInfo *TLI;
LazyValueInfo *LVI;
#ifdef NDEBUG
@@ -152,7 +152,7 @@ bool JumpThreading::runOnFunction(Function &F) {
return false;
DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
LVI = &getAnalysis<LazyValueInfo>();
@@ -493,7 +493,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
Value *LHS = PN->getIncomingValue(i);
Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
- Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
+ Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
if (Res == 0) {
if (!isa<Constant>(RHS))
continue;
@@ -695,7 +695,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// Run constant folding to see if we can reduce the condition to a simple
// constant.
if (Instruction *I = dyn_cast<Instruction>(Condition)) {
- Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
+ Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
if (SimpleVal) {
I->replaceAllUsesWith(SimpleVal);
I->eraseFromParent();
@@ -1478,7 +1478,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
// At this point, the IR is fully up to date and consistent. Do a quick scan
// over the new instructions and zap any that are constants or dead. This
// frequently happens because of phi translation.
- SimplifyInstructionsInBlock(NewBB, TD, TLI);
+ SimplifyInstructionsInBlock(NewBB, DL, TLI);
// Threaded an edge!
++NumThreads;
@@ -1560,7 +1560,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
// If this instruction can be simplified after the operands are updated,
// just use the simplified value instead. This frequently happens due to
// phi translation.
- if (Value *IV = SimplifyInstruction(New, TD)) {
+ if (Value *IV = SimplifyInstruction(New, DL)) {
delete New;
ValueMapping[BI] = IV;
} else {
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index 43247ea9b7..2ba6210b47 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -108,7 +108,7 @@ namespace {
LoopInfo *LI; // Current LoopInfo
DominatorTree *DT; // Dominator Tree for the current Loop.
- DataLayout *TD; // DataLayout for constant folding.
+ DataLayout *DL; // DataLayout for constant folding.
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
// State that is updated as we process loops.
@@ -221,7 +221,7 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
@@ -394,7 +394,7 @@ void LICM::HoistRegion(DomTreeNode *N) {
// Try constant folding this instruction. If all the operands are
// constants, it is technically hoistable, but it would be better to just
// fold it.
- if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
+ if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
CurAST->copyValue(&I, C);
CurAST->deleteValue(&I);
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index b9c4046c0c..acff3734e1 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -132,7 +132,7 @@ namespace {
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
- const DataLayout *TD;
+ const DataLayout *DL;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
@@ -141,7 +141,7 @@ namespace {
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
- TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
+ DL = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -182,7 +182,7 @@ namespace {
}
const DataLayout *getDataLayout() {
- return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
+ return DL ? DL : DL=getAnalysisIfAvailable<DataLayout>();
}
DominatorTree *getDominatorTree() {
@@ -782,7 +782,7 @@ bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
Value *StorePtr = SI->getPointerOperand();
// Reject stores that are so large that they overflow an unsigned.
- uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
+ uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
return false;
@@ -910,7 +910,7 @@ static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
///
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
/// just replicate their input array and then pass on to memset_pattern16.
-static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
+static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
// If the value isn't a constant, we can't promote it to being in a constant
// array. We could theoretically do a store to an alloca or something, but
// that doesn't seem worthwhile.
@@ -918,12 +918,12 @@ static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
if (C == 0) return 0;
// Only handle simple values that are a power of two bytes in size.
- uint64_t Size = TD.getTypeSizeInBits(V->getType());
+ uint64_t Size = DL.getTypeSizeInBits(V->getType());
if (Size == 0 || (Size & 7) || (Size & (Size-1)))
return 0;
// Don't care enough about darwin/ppc to implement this.
- if (TD.isBigEndian())
+ if (DL.isBigEndian())
return 0;
// Convert to size in bytes.
@@ -970,7 +970,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
PatternValue = 0;
} else if (DestAS == 0 &&
TLI->has(LibFunc::memset_pattern16) &&
- (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
+ (PatternValue = getMemSetPatternValue(StoredVal, *DL))) {
// Don't create memset_pattern16s with address spaces.
// It looks like we can use PatternValue!
SplatValue = 0;
@@ -1011,7 +1011,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtr = Builder.getIntPtrTy(TD, DestAS);
+ Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
@@ -1125,7 +1125,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtrTy = Builder.getIntPtrTy(TD, SI->getPointerAddressSpace());
+ Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 6619d54288..8c5620fe1d 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -195,9 +195,9 @@ class MemsetRanges {
/// because each element is relatively large and expensive to copy.
std::list<MemsetRange> Ranges;
typedef std::list<MemsetRange>::iterator range_iterator;
- const DataLayout &TD;
+ const DataLayout &DL;
public:
- MemsetRanges(const DataLayout &td) : TD(td) {}
+ MemsetRanges(const DataLayout &DL) : DL(DL) {}
typedef std::list<MemsetRange>::const_iterator const_iterator;
const_iterator begin() const { return Ranges.begin(); }
@@ -212,7 +212,7 @@ public:
}
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
- int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
+ int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
addRange(OffsetFromFirst, StoreSize,
SI->getPointerOperand(), SI->getAlignment(), SI);
@@ -305,14 +305,14 @@ namespace {
class MemCpyOpt : public FunctionPass {
MemoryDependenceAnalysis *MD;
TargetLibraryInfo *TLI;
- const DataLayout *TD;
+ const DataLayout *DL;
public:
static char ID; // Pass identification, replacement for typeid
MemCpyOpt() : FunctionPass(ID) {
initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
MD = 0;
TLI = 0;
- TD = 0;
+ DL = 0;
}
bool runOnFunction(Function &F);
@@ -366,13 +366,13 @@ INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
/// attempts to merge them together into a memcpy/memset.
Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
Value *StartPtr, Value *ByteVal) {
- if (TD == 0) return 0;
+ if (DL == 0) return 0;
// Okay, so we now have a single store that can be splatable. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
- MemsetRanges Ranges(*TD);
+ MemsetRanges Ranges(*DL);
BasicBlock::iterator BI = StartInst;
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
@@ -396,7 +396,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
- Offset, *TD))
+ Offset, *DL))
break;
Ranges.addStore(Offset, NextStore);
@@ -409,7 +409,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
- if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
+ if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
break;
Ranges.addMemSet(Offset, MSI);
@@ -441,7 +441,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
if (Range.TheStores.size() == 1) continue;
// If it is profitable to lower this range to memset, do so now.
- if (!Range.isProfitableToUseMemset(*TD))
+ if (!Range.isProfitableToUseMemset(*DL))
continue;
// Otherwise, we do want to transform this! Create a new memset.
@@ -453,7 +453,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
if (Alignment == 0) {
Type *EltType =
cast<PointerType>(StartPtr->getType())->getElementType();
- Alignment = TD->getABITypeAlignment(EltType);
+ Alignment = DL->getABITypeAlignment(EltType);
}
AMemSet =
@@ -484,7 +484,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!SI->isSimple()) return false;
- if (TD == 0) return false;
+ if (DL == 0) return false;
// Detect cases where we're performing call slot forwarding, but
// happen to be using a load-store pair to implement it, rather than
@@ -514,15 +514,15 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (C) {
unsigned storeAlign = SI->getAlignment();
if (!storeAlign)
- storeAlign = TD->getABITypeAlignment(SI->getOperand(0)->getType());
+ storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
unsigned loadAlign = LI->getAlignment();
if (!loadAlign)
- loadAlign = TD->getABITypeAlignment(LI->getType());
+ loadAlign = DL->getABITypeAlignment(LI->getType());
bool changed = performCallSlotOptzn(LI,
SI->getPointerOperand()->stripPointerCasts(),
LI->getPointerOperand()->stripPointerCasts(),
- TD->getTypeStoreSize(SI->getOperand(0)->getType()),
+ DL->getTypeStoreSize(SI->getOperand(0)->getType()),
std::min(storeAlign, loadAlign), C);
if (changed) {
MD->removeInstruction(SI);
@@ -596,13 +596,13 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
return false;
// Check that all of src is copied to dest.
- if (TD == 0) return false;
+ if (DL == 0) return false;
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
if (!srcArraySize)
return false;
- uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
+ uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
srcArraySize->getZExtValue();
if (cpyLen < srcSize)
@@ -617,7 +617,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (!destArraySize)
return false;
- uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
+ uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
destArraySize->getZExtValue();
if (destSize < srcSize)
@@ -636,7 +636,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
return false;
}
- uint64_t destSize = TD->getTypeAllocSize(StructTy);
+ uint64_t destSize = DL->getTypeAllocSize(StructTy);
if (destSize < srcSize)
return false;
} else {
@@ -646,7 +646,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
// Check that dest points to memory that is at least as aligned as src.
unsigned srcAlign = srcAlloca->getAlignment();
if (!srcAlign)
- srcAlign = TD->getABITypeAlignment(srcAlloca->getAllocatedType());
+ srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
// If dest is not aligned enough and we can't increase its alignment then
// bail out.
@@ -912,12 +912,12 @@ bool MemCpyOpt::processMemMove(MemMoveInst *M) {
/// processByValArgument - This is called on every byval argument in call sites.
bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
- if (TD == 0) return false;
+ if (DL == 0) return false;
// Find out what feeds this byval argument.
Value *ByValArg = CS.getArgument(ArgNo);
Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
- uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
+ uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
MemDepResult DepInfo =
MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
true, CS.getInstruction(),
@@ -946,7 +946,7 @@ bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
// If it is greater than the memcpy, then we check to see if we can force the
// source of the memcpy to the alignment we need. If we fail, we bail out.
if (MDep->getAlignment() < ByValAlign &&
- getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
+ getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, DL) < ByValAlign)
return false;
// Verify that the copied-from memory doesn't change in between the memcpy and
@@ -1025,7 +1025,7 @@ bool MemCpyOpt::runOnFunction(Function &F) {
bool MadeChange = false;
MD = &getAnalysis<MemoryDependenceAnalysis>();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
TLI = &getAnalysis<TargetLibraryInfo>();
// If we don't have at least memset and memcpy, there is little point of doing
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index 02c64d9ea8..335ef3147d 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -153,7 +153,7 @@ namespace {
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
- const DataLayout *TD;
+ const DataLayout *DL;
const TargetLibraryInfo *TLI;
SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
@@ -205,8 +205,8 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
typedef std::pair<BasicBlock*, BasicBlock*> Edge;
DenseSet<Edge> KnownFeasibleEdges;
public:
- SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli)
- : TD(td), TLI(tli) {}
+ SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
+ : DL(DL), TLI(tli) {}
/// MarkBlockExecutable - This method can be used by clients to mark all of
/// the blocks that are known to be intrinsically live in the processed unit.
@@ -1067,7 +1067,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
}
// Transform load from a constant into a constant if possible.
- if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
+ if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
return markConstant(IV, &I, C);
// Otherwise we cannot say for certain what value this load will produce.
@@ -1557,9 +1557,9 @@ bool SCCP::runOnFunction(Function &F) {
return false;
DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
- const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
+ const DataLayout *DL = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
- SCCPSolver Solver(TD, TLI);
+ SCCPSolver Solver(DL, TLI);
// Mark the first block of the function as being executable.
Solver.MarkBlockExecutable(F.begin());
@@ -1686,9 +1686,9 @@ static bool AddressIsTaken(const GlobalValue *GV) {
}
bool IPSCCP::runOnModule(Module &M) {
- const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
+ const DataLayout *DL = getAnalysisIfAvailable<DataLayout>();
const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
- SCCPSolver Solver(TD, TLI);
+ SCCPSolver Solver(DL, TLI);
// AddressTakenFunctions - This set keeps track of the address-taken functions
// that are in the input. As IPSCCP runs through and simplifies code,
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index a8186ae342..ac7e7773aa 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -87,7 +87,7 @@ namespace {
private:
bool HasDomTree;
- DataLayout *TD;
+ DataLayout *DL;
/// DeadInsts - Keep track of instructions we have made dead, so that
/// we can remove them after we are done working.
@@ -258,7 +258,7 @@ namespace {
class ConvertToScalarInfo {
/// AllocaSize - The size of the alloca being considered in bytes.
unsigned AllocaSize;
- const DataLayout &TD;
+ const DataLayout &DL;
unsigned ScalarLoadThreshold;
/// IsNotTrivial - This is set to true if there is some access to the object
@@ -301,9 +301,9 @@ class ConvertToScalarInfo {
bool HadDynamicAccess;
public:
- explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
+ explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
unsigned SLT)
- : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
+ : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
HadDynamicAccess(false) { }
@@ -364,7 +364,7 @@ AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
return 0;
if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
- !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
+ !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
return 0;
// Dynamic accesses on integers aren't yet supported. They need us to shift
// by a dynamic amount which could be difficult to work out as we might not
@@ -520,7 +520,7 @@ bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
HadDynamicAccess = true;
} else
GEPNonConstantIdx = NonConstantIdx;
- uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
+ uint64_t GEPOffset = DL.getIndexedOffset(PtrTy,
Indices);
// See if all uses can be converted.
if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
@@ -615,7 +615,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
GEPNonConstantIdx = Indices.pop_back_val();
} else
GEPNonConstantIdx = NonConstantIdx;
- uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
+ uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(),
Indices);
ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
GEP->eraseFromParent();
@@ -692,9 +692,9 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
// If the source and destination are both to the same alloca, then this is
// a noop copy-to-self, just delete it. Otherwise, emit a load and store
// as appropriate.
- AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
+ AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &DL, 0));
- if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
+ if (GetUnderlyingObject(MTI->getSource(), &DL, 0) != OrigAI) {
// Dest must be OrigAI, change this to be a load from the original
// pointer (bitcasted), then a store to our new alloca.
assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
@@ -710,7 +710,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
SrcVal->setAlignment(MTI->getAlignment());
Builder.CreateStore(SrcVal, NewAI);
- } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
+ } else if (GetUnderlyingObject(MTI->getDest(), &DL, 0) != OrigAI) {
// Src must be OrigAI, change this to be a load from NewAI then a store
// through the original dest pointer (bitcasted).
assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
@@ -770,15 +770,15 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
// If the result alloca is a vector type, this is either an element
// access or a bitcast to another vector type of the same size.
if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
- unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
- unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
+ unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
+ unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
if (FromTypeSize == ToTypeSize)
return Builder.CreateBitCast(FromVal, ToType);
// Otherwise it must be an element access.
unsigned Elt = 0;
if (Offset) {
- unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+ unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
Elt = Offset/EltSize;
assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
}
@@ -804,7 +804,7 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
if (StructType *ST = dyn_cast<StructType>(ToType)) {
assert(!NonConstantIdx &&
"Dynamic indexing into struct types not supported");
- const StructLayout &Layout = *TD.getStructLayout(ST);
+ const StructLayout &Layout = *DL.getStructLayout(ST);
Value *Res = UndefValue::get(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
@@ -818,7 +818,7 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
assert(!NonConstantIdx &&
"Dynamic indexing into array types not supported");
- uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+ uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
Value *Res = UndefValue::get(AT);
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
@@ -834,12 +834,12 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
// If this is a big-endian system and the load is narrower than the
// full alloca type, we need to do a shift to get the right bits.
int ShAmt = 0;
- if (TD.isBigEndian()) {
+ if (DL.isBigEndian()) {
// On big-endian machines, the lowest bit is stored at the bit offset
// from the pointer given by getTypeStoreSizeInBits. This matters for
// integers with a bitwidth that is not a multiple of 8.
- ShAmt = TD.getTypeStoreSizeInBits(NTy) -
- TD.getTypeStoreSizeInBits(ToType) - Offset;
+ ShAmt = DL.getTypeStoreSizeInBits(NTy) -
+ DL.getTypeStoreSizeInBits(ToType) - Offset;
} else {
ShAmt = Offset;
}
@@ -855,7 +855,7 @@ ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
ConstantInt::get(FromVal->getType(), -ShAmt));
// Finally, unconditionally truncate the integer to the right width.
- unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
+ unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
if (LIBitWidth < NTy->getBitWidth())
FromVal =
Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
@@ -902,8 +902,8 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
LLVMContext &Context = Old->getContext();
if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
- uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
- uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
+ uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
+ uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
// Changing the whole vector with memset or with an access of a different
// vector type?
@@ -914,7 +914,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
Type *EltTy = VTy->getElementType();
if (SV->getType() != EltTy)
SV = Builder.CreateBitCast(SV, EltTy);
- uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
+ uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
unsigned Elt = Offset/EltSize;
Value *Idx;
if (NonConstantIdx) {
@@ -933,7 +933,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
assert(!NonConstantIdx &&
"Dynamic indexing into struct types not supported");
- const StructLayout &Layout = *TD.getStructLayout(ST);
+ const StructLayout &Layout = *DL.getStructLayout(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i);
Old = ConvertScalar_InsertValue(Elt, Old,
@@ -946,7 +946,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
assert(!NonConstantIdx &&
"Dynamic indexing into array types not supported");
- uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+ uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i);
Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
@@ -956,14 +956,14 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
// If SV is a float, convert it to the appropriate integer type.
// If it is a pointer, do the same.
- unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
- unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
- unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
- unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
+ unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
+ unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
+ unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
+ unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
else if (SV->getType()->isPointerTy())
- SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getType()));
+ SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
// Zero extend or truncate the value if needed.
if (SV->getType() != AllocaType) {
@@ -982,7 +982,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
// If this is a big-endian system and the store is narrower than the
// full alloca type, we need to do a shift to get the right bits.
int ShAmt = 0;
- if (TD.isBigEndian()) {
+ if (DL.isBigEndian()) {
// On big-endian machines, the lowest bit is stored at the bit offset
// from the pointer given by getTypeStoreSizeInBits. This matters for
// integers with a bitwidth that is not a multiple of 8.
@@ -1023,7 +1023,7 @@ bool SROA::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- TD = getAnalysisIfAvailable<DataLayout>();
+ DL = getAnalysisIfAvailable<DataLayout>();
bool Changed = performPromotion(F);
@@ -1031,7 +1031,7 @@ bool SROA::runOnFunction(Function &F) {
// theoretically needs to. It should be refactored in order to support
// target-independent IR. Until this is done, just skip the actual
// scalar-replacement portion of this pass.
- if (!TD) return Changed;
+ if (!DL) return Changed;
while (1) {
bool LocalChange = performScalarRepl(F);
@@ -1137,7 +1137,7 @@ public:
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
+static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
@@ -1149,10 +1149,10 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
// Both operands to the select need to be dereferencable, either absolutely
// (e.g. allocas) or at this point because we can see other accesses to it.
if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
- LI->getAlignment(), TD))
+ LI->getAlignment(), DL))
return false;
if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
- LI->getAlignment(), TD))
+ LI->getAlignment(), DL))
return false;
}
@@ -1175,7 +1175,7 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
+static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
// For now, we can only do this promotion if the load is in the same block as
// the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1225,7 +1225,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
// If this pointer is always safe to load, or if we can prove that there is
// already a load in the block, then we can move the load to the pred block.
if (InVal->isDereferenceablePointer() ||
- isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
+ isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, DL))
continue;
return false;
@@ -1239,7 +1239,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
/// direct (non-volatile) loads and stores to it. If the alloca is close but
/// not quite there, this will transform the code to allow promotion. As such,
/// it is a non-pure predicate.
-static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
+static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
SetVector<Instruction*, SmallVector<Instruction*, 4>,
SmallPtrSet<Instruction*, 4> > InstsToRewrite;
@@ -1268,12 +1268,12 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
// This is very rare and we just scrambled the use list of AI, start
// over completely.
- return tryToMakeAllocaBePromotable(AI, TD);
+ return tryToMakeAllocaBePromotable(AI, DL);
}
// If it is safe to turn "load (select c, AI, ptr)" into a select of two
// loads, then we can transform this by rewriting the select.
- if (!isSafeSelectToSpeculate(SI, TD))
+ if (!isSafeSelectToSpeculate(SI, DL))
return false;
InstsToRewrite.insert(SI);
@@ -1288,7 +1288,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
// If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
// in the pred blocks, then we can transform this by rewriting the PHI.
- if (!isSafePHIToSpeculate(PN, TD))
+ if (!isSafePHIToSpeculate(PN, DL))
return false;
InstsToRewrite.insert(PN);
@@ -1423,7 +1423,7 @@ bool SROA::performPromotion(Function &F) {
// the entry node
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
- if (tryToMakeAllocaBePromotable(AI, TD))
+ if (tryToMakeAllocaBePromotable(AI, DL))
Allocas.push_back(AI);
if (Allocas.empty()) break;
@@ -1499,7 +1499,7 @@ bool SROA::performScalarRepl(Function &F) {
// transform the allocation instruction if it is an array allocation
// (allocations OF arrays are ok though), and an allocation of a scalar
// value cannot be decomposed at all.
- uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
+ uint64_t AllocaSize = DL->getTypeAllocSize(AI->getAllocatedType());
// Do not promote [0 x %struct].
if (AllocaSize == 0) continue;
@@ -1523,7 +1523,7 @@ bool SROA::performScalarRepl(Function &F) {
// that we can't just check based on the type: the alloca may be of an i32
// but that has pointer arithmetic to set byte 3 of it or something.
if (AllocaInst *NewAI = ConvertToScalarInfo(
- (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
+ (unsigned)AllocaSize, *DL, ScalarLoadThreshold).TryConvert(AI)) {
NewAI->takeName(AI);
AI->eraseFromParent();
++NumConverted;
@@ -1625,7 +1625,7 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
if (!LI->isSimple())
return MarkUnsafe(Info, User);
Type *LIType = LI->getType();
- isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
+ isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
LIType, false, Info, LI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
@@ -1635,7 +1635,7 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
return MarkUnsafe(Info, User);
Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
+ isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
SIType, true, Info, SI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
@@ -1684,7 +1684,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
if (!LI->isSimple())
return MarkUnsafe(Info, User);
Type *LIType = LI->getType();
- isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
+ isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
LIType, false, Info, LI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
@@ -1694,7 +1694,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
return MarkUnsafe(Info, User);
Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
+ isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
SIType, true, Info, SI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
@@ -1739,7 +1739,7 @@ void SROA::isSafeGEP(GetElementPtrInst *GEPI,
// constant part of the offset.
if (NonConstant)
Indices.pop_back();
- Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+ Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
NonConstantIdxSize))
MarkUnsafe(Info, GEPI);
@@ -1798,7 +1798,7 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
bool AllowWholeAccess) {
// Check if this is a load/store of the entire alloca.
if (Offset == 0 && AllowWholeAccess &&
- MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
+ MemSize == DL->getTypeAllocSize(Info.AI->getAllocatedType())) {
// This can be safe for MemIntrinsics (where MemOpType is 0) and integer
// loads/stores (which are essentially the same as the MemIntrinsics with
// regard to copying padding between elements). But, if an alloca is
@@ -1835,20 +1835,20 @@ bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
Type *EltTy;
uint64_t EltSize;
if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = TD->getStructLayout(ST);
+ const StructLayout *Layout = DL->getStructLayout(ST);
unsigned EltIdx = Layout->getElementContainingOffset(Offset);
EltTy = ST->getContainedType(EltIdx);
- EltSize = TD->getTypeAllocSize(EltTy);
+ EltSize = DL->getTypeAllocSize(EltTy);
Offset -= Layout->getElementOffset(EltIdx);
} else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
EltTy = AT->getElementType();
- EltSize = TD->getTypeAllocSize(EltTy);
+ EltSize = DL->getTypeAllocSize(EltTy);
if (Offset >= AT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
} else if (VectorType *VT = dyn_cast<VectorType>(T)) {
EltTy = VT->getElementType();
- EltSize = TD->getTypeAllocSize(EltTy);
+ EltSize = DL->getTypeAllocSize(EltTy);
if (Offset >= VT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
@@ -1887,7 +1887,7 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
uint64_t MemSize = Length->getZExtValue();
if (Offset == 0 &&
- MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
+ MemSize == DL->getTypeAllocSize(AI->getAllocatedType()))
RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
// Otherwise the intrinsic can only touch a single element and the
// address operand will be updated, so nothing else needs to be done.
@@ -1923,8 +1923,8 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
LI->replaceAllUsesWith(Insert);
DeadInsts.push_back(LI);
} else if (LIType->isIntegerTy() &&
- TD->getTypeAllocSize(LIType) ==
- TD->getTypeAllocSize(AI->getAllocatedType())) {
+ DL->getTypeAllocSize(LIType) ==
+ DL->getTypeAllocSize(AI->getAllocatedType())) {
// If this is a load of the entire alloca to an integer, rewrite it.
RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
}
@@ -1950,8 +1950,8 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
}
DeadInsts.push_back(SI);
} else if (SIType->isIntegerTy() &&
- TD->getTypeAllocSize(SIType) ==
- TD->getTypeAllocSize(AI->getAllocatedType())) {
+ DL->getTypeAllocSize(SIType) ==
+ DL->getTypeAllocSize(AI->getAllocatedType())) {
// If this is a store of the entire alloca from an integer, rewrite it.
RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
}
@@ -2013,7 +2013,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
Type *&IdxTy) {
uint64_t Idx = 0;
if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = TD->getStructLayout(ST);
+ const StructLayout *Layout = DL->getStructLayout(ST);
Idx = Layout->getElementContainingOffset(Offset);
T = ST->getContainedType(Idx);
Offset -= Layout->getElementOffset(Idx);
@@ -2021,7 +2021,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
return Idx;
} else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
T = AT->getElementType();
- uint64_t EltSize = TD->getTypeAllocSize(T);
+ uint64_t EltSize = DL->getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
@@ -2029,7 +2029,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
}
VectorType *VT = cast<VectorType>(T);
T = VT->getElementType();
- uint64_t EltSize = TD->getTypeAllocSize(T);
+ uint64_t EltSize = DL->getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
@@ -2050,7 +2050,7 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
Value* NonConstantIdx = 0;
if (!GEPI->hasAllConstantIndices())
NonConstantIdx = Indices.pop_back_val();
- Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+ Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
@@ -2121,7 +2121,7 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
+ uint64_t EltSize = DL->getTypeAllocSize(IdxTy) - NewOffset;
if (EltSize > Size) {
EltSize = Size;
Size = 0;
@@ -2137,7 +2137,7 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
for (; Idx != NewElts.size() && Size; ++Idx) {
IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
+ uint64_t EltSize = DL->getTypeAllocSize(IdxTy);
if (EltSize > Size) {
EltSize = Size;
Size = 0;
@@ -2229,10 +2229,10 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Type *OtherTy = OtherPtrTy->getElementType();
if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
- EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
+ EltOffset = DL->getStructLayout(ST)->getElementOffset(i);
} else {
Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
- EltOffset = TD->getTypeAllocSize(EltTy)*i;
+ EltOffset = DL->getTypeAllocSize(EltTy)*i;
}
// The alignment of the other pointer is the guaranteed alignment of the
@@ -2273,7 +2273,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Type *ValTy = EltTy->getScalarType();
// Construct an integer with the right value.
- unsigned EltSize = TD->getTypeSizeInBits(ValTy);
+ unsigned EltSize = DL->getTypeSizeInBits(ValTy);
APInt OneVal(EltSize, CI->getZExtValue());
APInt TotalVal(OneVal);
// Set each byte.
@@ -2303,7 +2303,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
// this element.
}
- unsigned EltSize = TD->getTypeAllocSize(EltTy);
+ unsigned EltSize = DL->getTypeAllocSize(EltTy);
if (!EltSize)
continue;
@@ -2337,12 +2337,12 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
Type *AllocaEltTy = AI->getAllocatedType();
- uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+ uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
IRBuilder<> Builder(SI);
// Handle tail padding by extending the operand
- if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+ if (DL->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = Builder.CreateZExt(SrcVal,
IntegerType::get(SI->getContext(), AllocaSizeBits));
@@ -2352,15 +2352,15 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- const StructLayout *Layout = TD->getStructLayout(EltSTy);
+ const StructLayout *Layout = DL->getStructLayout(EltSTy);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Get the number of bits to shift SrcVal to get the value.
Type *FieldTy = EltSTy->getElementType(i);
uint64_t Shift = Layout->getElementOffsetInBits(i);
- if (TD->isBigEndian())
- Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
+ if (DL->isBigEndian())
+ Shift = AllocaSizeBits-Shift-DL->getTypeAllocSizeInBits(FieldTy);
Value *EltVal = SrcVal;
if (Shift) {
@@ -2369,7 +2369,7 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
// Truncate down to an integer of the right size.
- uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+ uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
@@ -2394,12 +2394,12 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
} else {
ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
Type *ArrayEltTy = ATy->getElementType();
- uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
- uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
+ uint64_t ElementOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
+ uint64_t ElementSizeBits = DL->getTypeSizeInBits(ArrayEltTy);
uint64_t Shift;
- if (TD->isBigEndian())
+ if (DL->isBigEndian())
Shift = AllocaSizeBits-ElementOffset;
else
Shift = 0;
@@ -2433,7 +2433,7 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
new StoreInst(EltVal, DestField, SI);
- if (TD->isBigEndian())
+ if (DL->isBigEndian())
Shift -= ElementOffset;
else
Shift += ElementOffset;
@@ -2451,7 +2451,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
Type *AllocaEltTy = AI->getAllocatedType();
- uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+ uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
<< '\n');
@@ -2461,10 +2461,10 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
const StructLayout *Layout = 0;
uint64_t ArrayEltBitOffset = 0;
if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- Layout = TD->getStructLayout(EltSTy);
+ Layout = DL->getStructLayout(EltSTy);
} else {
Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
- ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
+ ArrayEltBitOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
}
Value *ResultVal =
@@ -2476,7 +2476,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Value *SrcField = NewElts[i];
Type *FieldTy =
cast<PointerType>(SrcField->getType())->getElementType();
- uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+ uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
@@ -2507,7 +2507,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
else // Array case.
Shift = i*ArrayEltBitOffset;
- if (TD->isBigEndian())
+ if (DL->isBigEndian())
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
if (Shift) {
@@ -2524,7 +2524,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
}
// Handle tail padding by truncating the result
- if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
+ if (DL->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
LI->replaceAllUsesWith(ResultVal);
@@ -2534,15 +2534,15 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
/// HasPadding - Return true if the specified type has any structure or
/// alignment padding in between the elements that would be split apart
/// by SROA; return false otherwise.
-static bool HasPadding(Type *Ty, const DataLayout &TD) {
+static bool HasPadding(Type *Ty, const DataLayout &DL) {
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Ty = ATy->getElementType();
- return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
+ return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
}
// SROA currently handles only Arrays and Structs.
StructType *STy = cast<StructType>(Ty);
- const StructLayout *SL = TD.getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
unsigned PrevFieldBitOffset = 0;
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
@@ -2551,7 +2551,7 @@ static bool HasPadding(Type *Ty, const DataLayout &TD) {
// previous one.
if (i) {
unsigned PrevFieldEnd =
- PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
+ PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
if (PrevFieldEnd < FieldBitOffset)
return true;
}
@@ -2560,7 +2560,7 @@ static bool HasPadding(Type *Ty, const DataLayout &TD) {
// Check for tail padding.
if (unsigned EltCount = STy->getNumElements()) {
unsigned PrevFieldEnd = PrevFieldBitOffset +
- TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
+ DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
if (PrevFieldEnd < SL->getSizeInBits())
return true;
}
@@ -2587,7 +2587,7 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
// types, but may actually be used. In these cases, we refuse to promote the
// struct.
if (Info.isMemCpySrc && Info.isMemCpyDst &&
- HasPadding(AI->getAllocatedType(), *TD))
+ HasPadding(AI->getAllocatedType(), *DL))
return false;
// If the alloca never has an access to just *part* of it, but is accessed