summaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
authorNadav Rotem <nrotem@apple.com>2012-11-25 08:41:35 +0000
committerNadav Rotem <nrotem@apple.com>2012-11-25 08:41:35 +0000
commit0af63ac245eeb0cce206ed4dbc9abdc0d86742cb (patch)
tree2aee715be862500cd97513493625a8a14a43ea36 /lib/Transforms
parent327e4cba0929f65bf32ecbbc9dc664793e5b51f7 (diff)
downloadllvm-0af63ac245eeb0cce206ed4dbc9abdc0d86742cb.tar.gz
llvm-0af63ac245eeb0cce206ed4dbc9abdc0d86742cb.tar.bz2
llvm-0af63ac245eeb0cce206ed4dbc9abdc0d86742cb.tar.xz
Add support for pointer induction variables even when there is no integer induction variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168558 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp287
1 files changed, 182 insertions, 105 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index 3f1d82cf5b..f9064325b5 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -106,9 +106,10 @@ class SingleBlockLoopVectorizer {
public:
/// Ctor.
SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
- DominatorTree *dt, LPPassManager *Lpm,
+ DominatorTree *dt, DataLayout *dl,
+ LPPassManager *Lpm,
unsigned VecWidth):
- OrigLoop(Orig), SE(Se), LI(Li), DT(dt), LPM(Lpm), VF(VecWidth),
+ OrigLoop(Orig), SE(Se), LI(Li), DT(dt), DL(dl), LPM(Lpm), VF(VecWidth),
Builder(Se->getContext()), Induction(0), OldInduction(0) { }
// Perform the actual loop widening (vectorization).
@@ -167,6 +168,8 @@ private:
LoopInfo *LI;
// Dominator Tree.
DominatorTree *DT;
+ // Data Layout;
+ DataLayout *DL;
// Loop Pass Manager;
LPPassManager *LPM;
// The vectorization factor to use.
@@ -250,10 +253,36 @@ public:
// This POD struct holds information about the memory runtime legality
// check that a group of pointers do not overlap.
struct RuntimePointerCheck {
+ RuntimePointerCheck(): Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert_pointer(ScalarEvolution *SE, Loop *Lp, Value *Ptr) {
+ const SCEV *Sc = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ assert(AR && "Invalid addrec expression");
+ const SCEV *Ex = SE->getExitCount(Lp, Lp->getHeader());
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ Pointers.push_back(Ptr);
+ Starts.push_back(AR->getStart());
+ Ends.push_back(ScEnd);
+ }
+
/// This flag indicates if we need to add the runtime check.
bool Need;
/// Holds the pointers that we need to check.
SmallVector<Value*, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
};
/// ReductionList contains the reduction descriptors for all
@@ -278,11 +307,11 @@ public:
/// Returns the induction variables found in the loop.
InductionList *getInductionVars() { return &Inductions; }
- /// Check if the pointer returned by this GEP is consecutive
- /// when the index is vectorized. This happens when the last
- /// index of the GEP is consecutive, like the induction variable.
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
/// This check allows us to vectorize A[idx] into a wide load/store.
- bool isConsecutiveGep(Value *Ptr);
+ bool isConsecutivePtr(Value *Ptr);
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V);
@@ -451,7 +480,7 @@ struct LoopVectorize : public LoopPass {
"\n");
// If we decided that it is *legal* to vectorizer the loop then do it.
- SingleBlockLoopVectorizer LB(L, SE, LI, DT, &LPM, VF);
+ SingleBlockLoopVectorizer LB(L, SE, LI, DT, DL, &LPM, VF);
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
@@ -472,10 +501,6 @@ struct LoopVectorize : public LoopPass {
};
Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
- // Instructions that access the old induction variable
- // actually want to get the new one.
- if (V == OldInduction)
- V = Induction;
// Create the types.
LLVMContext &C = V->getContext();
Type *VTy = VectorType::get(V->getType(), VF);
@@ -515,7 +540,14 @@ Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
return Builder.CreateAdd(Val, Cv, "induction");
}
-bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
+bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+ assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+
+ // If this pointer is an induction variable, return it.
+ PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
+ if (Phi && getInductionVars()->count(Phi))
+ return true;
+
GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
if (!Gep)
return false;
@@ -576,7 +608,7 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// If we are accessing the old induction variable, use the new one.
if (SrcOp == OldInduction) {
- Params.push_back(getBroadcastInstrs(Induction));
+ Params.push_back(getVectorValue(Induction));
continue;
}
@@ -666,9 +698,13 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
...
*/
+ // Some loops have a single integer induction variable, while other loops
+ // don't. One example is c++ iterators that often have multiple pointer
+ // induction variables. In the code below we also support a case where we
+ // don't have a single induction variable.
OldInduction = Legal->getInduction();
- assert(OldInduction && "We must have a single phi node.");
- Type *IdxTy = OldInduction->getType();
+ Type *IdxTy = OldInduction ? OldInduction->getType() :
+ DL->getIntPtrType(SE->getContext());
// Find the loop boundaries.
const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
@@ -677,19 +713,18 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Get the total trip count from the count by adding 1.
ExitCount = SE->getAddExpr(ExitCount,
SE->getConstant(ExitCount->getType(), 1));
- // We may need to extend the index in case there is a type mismatch.
- // We know that the count starts at zero and does not overflow.
- // We are using Zext because it should be less expensive.
- if (ExitCount->getType() != IdxTy)
- ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
// This is the original scalar-loop preheader.
BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
BasicBlock *ExitBlock = OrigLoop->getExitBlock();
assert(ExitBlock && "Must have an exit block");
- // The loop index does not have to start at Zero. It starts with this value.
- Value *StartIdx = OldInduction->getIncomingValueForBlock(BypassBlock);
+ // The loop index does not have to start at Zero. Find the original start
+ // value from the induction PHI node. If we don't have an induction variable
+ // then we know that it starts at zero.
+ Value *StartIdx = OldInduction ?
+ OldInduction->getIncomingValueForBlock(BypassBlock):
+ ConstantInt::get(IdxTy, 0);
assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
assert(BypassBlock && "Invalid loop structure");
@@ -721,7 +756,18 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
Instruction *Loc = BypassBlock->getTerminator();
// Count holds the overall loop count (N).
- Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
+ Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), Loc);
+
+ // We may need to extend the index in case there is a type mismatch.
+ // We know that the count starts at zero and does not overflow.
+ if (Count->getType() != IdxTy) {
+ // The exit count can be of pointer type. Convert it to the correct
+ // integer type.
+ if (ExitCount->getType()->isPointerTy())
+ Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
+ else
+ Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
+ }
// Add the start index to the loop count to get the new end index.
Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
@@ -734,7 +780,8 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
"end.idx.rnd.down", Loc);
- // Now, compare the new count to zero. If it is zero, jump to the scalar part.
+ // Now, compare the new count to zero. If it is zero skip the vector loop and
+ // jump to the scalar loop.
Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
IdxEndRoundDown,
StartIdx,
@@ -762,23 +809,21 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
Ends.push_back(Ptr);
} else {
DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
- Value *Start = Exp.expandCodeFor(AR->getStart(), PtrArithTy, Loc);
- const SCEV *Ex = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
- const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- assert(!isa<SCEVCouldNotCompute>(ScEnd) && "Invalid scev range.");
- Value *End = Exp.expandCodeFor(ScEnd, PtrArithTy, Loc);
+
+ Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i],
+ PtrArithTy, Loc);
+ Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
Starts.push_back(Start);
Ends.push_back(End);
}
}
- for (unsigned i=0; i < NumPointers; ++i) {
- for (unsigned j=i+1; j < NumPointers; ++j) {
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i+1; j < NumPointers; ++j) {
Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Starts[0], Ends[1], "bound0", Loc);
+ Starts[i], Ends[j], "bound0", Loc);
Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Starts[1], Ends[0], "bound1", Loc);
+ Starts[j], Ends[i], "bound1", Loc);
Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
"found.conflict", Loc);
if (MemoryRuntimeCheck) {
@@ -812,7 +857,7 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// value.
// This variable saves the new starting index for the scalar loop.
- Value *ResumeIndex = 0;
+ PHINode *ResumeIndex = 0;
LoopVectorizationLegality::InductionList::iterator I, E;
LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
for (I = List->begin(), E = List->end(); I != E; ++I) {
@@ -830,7 +875,7 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
} else {
// For pointer induction variables, calculate the offset using
// the end index.
- EndValue = GetElementPtrInst::Create(I->second, IdxEndRoundDown,
+ EndValue = GetElementPtrInst::Create(I->second, CountRoundDown,
"ptr.ind.end",
BypassBlock->getTerminator());
}
@@ -841,10 +886,22 @@ SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
ResumeVal->addIncoming(EndValue, VecBody);
// Fix the scalar body counter (PHI node).
- unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
+ unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
}
+ // If we are generating a new induction variable then we also need to
+ // generate the code that calculates the exit value. This value is not
+ // simply the end of the counter because we may skip the vectorized body
+ // in case of a runtime check.
+ if (!OldInduction){
+ assert(!ResumeIndex && "Unexpected resume value found");
+ ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
+ MiddleBlock->getTerminator());
+ ResumeIndex->addIncoming(StartIdx, BypassBlock);
+ ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+ }
+
// Make sure that we found the index where scalar loop needs to continue.
assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
"Invalid resume Index");
@@ -953,43 +1010,54 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
continue;
case Instruction::PHI:{
PHINode* P = cast<PHINode>(Inst);
- // Special handling for the induction var.
- if (OldInduction == Inst)
- continue;
-
// Handle reduction variables:
if (Legal->getReductionVars()->count(P)) {
// This is phase one of vectorizing PHIs.
Type *VecTy = VectorType::get(Inst->getType(), VF);
- WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
+ WidenMap[Inst] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody->getFirstInsertionPt());
RdxPHIsToFix.push_back(P);
continue;
}
- // Handle pointer inductions:
- if (Legal->getInductionVars()->count(P)) {
- Value *StartIdx = Legal->getInductionVars()->lookup(OldInduction);
- Value *StartPtr = Legal->getInductionVars()->lookup(P);
- // This is the normalized GEP that starts counting at zero.
- Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
- "normalized.idx");
- // This is the first GEP in the sequence.
- Value *FirstGep = Builder.CreateGEP(StartPtr, NormalizedIdx,
- "induc.ptr");
- // This is the vector of results. Notice that we don't generate vector
- // geps because scalar geps result in better code.
- Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
- for (unsigned int i = 0; i < VF; ++i) {
- Value *SclrGep = Builder.CreateGEP(FirstGep, Builder.getInt32(i),
- "next.gep");
- VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
- Builder.getInt32(i),
- "insert.gep");
- }
-
- WidenMap[Inst] = VecVal;
+ // This PHINode must be an induction variable.
+ // Make sure that we know about it.
+ assert(Legal->getInductionVars()->count(P) &&
+ "Not an induction variable");
+
+ if (P->getType()->isIntegerTy()) {
+ assert(P == OldInduction && "Unexpected PHI");
+ WidenMap[Inst] = getBroadcastInstrs(Induction);
continue;
}
+
+ // Handle pointer inductions:
+ assert(P->getType()->isPointerTy() && "Unexpected type.");
+ Value *StartIdx = OldInduction ?
+ Legal->getInductionVars()->lookup(OldInduction) :
+ ConstantInt::get(Induction->getType(), 0);
+
+ // This is the pointer value coming into the loop.
+ Value *StartPtr = Legal->getInductionVars()->lookup(P);
+
+ // This is the normalized GEP that starts counting at zero.
+ Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
+ "normalized.idx");
+
+ // This is the vector of results. Notice that we don't generate vector
+ // geps because scalar geps result in better code.
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ Constant *Idx = ConstantInt::get(Induction->getType(), i);
+ Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+ Value *SclrGep = Builder.CreateGEP(StartPtr, GlobalIdx, "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+
+ WidenMap[Inst] = VecVal;
+ continue;
}
case Instruction::Add:
case Instruction::FAdd:
@@ -1076,21 +1144,27 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
// This store does not use GEPs.
- if (!Legal->isConsecutiveGep(Gep)) {
+ if (!Legal->isConsecutivePtr(Ptr)) {
scalarizeInstruction(Inst);
break;
}
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
-
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
+ if (Gep) {
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
+ }
Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
Value *Val = getVectorValue(SI->getValueOperand());
Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
@@ -1104,23 +1178,31 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
unsigned Alignment = LI->getAlignment();
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- // If we don't have a gep, or that the pointer is loop invariant,
+ // If the pointer is loop invariant or if it is non consecutive,
// scalarize the load.
- if (!Gep || Legal->isUniform(Gep) || !Legal->isConsecutiveGep(Gep)) {
+ bool Con = Legal->isConsecutivePtr(Ptr);
+ if (Legal->isUniform(Ptr) || !Con) {
scalarizeInstruction(Inst);
break;
}
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+ if (Gep) {
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
+ }
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
LI = Builder.CreateLoad(Ptr);
LI->setAlignment(Alignment);
@@ -1301,7 +1383,7 @@ bool LoopVectorizationLegality::canVectorize() {
if (!TheLoop->getLoopPreheader()) {
assert(false && "No preheader!!");
DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
- return false;
+ return false;
}
// We can only vectorize single basic block loops.
@@ -1347,6 +1429,7 @@ bool LoopVectorizationLegality::canVectorize() {
}
bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
+
BasicBlock *PreHeader = TheLoop->getLoopPreheader();
// Scan the instructions in the block and look for hazards.
@@ -1440,8 +1523,8 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
} // next instr.
if (!Induction) {
- DEBUG(dbgs() << "LV: Did not find an induction var.\n");
- return false;
+ DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ assert(getInductionVars()->size() && "No induction variables");
}
// Don't vectorize if the memory dependencies do not allow vectorization.
@@ -1458,15 +1541,10 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
while (Worklist.size()) {
Instruction *I = dyn_cast<Instruction>(Worklist.back());
Worklist.pop_back();
- // Look at instructions inside this block.
- if (!I) continue;
- if (I->getParent() != &BB) continue;
- // Stop when reaching PHI nodes.
- if (isa<PHINode>(I)) {
- assert(I == Induction && "Found a uniform PHI that is not the induction");
- break;
- }
+ // Look at instructions inside this block. Stop when reaching PHI nodes.
+ if (!I || I->getParent() != &BB || isa<PHINode>(I))
+ continue;
// This is a known uniform.
Uniforms.insert(I);
@@ -1569,7 +1647,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// If the address of i is unknown (for example A[B[i]]) then we may
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
- if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr))
+ if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
Reads.push_back(Ptr);
}
@@ -1585,7 +1663,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
bool RT = true;
for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
if (hasComputableBounds(*I)) {
- PtrRtCheck.Pointers.push_back(*I);
+ PtrRtCheck.insert_pointer(SE, TheLoop, *I);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
} else {
RT = false;
@@ -1593,7 +1671,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
}
for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
if (hasComputableBounds(*I)) {
- PtrRtCheck.Pointers.push_back(*I);
+ PtrRtCheck.insert_pointer(SE, TheLoop, *I);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
} else {
RT = false;
@@ -1603,7 +1681,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// Check that we did not collect too many pointers or found a
// unsizeable pointer.
if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
- PtrRtCheck.Pointers.clear();
+ PtrRtCheck.reset();
RT = false;
}
@@ -1658,8 +1736,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
// It is safe to vectorize and we don't need any runtime checks.
DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
- PtrRtCheck.Pointers.clear();
- PtrRtCheck.Need = false;
+ PtrRtCheck.reset();
return true;
}
@@ -1917,7 +1994,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
SI->getAlignment(), SI->getPointerAddressSpace());
// Scalarized stores.
- if (!Legal->isConsecutiveGep(SI->getPointerOperand())) {
+ if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
unsigned Cost = 0;
unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
ValTy);
@@ -1944,7 +2021,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
LI->getPointerAddressSpace());
// Scalarized loads.
- if (!Legal->isConsecutiveGep(LI->getPointerOperand())) {
+ if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
unsigned Cost = 0;
unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
// The cost of inserting the loaded value into the result vector.