summaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
authorKostya Serebryany <kcc@google.com>2011-11-16 01:35:23 +0000
committerKostya Serebryany <kcc@google.com>2011-11-16 01:35:23 +0000
commit800e03f59896ef4b26d988f1878370bb5aeec0d8 (patch)
tree3753819241e0e363630e1ccf6b5797b2cad50836 /lib/Transforms
parent8a2549febcc4e09f5573c57e10c580586d005447 (diff)
downloadllvm-800e03f59896ef4b26d988f1878370bb5aeec0d8.tar.gz
llvm-800e03f59896ef4b26d988f1878370bb5aeec0d8.tar.bz2
llvm-800e03f59896ef4b26d988f1878370bb5aeec0d8.tar.xz
AddressSanitizer, first commit (compiler module only)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144758 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Instrumentation/AddressSanitizer.cpp965
-rw-r--r--lib/Transforms/Instrumentation/CMakeLists.txt1
-rw-r--r--lib/Transforms/Instrumentation/Instrumentation.cpp1
3 files changed, 967 insertions, 0 deletions
diff --git a/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/lib/Transforms/Instrumentation/AddressSanitizer.cpp
new file mode 100644
index 0000000000..e858bccdfb
--- /dev/null
+++ b/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -0,0 +1,965 @@
+//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+// Details of the algorithm:
+// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asan"
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Function.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/system_error.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include "llvm/Type.h"
+
+#include <string>
+#include <algorithm>
+
+using namespace llvm;
+
+static const uint64_t kDefaultShadowScale = 3;
+static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
+static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
+
+static const size_t kMaxStackMallocSize = 1 << 16; // 64K
+static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
+static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
+
+static const char *kAsanModuleCtorName = "asan.module_ctor";
+static const char *kAsanReportErrorTemplate = "__asan_report_";
+static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
+static const char *kAsanInitName = "__asan_init";
+static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
+static const char *kAsanMappingScaleName = "__asan_mapping_scale";
+static const char *kAsanStackMallocName = "__asan_stack_malloc";
+static const char *kAsanStackFreeName = "__asan_stack_free";
+
+static const int kAsanStackLeftRedzoneMagic = 0xf1;
+static const int kAsanStackMidRedzoneMagic = 0xf2;
+static const int kAsanStackRightRedzoneMagic = 0xf3;
+static const int kAsanStackPartialRedzoneMagic = 0xf4;
+
+// Command-line flags.
+
+// This flag may need to be replaced with -f[no-]asan-reads.
+static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
+ cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
+ cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
+// This flag may need to be replaced with -f[no]asan-stack.
+static cl::opt<bool> ClStack("asan-stack",
+ cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
+// This flag may need to be replaced with -f[no]asan-use-after-return.
+static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
+ cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
+// This flag may need to be replaced with -f[no]asan-globals.
+static cl::opt<bool> ClGlobals("asan-globals",
+ cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClMemIntrin("asan-memintrin",
+ cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
+// This flag may need to be replaced with -fasan-blacklist.
+static cl::opt<std::string> ClBlackListFile("asan-blacklist",
+ cl::desc("File containing the list of functions to ignore "
+ "during instrumentation"), cl::Hidden);
+static cl::opt<bool> ClUseCall("asan-use-call",
+ cl::desc("Use function call to generate a crash"), cl::Hidden,
+ cl::init(true));
+
+// These flags allow to change the shadow mapping.
+// The shadow mapping looks like
+// Shadow = (Mem >> scale) + (1 << offset_log)
+static cl::opt<int> ClMappingScale("asan-mapping-scale",
+ cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
+static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
+ cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
+
+// Optimization flags. Not user visible, used mostly for testing
+// and benchmarking the tool.
+static cl::opt<bool> ClOpt("asan-opt",
+ cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
+ cl::desc("Instrument the same temp just once"), cl::Hidden,
+ cl::init(true));
+static cl::opt<bool> ClOptGlobals("asan-opt-globals",
+ cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
+
+// Debug flags.
+static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
+ cl::init(0));
+static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
+ cl::Hidden, cl::init(0));
+static cl::opt<std::string> ClDebugFunc("asan-debug-func",
+ cl::Hidden, cl::desc("Debug func"));
+static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
+ cl::Hidden, cl::init(-1));
+static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
+ cl::Hidden, cl::init(-1));
+
+namespace {
+
+// Blacklisted functions are not instrumented.
+// The blacklist file contains one or more lines like this:
+// ---
+// fun:FunctionWildCard
+// ---
+// This is similar to the "ignore" feature of ThreadSanitizer.
+// http://code.google.com/p/data-race-test/wiki/ThreadSanitizerIgnores
+class BlackList {
+ public:
+ BlackList(const std::string &Path);
+ bool isIn(const Function &F);
+ private:
+ Regex *Functions;
+};
+
+/// AddressSanitizer: instrument the code in module to find memory bugs.
+struct AddressSanitizer : public ModulePass {
+ AddressSanitizer();
+ void instrumentMop(Instruction *I);
+ void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB,
+ Value *Addr, uint32_t TypeSize, bool IsWrite);
+ Instruction *generateCrashCode(IRBuilder<> &IRB, Value *Addr,
+ bool IsWrite, uint32_t TypeSize);
+ bool instrumentMemIntrinsic(MemIntrinsic *MI);
+ void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
+ Value *Size,
+ Instruction *InsertBefore, bool IsWrite);
+ Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
+ bool handleFunction(Module &M, Function &F);
+ bool poisonStackInFunction(Module &M, Function &F);
+ virtual bool runOnModule(Module &M);
+ bool insertGlobalRedzones(Module &M);
+ BranchInst *splitBlockAndInsertIfThen(Instruction *SplitBefore, Value *Cmp);
+ static char ID; // Pass identification, replacement for typeid
+
+ private:
+
+ uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
+ Type *Ty = AI->getAllocatedType();
+ uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
+ return SizeInBytes;
+ }
+ uint64_t getAlignedSize(uint64_t SizeInBytes) {
+ return ((SizeInBytes + RedzoneSize - 1)
+ / RedzoneSize) * RedzoneSize;
+ }
+ uint64_t getAlignedAllocaSize(AllocaInst *AI) {
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ return getAlignedSize(SizeInBytes);
+ }
+
+ void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
+ Value *ShadowBase, bool DoPoison);
+
+ Module *CurrentModule;
+ LLVMContext *C;
+ TargetData *TD;
+ uint64_t MappingOffset;
+ int MappingScale;
+ size_t RedzoneSize;
+ int LongSize;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+ Function *AsanCtorFunction;
+ Function *AsanInitFunction;
+ Instruction *CtorInsertBefore;
+ OwningPtr<BlackList> BL;
+};
+} // namespace
+
+char AddressSanitizer::ID = 0;
+INITIALIZE_PASS(AddressSanitizer, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
+ false, false)
+AddressSanitizer::AddressSanitizer() : ModulePass(ID) { }
+ModulePass *llvm::createAddressSanitizerPass() {
+ return new AddressSanitizer();
+}
+
+// Create a constant for Str so that we can pass it to the run-time lib.
+static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
+ Constant *StrConst = ConstantArray::get(M.getContext(), Str);
+ return new GlobalVariable(M, StrConst->getType(), true,
+ GlobalValue::PrivateLinkage, StrConst, "");
+}
+
+// Split the basic block and insert an if-then code.
+// Before:
+// Head
+// SplitBefore
+// Tail
+// After:
+// Head
+// if (Cmp)
+// NewBasicBlock
+// SplitBefore
+// Tail
+//
+// Returns the NewBasicBlock's terminator.
+BranchInst *AddressSanitizer::splitBlockAndInsertIfThen(
+ Instruction *SplitBefore, Value *Cmp) {
+ BasicBlock *Head = SplitBefore->getParent();
+ BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
+ TerminatorInst *HeadOldTerm = Head->getTerminator();
+ BasicBlock *NewBasicBlock =
+ BasicBlock::Create(*C, "", Head->getParent());
+ BranchInst *HeadNewTerm = BranchInst::Create(/*ifTrue*/NewBasicBlock,
+ /*ifFalse*/Tail,
+ Cmp);
+ ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
+
+ BranchInst *CheckTerm = BranchInst::Create(Tail, NewBasicBlock);
+ return CheckTerm;
+}
+
+Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
+ // Shadow >> scale
+ Shadow = IRB.CreateLShr(Shadow, MappingScale);
+ if (MappingOffset == 0)
+ return Shadow;
+ // (Shadow >> scale) | offset
+ return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy,
+ MappingOffset));
+}
+
+void AddressSanitizer::instrumentMemIntrinsicParam(Instruction *OrigIns,
+ Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
+ // Check the first byte.
+ {
+ IRBuilder<> IRB(InsertBefore);
+ instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite);
+ }
+ // Check the last byte.
+ {
+ IRBuilder<> IRB(InsertBefore);
+ Value *SizeMinusOne = IRB.CreateSub(
+ Size, ConstantInt::get(Size->getType(), 1));
+ SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
+ instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
+ }
+}
+
+// Instrument memset/memmove/memcpy
+bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
+ Value *Dst = MI->getDest();
+ MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
+ Value *Src = MemTran ? MemTran->getSource() : NULL;
+ Value *Length = MI->getLength();
+
+ Constant *ConstLength = dyn_cast<Constant>(Length);
+ Instruction *InsertBefore = MI;
+ if (ConstLength) {
+ if (ConstLength->isNullValue()) return false;
+ } else {
+ // The size is not a constant so it could be zero -- check at run-time.
+ IRBuilder<> IRB(InsertBefore);
+
+ Value *Cmp = IRB.CreateICmpNE(Length,
+ Constant::getNullValue(Length->getType()));
+ InsertBefore = splitBlockAndInsertIfThen(InsertBefore, Cmp);
+ }
+
+ instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
+ if (Src)
+ instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
+ return true;
+}
+
+static Value *getLDSTOperand(Instruction *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ return LI->getPointerOperand();
+ }
+ return cast<StoreInst>(*I).getPointerOperand();
+}
+
+void AddressSanitizer::instrumentMop(Instruction *I) {
+ int IsWrite = isa<StoreInst>(*I);
+ Value *Addr = getLDSTOperand(I);
+ if (ClOpt && ClOptGlobals && isa<GlobalVariable>(Addr)) {
+ // We are accessing a global scalar variable. Nothing to catch here.
+ return;
+ }
+ Type *OrigPtrTy = Addr->getType();
+ Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
+
+ assert(OrigTy->isSized());
+ uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
+
+ if (TypeSize != 8 && TypeSize != 16 &&
+ TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
+ // Ignore all unusual sizes.
+ return;
+ }
+
+ IRBuilder<> IRB(I);
+ instrumentAddress(I, IRB, Addr, TypeSize, IsWrite);
+}
+
+Instruction *AddressSanitizer::generateCrashCode(
+ IRBuilder<> &IRB, Value *Addr, bool IsWrite, uint32_t TypeSize) {
+
+ if (ClUseCall) {
+ // Here we use a call instead of arch-specific asm to report an error.
+ // This is almost always slower (because the codegen needs to generate
+ // prologue/epilogue for otherwise leaf functions) and generates more code.
+ // This mode could be useful if we can not use SIGILL for some reason.
+ //
+ // IsWrite and TypeSize are encoded in the function name.
+ std::string FunctionName = std::string(kAsanReportErrorTemplate) +
+ (IsWrite ? "store" : "load") + itostr(TypeSize / 8);
+ Value *ReportWarningFunc = CurrentModule->getOrInsertFunction(
+ FunctionName, IRB.getVoidTy(), IntptrTy, NULL);
+ CallInst *Call = IRB.CreateCall(ReportWarningFunc, Addr);
+ Call->setDoesNotReturn();
+ return Call;
+ }
+
+ uint32_t LogOfSizeInBytes = CountTrailingZeros_32(TypeSize / 8);
+ assert(8U * (1 << LogOfSizeInBytes) == TypeSize);
+ uint8_t TelltaleValue = IsWrite * 8 + LogOfSizeInBytes;
+ assert(TelltaleValue < 16);
+
+ // Move the failing address to %rax/%eax
+ FunctionType *Fn1Ty = FunctionType::get(
+ IRB.getVoidTy(), ArrayRef<Type*>(IntptrTy), false);
+ const char *MovStr = LongSize == 32
+ ? "mov $0, %eax" : "mov $0, %rax";
+ Value *AsmMov = InlineAsm::get(
+ Fn1Ty, StringRef(MovStr), StringRef("r"), true);
+ IRB.CreateCall(AsmMov, Addr);
+
+ // crash with ud2; could use int3, but it is less friendly to gdb.
+ // after ud2 put a 1-byte instruction that encodes the access type and size.
+
+ const char *TelltaleInsns[16] = {
+ "push %eax", // 0x50
+ "push %ecx", // 0x51
+ "push %edx", // 0x52
+ "push %ebx", // 0x53
+ "push %esp", // 0x54
+ "push %ebp", // 0x55
+ "push %esi", // 0x56
+ "push %edi", // 0x57
+ "pop %eax", // 0x58
+ "pop %ecx", // 0x59
+ "pop %edx", // 0x5a
+ "pop %ebx", // 0x5b
+ "pop %esp", // 0x5c
+ "pop %ebp", // 0x5d
+ "pop %esi", // 0x5e
+ "pop %edi" // 0x5f
+ };
+
+ std::string AsmStr = "ud2;";
+ AsmStr += TelltaleInsns[TelltaleValue];
+ Value *MyAsm = InlineAsm::get(FunctionType::get(Type::getVoidTy(*C), false),
+ StringRef(AsmStr), StringRef(""), true);
+ CallInst *AsmCall = IRB.CreateCall(MyAsm);
+
+ // This saves us one jump, but triggers a bug in RA (or somewhere else):
+ // while building 483.xalancbmk the compiler goes into infinite loop in
+ // llvm::SpillPlacement::iterate() / RAGreedy::growRegion
+ // AsmCall->setDoesNotReturn();
+ return AsmCall;
+}
+
+void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
+ IRBuilder<> &IRB, Value *Addr,
+ uint32_t TypeSize, bool IsWrite) {
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+
+ Type *ShadowTy = IntegerType::get(
+ *C, std::max(8U, TypeSize >> MappingScale));
+ Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
+ Value *ShadowPtr = memToShadow(AddrLong, IRB);
+ Value *CmpVal = Constant::getNullValue(ShadowTy);
+ Value *ShadowValue = IRB.CreateLoad(
+ IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
+
+ Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
+
+ Instruction *CheckTerm = splitBlockAndInsertIfThen(
+ cast<Instruction>(Cmp)->getNextNode(), Cmp);
+ IRBuilder<> IRB2(CheckTerm);
+
+ size_t Granularity = 1 << MappingScale;
+ if (TypeSize < 8 * Granularity) {
+ // Addr & (Granularity - 1)
+ Value *Lower3Bits = IRB2.CreateAnd(
+ AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
+ // (Addr & (Granularity - 1)) + size - 1
+ Value *LastAccessedByte = IRB2.CreateAdd(
+ Lower3Bits, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
+ // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
+ LastAccessedByte = IRB2.CreateIntCast(
+ LastAccessedByte, IRB.getInt8Ty(), false);
+ // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
+ Value *Cmp2 = IRB2.CreateICmpSGE(LastAccessedByte, ShadowValue);
+
+ CheckTerm = splitBlockAndInsertIfThen(CheckTerm, Cmp2);
+ }
+
+ IRBuilder<> IRB1(CheckTerm);
+ Instruction *Crash = generateCrashCode(IRB1, AddrLong, IsWrite, TypeSize);
+ Crash->setDebugLoc(OrigIns->getDebugLoc());
+}
+
+// This function replaces all global variables with new variables that have
+// trailing redzones. It also creates a function that poisons
+// redzones and inserts this function into llvm.global_ctors.
+bool AddressSanitizer::insertGlobalRedzones(Module &M) {
+ SmallVector<GlobalVariable *, 16> GlobalsToChange;
+
+ for (Module::GlobalListType::iterator G = M.getGlobalList().begin(),
+ E = M.getGlobalList().end(); G != E; ++G) {
+ Type *Ty = cast<PointerType>(G->getType())->getElementType();
+ DEBUG(dbgs() << "GLOBAL: " << *G);
+
+ if (!Ty->isSized()) continue;
+ if (!G->hasInitializer()) continue;
+ if (GlobalVariable::mayBeOverridden(G->getLinkage()) ||
+ G->getLinkage() == GlobalVariable::AppendingLinkage)
+ continue;
+ // For now, just ignore this Alloca if the alignment is large.
+ if (G->getAlignment() > RedzoneSize) continue;
+
+ // Ignore all the globals with the names starting with "\01L_OBJC_".
+ // Many of those are put into the .cstring section. The linker compresses
+ // that section by removing the spare \0s after the string terminator, so
+ // our redzones get broken.
+ if ((G->getName().find("\01L_OBJC_") == 0) ||
+ (G->getName().find("\01l_OBJC_") == 0)) {
+ DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
+ continue;
+ }
+
+ // Ignore the globals from the __OBJC section. The ObjC runtime assumes
+ // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
+ // them.
+ if (G->hasSection()) {
+ StringRef Section(G->getSection());
+ if ((Section.find("__OBJC,") == 0) ||
+ (Section.find("__DATA, __objc_") == 0)) {
+ DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
+ continue;
+ }
+ }
+
+ GlobalsToChange.push_back(G);
+ }
+
+ size_t n = GlobalsToChange.size();
+ if (n == 0) return false;
+
+ // A global is described by a structure
+ // size_t beg;
+ // size_t size;
+ // size_t size_with_redzone;
+ // const char *name;
+ // We initialize an array of such structures and pass it to a run-time call.
+ StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
+ IntptrTy, IntptrTy, NULL);
+ SmallVector<Constant *, 16> Initializers(n);
+
+ IRBuilder<> IRB(CtorInsertBefore);
+
+ for (size_t i = 0; i < n; i++) {
+ GlobalVariable *G = GlobalsToChange[i];
+ PointerType *PtrTy = cast<PointerType>(G->getType());
+ Type *Ty = PtrTy->getElementType();
+ uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
+ uint64_t RightRedzoneSize = RedzoneSize +
+ (RedzoneSize - (SizeInBytes % RedzoneSize));
+ Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
+
+ StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
+ Constant *NewInitializer = ConstantStruct::get(
+ NewTy, G->getInitializer(),
+ Constant::getNullValue(RightRedZoneTy), NULL);
+
+ GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
+
+ // Create a new global variable with enough space for a redzone.
+ GlobalVariable *NewGlobal = new GlobalVariable(
+ M, NewTy, G->isConstant(), G->getLinkage(),
+ NewInitializer, "", G, G->isThreadLocal());
+ NewGlobal->copyAttributesFrom(G);
+ NewGlobal->setAlignment(RedzoneSize);
+
+ Value *Indices2[2];
+ Indices2[0] = IRB.getInt32(0);
+ Indices2[1] = IRB.getInt32(0);
+
+ G->replaceAllUsesWith(
+ ConstantExpr::getGetElementPtr(NewGlobal, Indices2, 2));
+ NewGlobal->takeName(G);
+ G->eraseFromParent();
+
+ Initializers[i] = ConstantStruct::get(
+ GlobalStructTy,
+ ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
+ ConstantInt::get(IntptrTy, SizeInBytes),
+ ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
+ ConstantExpr::getPointerCast(Name, IntptrTy),
+ NULL);
+ DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
+ }
+
+ ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
+ GlobalVariable *AllGlobals = new GlobalVariable(
+ M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
+ ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
+
+ Function *AsanRegisterGlobals = cast<Function>(M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
+
+ IRB.CreateCall2(AsanRegisterGlobals,
+ IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, n));
+
+ DEBUG(dbgs() << M);
+ return true;
+}
+
+// virtual
+bool AddressSanitizer::runOnModule(Module &M) {
+ // Initialize the private fields. No one has accessed them before.
+ TD = getAnalysisIfAvailable<TargetData>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(ClBlackListFile));
+
+ CurrentModule = &M;
+ C = &(M.getContext());
+ LongSize = TD->getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ IntptrPtrTy = PointerType::get(IntptrTy, 0);
+
+ AsanCtorFunction = Function::Create(
+ FunctionType::get(Type::getVoidTy(*C), false),
+ GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
+ BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
+ CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);
+
+ // call __asan_init in the module ctor.
+ IRBuilder<> IRB(CtorInsertBefore);
+ AsanInitFunction = cast<Function>(
+ M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
+ AsanInitFunction->setLinkage(Function::ExternalLinkage);
+ IRB.CreateCall(AsanInitFunction);
+
+ MappingOffset = LongSize == 32
+ ? kDefaultShadowOffset32 : kDefaultShadowOffset64;
+ if (ClMappingOffsetLog >= 0) {
+ if (ClMappingOffsetLog == 0) {
+ // special case
+ MappingOffset = 0;
+ } else {
+ MappingOffset = 1ULL << ClMappingOffsetLog;
+ }
+ }
+ MappingScale = kDefaultShadowScale;
+ if (ClMappingScale) {
+ MappingScale = ClMappingScale;
+ }
+ // Redzone used for stack and globals is at least 32 bytes.
+ // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
+ RedzoneSize = std::max(32, (int)(1 << MappingScale));
+
+ bool Res = false;
+
+ if (ClGlobals)
+ Res |= insertGlobalRedzones(M);
+
+ // Tell the run-time the current values of mapping offset and scale.
+ GlobalValue *asan_mapping_offset =
+ new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
+ ConstantInt::get(IntptrTy, MappingOffset),
+ kAsanMappingOffsetName);
+ GlobalValue *asan_mapping_scale =
+ new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
+ ConstantInt::get(IntptrTy, MappingScale),
+ kAsanMappingScaleName);
+ // Read these globals, otherwise they may be optimized away.
+ IRB.CreateLoad(asan_mapping_scale, true);
+ IRB.CreateLoad(asan_mapping_offset, true);
+
+
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ Res |= handleFunction(M, *F);
+ }
+
+ appendToGlobalCtors(M, AsanCtorFunction, 1 /*high priority*/);
+
+ return Res;
+}
+
+bool AddressSanitizer::handleFunction(Module &M, Function &F) {
+ if (BL->isIn(F)) return false;
+ if (&F == AsanCtorFunction) return false;
+
+ if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
+ return false;
+ // We want to instrument every address only once per basic block
+ // (unless there are calls between uses).
+ SmallSet<Value*, 16> TempsToInstrument;
+ SmallVector<Instruction*, 16> ToInstrument;
+
+ // Fill the set of memory operations to instrument.
+ for (Function::iterator FI = F.begin(), FE = F.end();
+ FI != FE; ++FI) {
+ TempsToInstrument.clear();
+ for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
+ BI != BE; ++BI) {
+ if ((isa<LoadInst>(BI) && ClInstrumentReads) ||
+ (isa<StoreInst>(BI) && ClInstrumentWrites)) {
+ Value *Addr = getLDSTOperand(BI);
+ if (ClOpt && ClOptSameTemp) {
+ if (!TempsToInstrument.insert(Addr))
+ continue; // We've seen this temp in the current BB.
+ }
+ } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
+ // ok, take it.
+ } else {
+ if (isa<CallInst>(BI)) {
+ // A call inside BB.
+ TempsToInstrument.clear();
+ }
+ continue;
+ }
+ ToInstrument.push_back(BI);
+ }
+ }
+
+ // Instrument.
+ int NumInstrumented = 0;
+ for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
+ Instruction *Inst = ToInstrument[i];
+ if (ClDebugMin < 0 || ClDebugMax < 0 ||
+ (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
+ if (isa<StoreInst>(Inst) || isa<LoadInst>(Inst))
+ instrumentMop(Inst);
+ else
+ instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
+ }
+ NumInstrumented++;
+ }
+
+ DEBUG(dbgs() << F);
+
+ bool ChangedStack = poisonStackInFunction(M, F);
+
+ // For each NSObject descendant having a +load method, this method is invoked
+ // by the ObjC runtime before any of the static constructors is called.
+ // Therefore we need to instrument such methods with a call to __asan_init
+ // at the beginning in order to initialize our runtime before any access to
+ // the shadow memory.
+ // We cannot just ignore these methods, because they may call other
+ // instrumented functions.
+ if (F.getName().find(" load]") != std::string::npos) {
+ IRBuilder<> IRB(F.begin()->begin());
+ IRB.CreateCall(AsanInitFunction);
+ }
+
+ return NumInstrumented > 0 || ChangedStack;
+}
+
+static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
+ if (ShadowRedzoneSize == 1) return PoisonByte;
+ if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
+ if (ShadowRedzoneSize == 4)
+ return (PoisonByte << 24) + (PoisonByte << 16) +
+ (PoisonByte << 8) + (PoisonByte);
+ assert(0 && "ShadowRedzoneSize is either 1, 2 or 4");
+ return 0;
+}
+
+static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
+ size_t Size,
+ size_t RedzoneSize,
+ size_t ShadowGranularity,
+ uint8_t Magic) {
+ for (size_t i = 0; i < RedzoneSize;
+ i+= ShadowGranularity, Shadow++) {
+ if (i + ShadowGranularity <= Size) {
+ *Shadow = 0; // fully addressable
+ } else if (i >= Size) {
+ *Shadow = Magic; // unaddressable
+ } else {
+ *Shadow = Size - i; // first Size-i bytes are addressable
+ }
+ }
+}
+
+void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
+ IRBuilder<> IRB,
+ Value *ShadowBase, bool DoPoison) {
+ size_t ShadowRZSize = RedzoneSize >> MappingScale;
+ assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
+ Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
+ Type *RZPtrTy = PointerType::get(RZTy, 0);
+
+ Value *PoisonLeft = ConstantInt::get(RZTy,
+ ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
+ Value *PoisonMid = ConstantInt::get(RZTy,
+ ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
+ Value *PoisonRight = ConstantInt::get(RZTy,
+ ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
+
+ // poison the first red zone.
+ IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
+
+ // poison all other red zones.
+ uint64_t Pos = RedzoneSize;
+ for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
+ AllocaInst *AI = AllocaVec[i];
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(AI);
+ assert(AlignedSize - SizeInBytes < RedzoneSize);
+ Value *Ptr = NULL;
+
+ Pos += AlignedSize;
+
+ assert(ShadowBase->getType() == IntptrTy);
+ if (SizeInBytes < AlignedSize) {
+ // Poison the partial redzone at right
+ Ptr = IRB.CreateAdd(
+ ShadowBase, ConstantInt::get(IntptrTy,
+ (Pos >> MappingScale) - ShadowRZSize));
+ size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
+ uint32_t Poison = 0;
+ if (DoPoison) {
+ PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
+ RedzoneSize,
+ 1ULL << MappingScale,
+ kAsanStackPartialRedzoneMagic);
+ }
+ Value *PartialPoison = ConstantInt::get(RZTy, Poison);
+ IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
+ }
+
+ // Poison the full redzone at right.
+ Ptr = IRB.CreateAdd(ShadowBase,
+ ConstantInt::get(IntptrTy, Pos >> MappingScale));
+ Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
+ IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
+
+ Pos += RedzoneSize;
+ }
+}
+
+// Find all static Alloca instructions and put
+// poisoned red zones around all of them.
+// Then unpoison everything back before the function returns.
+//
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
+ if (!ClStack) return false;
+ SmallVector<AllocaInst*, 16> AllocaVec;
+ SmallVector<Instruction*, 8> RetVec;
+ uint64_t TotalSize = 0;
+
+ // Filter out Alloca instructions we want (and can) handle.
+ // Collect Ret instructions.
+ for (Function::iterator FI = F.begin(), FE = F.end();
+ FI != FE; ++FI) {
+ BasicBlock &BB = *FI;
+ for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
+ BI != BE; ++BI) {
+ if (isa<ReturnInst>(BI)) {
+ RetVec.push_back(BI);
+ continue;
+ }
+
+ AllocaInst *AI = dyn_cast<AllocaInst>(BI);
+ if (!AI) continue;
+ if (AI->isArrayAllocation()) continue;
+ if (!AI->isStaticAlloca()) continue;
+ if (!AI->getAllocatedType()->isSized()) continue;
+ if (AI->getAlignment() > RedzoneSize) continue;
+ AllocaVec.push_back(AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(AI);
+ TotalSize += AlignedSize;
+ }
+ }
+
+ if (AllocaVec.empty()) return false;
+
+ uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;
+
+ bool DoStackMalloc = ClUseAfterReturn
+ && LocalStackSize <= kMaxStackMallocSize;
+
+ Instruction *InsBefore = AllocaVec[0];
+ IRBuilder<> IRB(InsBefore);
+
+
+ Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
+ AllocaInst *MyAlloca =
+ new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
+ MyAlloca->setAlignment(RedzoneSize);
+ assert(MyAlloca->isStaticAlloca());
+ Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
+ Value *LocalStackBase = OrigStackBase;
+
+ if (DoStackMalloc) {
+ Value *AsanStackMallocFunc = M.getOrInsertFunction(
+ kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL);
+ LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
+ ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
+ }
+
+ // This string will be parsed by the run-time (DescribeStackAddress).
+ SmallString<2048> StackDescriptionStorage;
+ raw_svector_ostream StackDescription(StackDescriptionStorage);
+ StackDescription << F.getName() << " " << AllocaVec.size() << " ";
+
+ uint64_t Pos = RedzoneSize;
+ // Replace Alloca instructions with base+offset.
+ for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
+ AllocaInst *AI = AllocaVec[i];
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ StringRef Name = AI->getName();
+ StackDescription << Pos << " " << SizeInBytes << " "
+ << Name.size() << " " << Name << " ";
+ uint64_t AlignedSize = getAlignedAllocaSize(AI);
+ assert((AlignedSize % RedzoneSize) == 0);
+ AI->replaceAllUsesWith(
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
+ AI->getType()));
+ Pos += AlignedSize + RedzoneSize;
+ }
+ assert(Pos == LocalStackSize);
+
+ // Write the Magic value and the frame description constant to the redzone.
+ Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
+ IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
+ BasePlus0);
+ Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
+ ConstantInt::get(IntptrTy, LongSize/8));
+ BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
+ Value *Description = IRB.CreatePointerCast(
+ createPrivateGlobalForString(M, StackDescription.str()),
+ IntptrTy);
+ IRB.CreateStore(Description, BasePlus1);
+
+ // Poison the stack redzones at the entry.
+ Value *ShadowBase = memToShadow(LocalStackBase, IRB);
+ PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
+
+ Value *AsanStackFreeFunc = NULL;
+ if (DoStackMalloc) {
+ AsanStackFreeFunc = M.getOrInsertFunction(
+ kAsanStackFreeName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy, NULL);
+ }
+
+ // Unpoison the stack before all ret instructions.
+ for (size_t i = 0, n = RetVec.size(); i < n; i++) {
+ Instruction *Ret = RetVec[i];
+ IRBuilder<> IRBRet(Ret);
+
+ // Mark the current frame as retired.
+ IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
+ BasePlus0);
+ // Unpoison the stack.
+ PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
+
+ if (DoStackMalloc) {
+ IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
+ ConstantInt::get(IntptrTy, LocalStackSize),
+ OrigStackBase);
+ }
+ }
+
+ if (ClDebugStack) {
+ DEBUG(dbgs() << F);
+ }
+
+ return true;
+}
+
+BlackList::BlackList(const std::string &Path) {
+ Functions = NULL;
+ const char *kFunPrefix = "fun:";
+ if (!ClBlackListFile.size()) return;
+ std::string Fun;
+
+ OwningPtr<MemoryBuffer> File;
+ if (error_code EC = MemoryBuffer::getFile(ClBlackListFile.c_str(), File)) {
+ errs() << EC.message();
+ exit(1);
+ }
+ MemoryBuffer *Buff = File.take();
+ const char *Data = Buff->getBufferStart();
+ size_t DataLen = Buff->getBufferSize();
+ SmallVector<StringRef, 16> Lines;
+ SplitString(StringRef(Data, DataLen), Lines, "\n\r");
+ for (size_t i = 0, numLines = Lines.size(); i < numLines; i++) {
+ if (Lines[i].startswith(kFunPrefix)) {
+ std::string ThisFunc = Lines[i].substr(strlen(kFunPrefix));
+ if (Fun.size()) {
+ Fun += "|";
+ }
+ // add ThisFunc replacing * with .*
+ for (size_t j = 0, n = ThisFunc.size(); j < n; j++) {
+ if (ThisFunc[j] == '*')
+ Fun += '.';
+ Fun += ThisFunc[j];
+ }
+ }
+ }
+ if (Fun.size()) {
+ Functions = new Regex(Fun);
+ }
+}
+
+bool BlackList::isIn(const Function &F) {
+ if (Functions) {
+ bool Res = Functions->match(F.getName());
+ return Res;
+ }
+ return false;
+}
diff --git a/lib/Transforms/Instrumentation/CMakeLists.txt b/lib/Transforms/Instrumentation/CMakeLists.txt
index 7b3a927a4e..929b7cd394 100644
--- a/lib/Transforms/Instrumentation/CMakeLists.txt
+++ b/lib/Transforms/Instrumentation/CMakeLists.txt
@@ -1,4 +1,5 @@
add_llvm_library(LLVMInstrumentation
+ AddressSanitizer.cpp
EdgeProfiling.cpp
GCOVProfiling.cpp
Instrumentation.cpp
diff --git a/lib/Transforms/Instrumentation/Instrumentation.cpp b/lib/Transforms/Instrumentation/Instrumentation.cpp
index 71adc1ec6d..6d6e0ae34b 100644
--- a/lib/Transforms/Instrumentation/Instrumentation.cpp
+++ b/lib/Transforms/Instrumentation/Instrumentation.cpp
@@ -24,6 +24,7 @@ void llvm::initializeInstrumentation(PassRegistry &Registry) {
initializeOptimalEdgeProfilerPass(Registry);
initializePathProfilerPass(Registry);
initializeGCOVProfilerPass(Registry);
+ initializeAddressSanitizerPass(Registry);
}
/// LLVMInitializeInstrumentation - C binding for