summaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
authorTyler Nowicki <tnowicki@apple.com>2014-06-25 17:50:15 +0000
committerTyler Nowicki <tnowicki@apple.com>2014-06-25 17:50:15 +0000
commitd5a8fa72bb41eedbfde7e8124414123c49a2351c (patch)
tree19220adf400ad00c6817f0b226ef3b861ea62b40 /lib/Transforms
parentcae1ea691d79ce786e9209cb5917036f42f13d7c (diff)
downloadllvm-d5a8fa72bb41eedbfde7e8124414123c49a2351c.tar.gz
llvm-d5a8fa72bb41eedbfde7e8124414123c49a2351c.tar.bz2
llvm-d5a8fa72bb41eedbfde7e8124414123c49a2351c.tar.xz
Add Rpass-missed and Rpass-analysis reports to the loop vectorizer. The remarks give the vector width of vectorized loops and a brief analysis of loops that fail to be vectorized. For example, an analysis will be generated for loops containing control flow that cannot be simplified to a select. The optimization remarks also give the debug location of expressions that cannot be vectorized, for example the location of an unvectorizable call.
Reviewed by: Arnold Schwaighofer git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211721 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp207
1 files changed, 183 insertions, 24 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index 27452825c7..cb8a41dbea 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -209,6 +209,29 @@ namespace {
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
+/// Optimization analysis message produced during vectorization. Messages inform
+/// the user why vectorization did not occur.
+class Report {
+ std::string Message;
+ raw_string_ostream Out;
+ Instruction *Instr;
+
+public:
+ Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
+ Out << "loop not vectorized: ";
+ }
+
+ template <typename A> Report &operator<<(const A &Value) {
+ Out << Value;
+ return *this;
+ }
+
+ Instruction *getInstr() { return Instr; }
+
+ std::string &str() { return Out.str(); }
+ operator Twine() { return Out.str(); }
+};
+
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
@@ -515,10 +538,12 @@ public:
unsigned NumPredStores;
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
- DominatorTree *DT, TargetLibraryInfo *TLI)
+ DominatorTree *DT, TargetLibraryInfo *TLI,
+ Function *F)
: NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
- DT(DT), TLI(TLI), Induction(nullptr), WidestIndTy(nullptr),
- HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {}
+ DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr),
+ WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
+ }
/// This enum represents the kinds of reductions that we support.
enum ReductionKind {
@@ -747,6 +772,16 @@ private:
/// invariant.
void collectStridedAcccess(Value *LoadOrStoreInst);
+ /// Report an analysis message to assist the user in diagnosing loops that are
+ /// not vectorized.
+ void emitAnalysis(Report &Message) {
+ DebugLoc DL = TheLoop->getStartLoc();
+ if (Instruction *I = Message.getInstr())
+ DL = I->getDebugLoc();
+ emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
+ *TheFunction, DL, Message.str());
+ }
+
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
@@ -757,6 +792,8 @@ private:
DominatorTree *DT;
/// Target Library Info.
TargetLibraryInfo *TLI;
+ /// Parent function
+ Function *TheFunction;
// --- vectorization state --- //
@@ -942,6 +979,29 @@ public:
LoopID = NewLoopID;
}
+ std::string emitRemark() const {
+ Report R;
+ R << "vectorization ";
+ switch (Force) {
+ case LoopVectorizeHints::FK_Disabled:
+ R << "is explicitly disabled";
+ break;
+ case LoopVectorizeHints::FK_Enabled:
+ R << "is explicitly enabled";
+ if (Width != 0 && Unroll != 0)
+ R << " with width " << Width << " and interleave count " << Unroll;
+ else if (Width != 0)
+ R << " with width " << Width;
+ else if (Unroll != 0)
+ R << " with interleave count " << Unroll;
+ break;
+ case LoopVectorizeHints::FK_Undefined:
+ R << "was not specified";
+ break;
+ }
+ return R.str();
+ }
+
unsigned getWidth() const { return Width; }
unsigned getUnroll() const { return Unroll; }
enum ForceKind getForce() const { return Force; }
@@ -1125,18 +1185,37 @@ struct LoopVectorize : public FunctionPass {
: "?")) << " width=" << Hints.getWidth()
<< " unroll=" << Hints.getUnroll() << "\n");
+ // Function containing loop
+ Function *F = L->getHeader()->getParent();
+
+ // Looking at the diagnostic output is the only way to determine if a loop
+ // was vectorized (other than looking at the IR or machine code), so it
+ // is important to generate an optimization remark for each loop. Most of
+ // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
+ // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
+ // less verbose reporting vectorized loops and unvectorized loops that may
+ // benefit from vectorization, respectively.
+
if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
+ emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
+ L->getStartLoc(), Hints.emitRemark());
return false;
}
if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
+ emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
+ L->getStartLoc(), Hints.emitRemark());
return false;
}
if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
+ emitOptimizationRemarkAnalysis(
+ F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
+ "loop not vectorized: vector width and interleave count are "
+ "explicitly set to 1");
return false;
}
@@ -1151,14 +1230,19 @@ struct LoopVectorize : public FunctionPass {
DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
else {
DEBUG(dbgs() << "\n");
+ emitOptimizationRemarkAnalysis(
+ F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
+ "vectorization is not beneficial and is not explicitly forced");
return false;
}
}
// Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
+ LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
+ emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
+ L->getStartLoc(), Hints.emitRemark());
return false;
}
@@ -1167,7 +1251,6 @@ struct LoopVectorize : public FunctionPass {
// Check the function attributes to find out if this function should be
// optimized for size.
- Function *F = L->getHeader()->getParent();
bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
F->hasFnAttribute(Attribute::OptimizeForSize);
@@ -1190,6 +1273,11 @@ struct LoopVectorize : public FunctionPass {
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n");
+ emitOptimizationRemarkAnalysis(
+ F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
+ "loop not vectorized due to NoImplicitFloat attribute");
+ emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
+ L->getStartLoc(), Hints.emitRemark());
return false;
}
@@ -1208,9 +1296,14 @@ struct LoopVectorize : public FunctionPass {
DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
if (VF.Width == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- if (UF == 1)
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
+
+ if (UF == 1) {
+ emitOptimizationRemarkAnalysis(
+ F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
+ "not beneficial to vectorize and user disabled interleaving");
return false;
+ }
DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
// Report the unrolling decision.
@@ -1220,6 +1313,7 @@ struct LoopVectorize : public FunctionPass {
" (vectorization not beneficial)"));
// We decided not to vectorize, but we may want to unroll.
+
InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
Unroller.vectorize(&LVL);
} else {
@@ -3213,8 +3307,10 @@ static bool canIfConvertPHINodes(BasicBlock *BB) {
}
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion)
+ if (!EnableIfConversion) {
+ emitAnalysis(Report() << "if-conversion is disabled");
return false;
+ }
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
@@ -3244,16 +3340,24 @@ bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
BasicBlock *BB = *BI;
// We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator()))
+ if (!isa<BranchInst>(BB->getTerminator())) {
+ emitAnalysis(Report(BB->getTerminator())
+ << "loop contains a switch statement");
return false;
+ }
// We must be able to predicate all blocks that need to be predicated.
if (blockNeedsPredication(BB)) {
- if (!blockCanBePredicated(BB, SafePointes))
+ if (!blockCanBePredicated(BB, SafePointes)) {
+ emitAnalysis(Report(BB->getTerminator())
+ << "control flow cannot be substituted for a select");
return false;
- } else if (BB != Header && !canIfConvertPHINodes(BB))
+ }
+ } else if (BB != Header && !canIfConvertPHINodes(BB)) {
+ emitAnalysis(Report(BB->getTerminator())
+ << "control flow cannot be substituted for a select");
return false;
-
+ }
}
// We can if-convert this loop.
@@ -3263,20 +3367,31 @@ bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
bool LoopVectorizationLegality::canVectorize() {
// We must have a loop in canonical form. Loops with indirectbr in them cannot
// be canonicalized.
- if (!TheLoop->getLoopPreheader())
+ if (!TheLoop->getLoopPreheader()) {
+ emitAnalysis(
+ Report() << "loop control flow is not understood by vectorizer");
return false;
+ }
// We can only vectorize innermost loops.
- if (TheLoop->getSubLoopsVector().size())
+ if (TheLoop->getSubLoopsVector().size()) {
+ emitAnalysis(Report() << "loop is not the innermost loop");
return false;
+ }
// We must have a single backedge.
- if (TheLoop->getNumBackEdges() != 1)
+ if (TheLoop->getNumBackEdges() != 1) {
+ emitAnalysis(
+ Report() << "loop control flow is not understood by vectorizer");
return false;
+ }
// We must have a single exiting block.
- if (!TheLoop->getExitingBlock())
+ if (!TheLoop->getExitingBlock()) {
+ emitAnalysis(
+ Report() << "loop control flow is not understood by vectorizer");
return false;
+ }
// We need to have a loop header.
DEBUG(dbgs() << "LV: Found a loop: " <<
@@ -3292,6 +3407,7 @@ bool LoopVectorizationLegality::canVectorize() {
// ScalarEvolution needs to be able to find the exit count.
const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
if (ExitCount == SE->getCouldNotCompute()) {
+ emitAnalysis(Report() << "could not determine number of loop iterations");
DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
return false;
}
@@ -3385,6 +3501,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
if (!PhiTy->isIntegerTy() &&
!PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy()) {
+ emitAnalysis(Report(it)
+ << "loop control flow is not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
}
@@ -3395,13 +3513,17 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
if (*bb != Header) {
// Check that this instruction has no outside users or is an
// identified reduction value with an outside user.
- if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
continue;
+ emitAnalysis(Report(it) << "value that could not be identified as "
+ "reduction is used outside the loop");
return false;
}
// We only allow if-converted PHIs with more than two incoming values.
if (Phi->getNumIncomingValues() != 2) {
+ emitAnalysis(Report(it)
+ << "control flow not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
@@ -3432,8 +3554,11 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Until we explicitly handle the case of an induction variable with
// an outside loop user we have to give up vectorizing this loop.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
+ emitAnalysis(Report(it) << "use of induction value outside of the "
+ "loop is not handled by vectorizer");
return false;
+ }
continue;
}
@@ -3476,6 +3601,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
continue;
}
+ emitAnalysis(Report(it) << "unvectorizable operation");
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
}// end of PHI handling
@@ -3484,6 +3610,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// calls and we do handle certain intrinsic and libm functions.
CallInst *CI = dyn_cast<CallInst>(it);
if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
+ emitAnalysis(Report(it) << "call instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found a call site.\n");
return false;
}
@@ -3493,6 +3620,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
if (CI &&
hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
+ emitAnalysis(Report(it)
+ << "intrinsic instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
return false;
}
@@ -3502,6 +3631,8 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Also, we can't vectorize extractelement instructions.
if ((!VectorType::isValidElementType(it->getType()) &&
!it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
+ emitAnalysis(Report(it)
+ << "instruction return type cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
return false;
}
@@ -3509,8 +3640,10 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Check that the stored type is vectorizable.
if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T))
+ if (!VectorType::isValidElementType(T)) {
+ emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
return false;
+ }
if (EnableMemAccessVersioning)
collectStridedAcccess(ST);
}
@@ -3521,8 +3654,10 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
+ emitAnalysis(Report(it) << "value cannot be used outside the loop");
return false;
+ }
} // next instr.
@@ -3530,8 +3665,11 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
if (!Induction) {
DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- if (Inductions.empty())
+ if (Inductions.empty()) {
+ emitAnalysis(Report()
+ << "loop induction variable could not be identified");
return false;
+ }
}
return true;
@@ -4438,8 +4576,9 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
continue;
LoadInst *Ld = dyn_cast<LoadInst>(it);
- if (!Ld) return false;
- if (!Ld->isSimple() && !IsAnnotatedParallel) {
+ if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
+ emitAnalysis(Report(Ld)
+ << "read with atomic ordering or volatile read");
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
return false;
}
@@ -4452,8 +4591,13 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// Save 'store' instructions. Abort if other instructions write to memory.
if (it->mayWriteToMemory()) {
StoreInst *St = dyn_cast<StoreInst>(it);
- if (!St) return false;
+ if (!St) {
+ emitAnalysis(Report(it) << "instruction cannot be vectorized");
+ return false;
+ }
if (!St->isSimple() && !IsAnnotatedParallel) {
+ emitAnalysis(Report(St)
+ << "write with atomic ordering or volatile write");
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
return false;
}
@@ -4490,6 +4634,9 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
Value* Ptr = ST->getPointerOperand();
if (isUniform(Ptr)) {
+ emitAnalysis(
+ Report(ST)
+ << "write to a loop invariant address could not be vectorized");
DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
return false;
}
@@ -4568,6 +4715,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
}
if (NeedRTCheck && !CanDoRT) {
+ emitAnalysis(Report() << "cannot identify array bounds");
DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
"the array bounds.\n");
PtrRtCheck.reset();
@@ -4598,6 +4746,14 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// Check that we did not collect too many pointers or found an unsizeable
// pointer.
if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
+ if (!CanDoRT && NumComparisons > 0)
+ emitAnalysis(Report()
+ << "cannot check memory dependencies at runtime");
+ else
+ emitAnalysis(Report()
+ << NumComparisons << " exceeds limit of "
+ << RuntimeMemoryCheckThreshold
+ << " dependent memory operations checked at runtime");
DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
PtrRtCheck.reset();
return false;
@@ -4607,6 +4763,9 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
}
}
+ if (!CanVecMem)
+ emitAnalysis(Report() << "unsafe dependent memory operations in loop");
+
DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
" need a runtime memory check.\n");