summaryrefslogtreecommitdiff
path: root/lib/VMCore/ConstantFold.cpp
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2006-12-23 06:05:41 +0000
committerReid Spencer <rspencer@reidspencer.com>2006-12-23 06:05:41 +0000
commite4d87aa2de6e52952dca73716386db09aad5a8fd (patch)
treece8c6e6ddc845de3585020c856118892f4206593 /lib/VMCore/ConstantFold.cpp
parentadd2bd7f5941537a97a41e037ae2277fbeed0b4f (diff)
downloadllvm-e4d87aa2de6e52952dca73716386db09aad5a8fd.tar.gz
llvm-e4d87aa2de6e52952dca73716386db09aad5a8fd.tar.bz2
llvm-e4d87aa2de6e52952dca73716386db09aad5a8fd.tar.xz
For PR950:
This patch removes the SetCC instructions and replaces them with the ICmp and FCmp instructions. The SetCondInst instruction has been removed and been replaced with ICmpInst and FCmpInst. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32751 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/ConstantFold.cpp')
-rw-r--r--lib/VMCore/ConstantFold.cpp1377
1 files changed, 581 insertions, 796 deletions
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index 8af5b89522..a7438fcde8 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -30,517 +30,6 @@
#include <limits>
using namespace llvm;
-namespace {
- struct VISIBILITY_HIDDEN ConstRules {
- ConstRules() {}
- virtual ~ConstRules() {}
-
- // Binary Operators...
- virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *urem(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *srem(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *frem(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *udiv(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *sdiv(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *fdiv(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *lshr(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *ashr(const Constant *V1, const Constant *V2) const = 0;
- virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
- virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
-
- // ConstRules::get - Return an instance of ConstRules for the specified
- // constant operands.
- //
- static ConstRules &get(const Constant *V1, const Constant *V2);
- private:
- ConstRules(const ConstRules &); // Do not implement
- ConstRules &operator=(const ConstRules &); // Do not implement
- };
-}
-
-
-//===----------------------------------------------------------------------===//
-// TemplateRules Class
-//===----------------------------------------------------------------------===//
-//
-// TemplateRules - Implement a subclass of ConstRules that provides all
-// operations as noops. All other rules classes inherit from this class so
-// that if functionality is needed in the future, it can simply be added here
-// and to ConstRules without changing anything else...
-//
-// This class also provides subclasses with typesafe implementations of methods
-// so that don't have to do type casting.
-//
-namespace {
-template<class ArgType, class SubClassName>
-class VISIBILITY_HIDDEN TemplateRules : public ConstRules {
-
-
- //===--------------------------------------------------------------------===//
- // Redirecting functions that cast to the appropriate types
- //===--------------------------------------------------------------------===//
-
- virtual Constant *add(const Constant *V1, const Constant *V2) const {
- return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *sub(const Constant *V1, const Constant *V2) const {
- return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *mul(const Constant *V1, const Constant *V2) const {
- return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *udiv(const Constant *V1, const Constant *V2) const {
- return SubClassName::UDiv((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *sdiv(const Constant *V1, const Constant *V2) const {
- return SubClassName::SDiv((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *fdiv(const Constant *V1, const Constant *V2) const {
- return SubClassName::FDiv((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *urem(const Constant *V1, const Constant *V2) const {
- return SubClassName::URem((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *srem(const Constant *V1, const Constant *V2) const {
- return SubClassName::SRem((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *frem(const Constant *V1, const Constant *V2) const {
- return SubClassName::FRem((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *op_and(const Constant *V1, const Constant *V2) const {
- return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *op_or(const Constant *V1, const Constant *V2) const {
- return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *op_xor(const Constant *V1, const Constant *V2) const {
- return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *shl(const Constant *V1, const Constant *V2) const {
- return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *lshr(const Constant *V1, const Constant *V2) const {
- return SubClassName::LShr((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *ashr(const Constant *V1, const Constant *V2) const {
- return SubClassName::AShr((const ArgType *)V1, (const ArgType *)V2);
- }
-
- virtual Constant *lessthan(const Constant *V1, const Constant *V2) const {
- return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
- }
- virtual Constant *equalto(const Constant *V1, const Constant *V2) const {
- return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
- }
-
-
- //===--------------------------------------------------------------------===//
- // Default "noop" implementations
- //===--------------------------------------------------------------------===//
-
- static Constant *Add (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *Sub (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *Mul (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *SDiv(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *UDiv(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *FDiv(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *URem(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *SRem(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *FRem(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *And (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *Xor (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *Shl (const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *LShr(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *AShr(const ArgType *V1, const ArgType *V2) { return 0; }
- static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
- return 0;
- }
- static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
- return 0;
- }
-
-public:
- virtual ~TemplateRules() {}
-};
-} // end anonymous namespace
-
-
-//===----------------------------------------------------------------------===//
-// EmptyRules Class
-//===----------------------------------------------------------------------===//
-//
-// EmptyRules provides a concrete base class of ConstRules that does nothing
-//
-namespace {
-struct VISIBILITY_HIDDEN EmptyRules
- : public TemplateRules<Constant, EmptyRules> {
- static Constant *EqualTo(const Constant *V1, const Constant *V2) {
- if (V1 == V2) return ConstantBool::getTrue();
- return 0;
- }
-};
-} // end anonymous namespace
-
-
-
-//===----------------------------------------------------------------------===//
-// BoolRules Class
-//===----------------------------------------------------------------------===//
-//
-// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
-//
-namespace {
-struct VISIBILITY_HIDDEN BoolRules
- : public TemplateRules<ConstantBool, BoolRules> {
-
- static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2) {
- return ConstantBool::get(V1->getValue() < V2->getValue());
- }
-
- static Constant *EqualTo(const Constant *V1, const Constant *V2) {
- return ConstantBool::get(V1 == V2);
- }
-
- static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
- return ConstantBool::get(V1->getValue() & V2->getValue());
- }
-
- static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
- return ConstantBool::get(V1->getValue() | V2->getValue());
- }
-
- static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
- return ConstantBool::get(V1->getValue() ^ V2->getValue());
- }
-};
-} // end anonymous namespace
-
-
-//===----------------------------------------------------------------------===//
-// NullPointerRules Class
-//===----------------------------------------------------------------------===//
-//
-// NullPointerRules provides a concrete base class of ConstRules for null
-// pointers.
-//
-namespace {
-struct VISIBILITY_HIDDEN NullPointerRules
- : public TemplateRules<ConstantPointerNull, NullPointerRules> {
- static Constant *EqualTo(const Constant *V1, const Constant *V2) {
- return ConstantBool::getTrue(); // Null pointers are always equal
- }
-};
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// ConstantPackedRules Class
-//===----------------------------------------------------------------------===//
-
-/// DoVectorOp - Given two packed constants and a function pointer, apply the
-/// function pointer to each element pair, producing a new ConstantPacked
-/// constant.
-static Constant *EvalVectorOp(const ConstantPacked *V1,
- const ConstantPacked *V2,
- Constant *(*FP)(Constant*, Constant*)) {
- std::vector<Constant*> Res;
- for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
- Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
- const_cast<Constant*>(V2->getOperand(i))));
- return ConstantPacked::get(Res);
-}
-
-/// PackedTypeRules provides a concrete base class of ConstRules for
-/// ConstantPacked operands.
-///
-namespace {
-struct VISIBILITY_HIDDEN ConstantPackedRules
- : public TemplateRules<ConstantPacked, ConstantPackedRules> {
-
- static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getAdd);
- }
- static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getSub);
- }
- static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getMul);
- }
- static Constant *UDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getUDiv);
- }
- static Constant *SDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getSDiv);
- }
- static Constant *FDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getFDiv);
- }
- static Constant *URem(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getURem);
- }
- static Constant *SRem(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getSRem);
- }
- static Constant *FRem(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getFRem);
- }
- static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getAnd);
- }
- static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getOr);
- }
- static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) {
- return EvalVectorOp(V1, V2, ConstantExpr::getXor);
- }
- static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){
- return 0;
- }
- static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) {
- for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) {
- Constant *C =
- ConstantExpr::getSetEQ(const_cast<Constant*>(V1->getOperand(i)),
- const_cast<Constant*>(V2->getOperand(i)));
- if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
- return CB;
- }
- // Otherwise, could not decide from any element pairs.
- return 0;
- }
-};
-} // end anonymous namespace
-
-
-//===----------------------------------------------------------------------===//
-// GeneralPackedRules Class
-//===----------------------------------------------------------------------===//
-
-/// GeneralPackedRules provides a concrete base class of ConstRules for
-/// PackedType operands, where both operands are not ConstantPacked. The usual
-/// cause for this is that one operand is a ConstantAggregateZero.
-///
-namespace {
-struct VISIBILITY_HIDDEN GeneralPackedRules
- : public TemplateRules<Constant, GeneralPackedRules> {
-};
-} // end anonymous namespace
-
-
-//===----------------------------------------------------------------------===//
-// DirectIntRules Class
-//===----------------------------------------------------------------------===//
-//
-// DirectIntRules provides implementations of functions that are valid on
-// integer types, but not all types in general.
-//
-namespace {
-template <class BuiltinType, Type **Ty>
-struct VISIBILITY_HIDDEN DirectIntRules
- : public TemplateRules<ConstantInt, DirectIntRules<BuiltinType, Ty> > {
-
- static Constant *Add(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R = (BuiltinType)V1->getZExtValue() +
- (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *Sub(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R = (BuiltinType)V1->getZExtValue() -
- (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *Mul(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R = (BuiltinType)V1->getZExtValue() *
- (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *LessThan(const ConstantInt *V1, const ConstantInt *V2) {
- bool R = (BuiltinType)V1->getZExtValue() < (BuiltinType)V2->getZExtValue();
- return ConstantBool::get(R);
- }
-
- static Constant *EqualTo(const ConstantInt *V1, const ConstantInt *V2) {
- bool R = (BuiltinType)V1->getZExtValue() == (BuiltinType)V2->getZExtValue();
- return ConstantBool::get(R);
- }
-
- static Constant *UDiv(const ConstantInt *V1, const ConstantInt *V2) {
- if (V2->isNullValue()) // X / 0
- return 0;
- BuiltinType R = (BuiltinType)(V1->getZExtValue() / V2->getZExtValue());
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *SDiv(const ConstantInt *V1, const ConstantInt *V2) {
- if (V2->isNullValue()) // X / 0
- return 0;
- if (V2->isAllOnesValue() && // MIN_INT / -1
- (BuiltinType)V1->getSExtValue() == -(BuiltinType)V1->getSExtValue())
- return 0;
- BuiltinType R = (BuiltinType)(V1->getSExtValue() / V2->getSExtValue());
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *URem(const ConstantInt *V1,
- const ConstantInt *V2) {
- if (V2->isNullValue()) return 0; // X / 0
- BuiltinType R = (BuiltinType)(V1->getZExtValue() % V2->getZExtValue());
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *SRem(const ConstantInt *V1,
- const ConstantInt *V2) {
- if (V2->isNullValue()) return 0; // X % 0
- if (V2->isAllOnesValue() && // MIN_INT % -1
- (BuiltinType)V1->getSExtValue() == -(BuiltinType)V1->getSExtValue())
- return 0;
- BuiltinType R = (BuiltinType)(V1->getSExtValue() % V2->getSExtValue());
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *And(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R =
- (BuiltinType)V1->getZExtValue() & (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
- static Constant *Or(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R =
- (BuiltinType)V1->getZExtValue() | (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
- static Constant *Xor(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R =
- (BuiltinType)V1->getZExtValue() ^ (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *Shl(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R =
- (BuiltinType)V1->getZExtValue() << (BuiltinType)V2->getZExtValue();
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *LShr(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R = BuiltinType(V1->getZExtValue() >> V2->getZExtValue());
- return ConstantInt::get(*Ty, R);
- }
-
- static Constant *AShr(const ConstantInt *V1, const ConstantInt *V2) {
- BuiltinType R = BuiltinType(V1->getSExtValue() >> V2->getZExtValue());
- return ConstantInt::get(*Ty, R);
- }
-};
-} // end anonymous namespace
-
-
-//===----------------------------------------------------------------------===//
-// DirectFPRules Class
-//===----------------------------------------------------------------------===//
-//
-/// DirectFPRules provides implementations of functions that are valid on
-/// floating point types, but not all types in general.
-///
-namespace {
-template <class BuiltinType, Type **Ty>
-struct VISIBILITY_HIDDEN DirectFPRules
- : public TemplateRules<ConstantFP, DirectFPRules<BuiltinType, Ty> > {
-
- static Constant *Add(const ConstantFP *V1, const ConstantFP *V2) {
- BuiltinType R = (BuiltinType)V1->getValue() +
- (BuiltinType)V2->getValue();
- return ConstantFP::get(*Ty, R);
- }
-
- static Constant *Sub(const ConstantFP *V1, const ConstantFP *V2) {
- BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
- return ConstantFP::get(*Ty, R);
- }
-
- static Constant *Mul(const ConstantFP *V1, const ConstantFP *V2) {
- BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
- return ConstantFP::get(*Ty, R);
- }
-
- static Constant *LessThan(const ConstantFP *V1, const ConstantFP *V2) {
- bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
- return ConstantBool::get(R);
- }
-
- static Constant *EqualTo(const ConstantFP *V1, const ConstantFP *V2) {
- bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
- return ConstantBool::get(R);
- }
-
- static Constant *FRem(const ConstantFP *V1, const ConstantFP *V2) {
- if (V2->isNullValue()) return 0;
- BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
- (BuiltinType)V2->getValue());
- return ConstantFP::get(*Ty, Result);
- }
- static Constant *FDiv(const ConstantFP *V1, const ConstantFP *V2) {
- BuiltinType inf = std::numeric_limits<BuiltinType>::infinity();
- if (V2->isExactlyValue(0.0)) return ConstantFP::get(*Ty, inf);
- if (V2->isExactlyValue(-0.0)) return ConstantFP::get(*Ty, -inf);
- BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
- return ConstantFP::get(*Ty, R);
- }
-};
-} // end anonymous namespace
-
-static ManagedStatic<EmptyRules> EmptyR;
-static ManagedStatic<BoolRules> BoolR;
-static ManagedStatic<NullPointerRules> NullPointerR;
-static ManagedStatic<ConstantPackedRules> ConstantPackedR;
-static ManagedStatic<GeneralPackedRules> GeneralPackedR;
-static ManagedStatic<DirectIntRules<signed char , &Type::SByteTy> > SByteR;
-static ManagedStatic<DirectIntRules<unsigned char , &Type::UByteTy> > UByteR;
-static ManagedStatic<DirectIntRules<signed short , &Type::ShortTy> > ShortR;
-static ManagedStatic<DirectIntRules<unsigned short, &Type::UShortTy> > UShortR;
-static ManagedStatic<DirectIntRules<signed int , &Type::IntTy> > IntR;
-static ManagedStatic<DirectIntRules<unsigned int , &Type::UIntTy> > UIntR;
-static ManagedStatic<DirectIntRules<int64_t , &Type::LongTy> > LongR;
-static ManagedStatic<DirectIntRules<uint64_t , &Type::ULongTy> > ULongR;
-static ManagedStatic<DirectFPRules <float , &Type::FloatTy> > FloatR;
-static ManagedStatic<DirectFPRules <double , &Type::DoubleTy> > DoubleR;
-
-/// ConstRules::get - This method returns the constant rules implementation that
-/// implements the semantics of the two specified constants.
-ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
- if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
- isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
- isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return *EmptyR;
-
- switch (V1->getType()->getTypeID()) {
- default: assert(0 && "Unknown value type for constant folding!");
- case Type::BoolTyID: return *BoolR;
- case Type::PointerTyID: return *NullPointerR;
- case Type::SByteTyID: return *SByteR;
- case Type::UByteTyID: return *UByteR;
- case Type::ShortTyID: return *ShortR;
- case Type::UShortTyID: return *UShortR;
- case Type::IntTyID: return *IntR;
- case Type::UIntTyID: return *UIntR;
- case Type::LongTyID: return *LongR;
- case Type::ULongTyID: return *ULongR;
- case Type::FloatTyID: return *FloatR;
- case Type::DoubleTyID: return *DoubleR;
- case Type::PackedTyID:
- if (isa<ConstantPacked>(V1) && isa<ConstantPacked>(V2))
- return *ConstantPackedR;
- return *GeneralPackedR; // Constant folding rules for ConstantAggregateZero.
- }
-}
-
-
//===----------------------------------------------------------------------===//
// ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//
@@ -919,6 +408,275 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
return 0;
}
+/// EvalVectorOp - Given two packed constants and a function pointer, apply the
+/// function pointer to each element pair, producing a new ConstantPacked
+/// constant.
+static Constant *EvalVectorOp(const ConstantPacked *V1,
+ const ConstantPacked *V2,
+ Constant *(*FP)(Constant*, Constant*)) {
+ std::vector<Constant*> Res;
+ for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
+ Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
+ const_cast<Constant*>(V2->getOperand(i))));
+ return ConstantPacked::get(Res);
+}
+
+Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
+ const Constant *C1,
+ const Constant *C2) {
+ // Handle UndefValue up front
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ return UndefValue::get(C1->getType());
+ case Instruction::Mul:
+ case Instruction::And:
+ return Constant::getNullValue(C1->getType());
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ if (!isa<UndefValue>(C2)) // undef / X -> 0
+ return Constant::getNullValue(C1->getType());
+ return const_cast<Constant*>(C2); // X / undef -> undef
+ case Instruction::Or: // X | undef -> -1
+ return ConstantInt::getAllOnesValue(C1->getType());
+ case Instruction::LShr:
+ if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
+ return const_cast<Constant*>(C1); // undef lshr undef -> undef
+ return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
+ // undef lshr X -> 0
+ case Instruction::AShr:
+ if (!isa<UndefValue>(C2))
+ return const_cast<Constant*>(C1); // undef ashr X --> undef
+ else if (isa<UndefValue>(C1))
+ return const_cast<Constant*>(C1); // undef ashr undef -> undef
+ else
+ return const_cast<Constant*>(C1); // X ashr undef --> X
+ case Instruction::Shl:
+ // undef << X -> 0 or X << undef -> 0
+ return Constant::getNullValue(C1->getType());
+ }
+ }
+
+ if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ if (isa<ConstantExpr>(C2)) {
+ // There are many possible foldings we could do here. We should probably
+ // at least fold add of a pointer with an integer into the appropriate
+ // getelementptr. This will improve alias analysis a bit.
+ } else {
+ // Just implement a couple of simple identities.
+ switch (Opcode) {
+ case Instruction::Add:
+ if (C2->isNullValue()) return const_cast<Constant*>(C1); // X + 0 == X
+ break;
+ case Instruction::Sub:
+ if (C2->isNullValue()) return const_cast<Constant*>(C1); // X - 0 == X
+ break;
+ case Instruction::Mul:
+ if (C2->isNullValue()) return const_cast<Constant*>(C2); // X * 0 == 0
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
+ if (CI->getZExtValue() == 1)
+ return const_cast<Constant*>(C1); // X * 1 == X
+ break;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
+ if (CI->getZExtValue() == 1)
+ return const_cast<Constant*>(C1); // X / 1 == X
+ break;
+ case Instruction::URem:
+ case Instruction::SRem:
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
+ if (CI->getZExtValue() == 1)
+ return Constant::getNullValue(CI->getType()); // X % 1 == 0
+ break;
+ case Instruction::And:
+ if (cast<ConstantIntegral>(C2)->isAllOnesValue())
+ return const_cast<Constant*>(C1); // X & -1 == X
+ if (C2->isNullValue()) return const_cast<Constant*>(C2); // X & 0 == 0
+ if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
+ GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
+
+ // Functions are at least 4-byte aligned. If and'ing the address of a
+ // function with a constant < 4, fold it to zero.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
+ if (CI->getZExtValue() < 4 && isa<Function>(CPR))
+ return Constant::getNullValue(CI->getType());
+ }
+ break;
+ case Instruction::Or:
+ if (C2->isNullValue()) return const_cast<Constant*>(C1); // X | 0 == X
+ if (cast<ConstantIntegral>(C2)->isAllOnesValue())
+ return const_cast<Constant*>(C2); // X | -1 == -1
+ break;
+ case Instruction::Xor:
+ if (C2->isNullValue()) return const_cast<Constant*>(C1); // X ^ 0 == X
+ break;
+ }
+ }
+ } else if (isa<ConstantExpr>(C2)) {
+ // If C2 is a constant expr and C1 isn't, flop them around and fold the
+ // other way if possible.
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // No change of opcode required.
+ return ConstantFoldBinaryInstruction(Opcode, C2, C1);
+
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::Sub:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ default: // These instructions cannot be flopped around.
+ return 0;
+ }
+ }
+
+ // At this point we know neither constant is an UndefValue nor a ConstantExpr
+ // so look at directly computing the
+ if (const ConstantBool *CB1 = dyn_cast<ConstantBool>(C1)) {
+ if (const ConstantBool *CB2 = dyn_cast<ConstantBool>(C2)) {
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::And:
+ return ConstantBool::get(CB1->getValue() & CB2->getValue());
+ case Instruction::Or:
+ return ConstantBool::get(CB1->getValue() | CB2->getValue());
+ case Instruction::Xor:
+ return ConstantBool::get(CB1->getValue() ^ CB2->getValue());
+ }
+ }
+ } else if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
+ if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ uint64_t C1Val = CI1->getZExtValue();
+ uint64_t C2Val = CI2->getZExtValue();
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::Add:
+ return ConstantInt::get(C1->getType(), C1Val + C2Val);
+ case Instruction::Sub:
+ return ConstantInt::get(C1->getType(), C1Val - C2Val);
+ case Instruction::Mul:
+ return ConstantInt::get(C1->getType(), C1Val * C2Val);
+ case Instruction::UDiv:
+ if (CI2->isNullValue()) // X / 0 -> can't fold
+ return 0;
+ return ConstantInt::get(C1->getType(), C1Val / C2Val);
+ case Instruction::SDiv:
+ if (CI2->isNullValue()) return 0; // X / 0 -> can't fold
+ if (CI2->isAllOnesValue() &&
+ (((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
+ (CI1->getSExtValue() == INT64_MIN)) ||
+ (CI1->getSExtValue() == -CI1->getSExtValue())))
+ return 0; // MIN_INT / -1 -> overflow
+ return ConstantInt::get(C1->getType(),
+ CI1->getSExtValue() / CI2->getSExtValue());
+ case Instruction::URem:
+ if (C2->isNullValue()) return 0; // X / 0 -> can't fold
+ return ConstantInt::get(C1->getType(), C1Val % C2Val);
+ case Instruction::SRem:
+ if (CI2->isNullValue()) return 0; // X % 0 -> can't fold
+ if (CI2->isAllOnesValue() &&
+ (((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
+ (CI1->getSExtValue() == INT64_MIN)) ||
+ (CI1->getSExtValue() == -CI1->getSExtValue())))
+ return 0; // MIN_INT % -1 -> overflow
+ return ConstantInt::get(C1->getType(),
+ CI1->getSExtValue() % CI2->getSExtValue());
+ case Instruction::And:
+ return ConstantInt::get(C1->getType(), C1Val & C2Val);
+ case Instruction::Or:
+ return ConstantInt::get(C1->getType(), C1Val | C2Val);
+ case Instruction::Xor:
+ return ConstantInt::get(C1->getType(), C1Val ^ C2Val);
+ case Instruction::Shl:
+ return ConstantInt::get(C1->getType(), C1Val << C2Val);
+ case Instruction::LShr:
+ return ConstantInt::get(C1->getType(), C1Val >> C2Val);
+ case Instruction::AShr:
+ return ConstantInt::get(C1->getType(),
+ CI1->getSExtValue() >> C2Val);
+ }
+ }
+ } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
+ if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
+ double C1Val = CFP1->getValue();
+ double C2Val = CFP2->getValue();
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::Add:
+ return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
+ case Instruction::Sub:
+ return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
+ case Instruction::Mul:
+ return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
+ case Instruction::FDiv:
+ if (CFP2->isExactlyValue(0.0))
+ return ConstantFP::get(CFP1->getType(),
+ std::numeric_limits<double>::infinity());
+ if (CFP2->isExactlyValue(-0.0))
+ return ConstantFP::get(CFP1->getType(),
+ -std::numeric_limits<double>::infinity());
+ return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
+ case Instruction::FRem:
+ if (CFP2->isNullValue())
+ return 0;
+ return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
+ }
+ }
+ } else if (const ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
+ if (const ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::Add:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getAdd);
+ case Instruction::Sub:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getSub);
+ case Instruction::Mul:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getMul);
+ case Instruction::UDiv:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getUDiv);
+ case Instruction::SDiv:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getSDiv);
+ case Instruction::FDiv:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getFDiv);
+ case Instruction::URem:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getURem);
+ case Instruction::SRem:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getSRem);
+ case Instruction::FRem:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getFRem);
+ case Instruction::And:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getAnd);
+ case Instruction::Or:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getOr);
+ case Instruction::Xor:
+ return EvalVectorOp(CP1, CP2, ConstantExpr::getXor);
+ }
+ }
+ }
+
+ // We don't know how to fold this
+ return 0;
+}
/// isZeroSizedType - This type is zero sized if its an array or structure of
/// zero sized types. The only leaf zero sized type is an empty structure.
@@ -979,62 +737,126 @@ static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
return 1;
}
-/// evaluateRelation - This function determines if there is anything we can
+/// evaluatFCmpeRelation - This function determines if there is anything we can
+/// decide about the two constants provided. This doesn't need to handle simple
+/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
+/// If we can determine that the two constants have a particular relation to
+/// each other, we should return the corresponding FCmpInst predicate,
+/// otherwise return FCmpInst::BAD_FCMP_PREDICATE.
+///
+/// To simplify this code we canonicalize the relation so that the first
+/// operand is always the most "complex" of the two. We consider simple
+/// constants (like ConstantFP) to be the simplest, followed by
+/// GlobalValues, followed by ConstantExpr's (the most complex).
+static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
+ assert(V1->getType() == V2->getType() &&
+ "Cannot compare different types of values!");
+ if (V1 == V2) return FCmpInst::FCMP_OEQ;
+
+ if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
+ if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
+ // We distilled this down to a simple case, use the standard constant
+ // folder.
+ ConstantBool *R = dyn_cast<ConstantBool>(
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
+ if (R && R->getValue())
+ return FCmpInst::FCMP_OEQ;
+ R = dyn_cast<ConstantBool>(
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
+ if (R && R->getValue())
+ return FCmpInst::FCMP_OLT;
+ R = dyn_cast<ConstantBool>(
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
+ if (R && R->getValue()) return FCmpInst::FCMP_OGT;
+
+ // If we couldn't figure it out, bail.
+ return FCmpInst::BAD_FCMP_PREDICATE;
+ }
+
+ // If the first operand is simple, swap operands.
+ FCmpInst::Predicate SwappedPredicate = evaluateFCmpRelation(V2, V1);
+ if (SwappedPredicate != FCmpInst::BAD_FCMP_PREDICATE)
+ return FCmpInst::getSwappedPredicate(SwappedPredicate);
+
+ return FCmpInst::BAD_FCMP_PREDICATE;
+ }
+
+ // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
+ // constantexpr, a CPR, or a simple constant.
+ // ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ // Constant *CE1Op0 = CE1->getOperand(0);
+
+ // There are MANY other foldings that we could perform here. They will
+ // probably be added on demand, as they seem needed.
+ return FCmpInst::BAD_FCMP_PREDICATE;
+}
+
+/// evaluateICmpRelation - This function determines if there is anything we can
/// decide about the two constants provided. This doesn't need to handle simple
/// things like integer comparisons, but should instead handle ConstantExprs
/// and GlobalValues. If we can determine that the two constants have a
-/// particular relation to each other, we should return the corresponding SetCC
-/// code, otherwise return Instruction::BinaryOpsEnd.
+/// particular relation to each other, we should return the corresponding ICmp
+/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two. We consider simple
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
-static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
+static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
+ bool isSigned) {
assert(V1->getType() == V2->getType() &&
"Cannot compare different types of values!");
- if (V1 == V2) return Instruction::SetEQ;
+ if (V1 == V2) return ICmpInst::ICMP_EQ;
if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
// We distilled this down to a simple case, use the standard constant
// folder.
- ConstantBool *R = dyn_cast<ConstantBool>(ConstantExpr::getSetEQ(V1, V2));
- if (R && R->getValue()) return Instruction::SetEQ;
- R = dyn_cast<ConstantBool>(ConstantExpr::getSetLT(V1, V2));
- if (R && R->getValue()) return Instruction::SetLT;
- R = dyn_cast<ConstantBool>(ConstantExpr::getSetGT(V1, V2));
- if (R && R->getValue()) return Instruction::SetGT;
+ ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
+ ConstantBool *R =
+ dyn_cast<ConstantBool>(ConstantExpr::getICmp(pred, V1, V2));
+ if (R && R->getValue())
+ return pred;
+ pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ R = dyn_cast<ConstantBool>(ConstantExpr::getICmp(pred, V1, V2));
+ if (R && R->getValue())
+ return pred;
+ pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ R = dyn_cast<ConstantBool>(ConstantExpr::getICmp(pred, V1, V2));
+ if (R && R->getValue())
+ return pred;
// If we couldn't figure it out, bail.
- return Instruction::BinaryOpsEnd;
+ return ICmpInst::BAD_ICMP_PREDICATE;
}
// If the first operand is simple, swap operands.
- Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
- if (SwappedRelation != Instruction::BinaryOpsEnd)
- return SetCondInst::getSwappedCondition(SwappedRelation);
+ ICmpInst::Predicate SwappedRelation =
+ evaluateICmpRelation(V2, V1, isSigned);
+ if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
+ return ICmpInst::getSwappedPredicate(SwappedRelation);
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
- Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
- if (SwappedRelation != Instruction::BinaryOpsEnd)
- return SetCondInst::getSwappedCondition(SwappedRelation);
+ ICmpInst::Predicate SwappedRelation =
+ evaluateICmpRelation(V2, V1, isSigned);
+ if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
+ return ICmpInst::getSwappedPredicate(SwappedRelation);
else
- return Instruction::BinaryOpsEnd;
+ return ICmpInst::BAD_ICMP_PREDICATE;
}
// Now we know that the RHS is a GlobalValue or simple constant,
// which (since the types must match) means that it's a ConstantPointerNull.
if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
- return Instruction::SetNE;
+ return ICmpInst::ICMP_NE;
} else {
// GlobalVals can never be null.
assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
if (!CPR1->hasExternalWeakLinkage())
- return Instruction::SetNE;
+ return ICmpInst::ICMP_NE;
}
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
@@ -1048,30 +870,39 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
- break; // We don't do anything with floating point.
- case Instruction::ZExt:
- case Instruction::SExt:
+ break; // We can't evaluate floating point casts or truncations.
+
case Instruction::UIToFP:
case Instruction::SIToFP:
- case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::PtrToInt:
// If the cast is not actually changing bits, and the second operand is a
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
- (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral()))
- return evaluateRelation(CE1Op0,
- Constant::getNullValue(CE1Op0->getType()));
+ (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral())) {
+ bool isSigned = CE1->getOpcode() == Instruction::ZExt ? false :
+ (CE1->getOpcode() == Instruction::SExt ? true :
+ (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
+ return evaluateICmpRelation(
+ CE1Op0, Constant::getNullValue(CE1Op0->getType()), isSigned);
+ }
// If the dest type is a pointer type, and the RHS is a constantexpr cast
// from the same type as the src of the LHS, evaluate the inputs. This is
- // important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
+ // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
// which happens a lot in compilers with tagged integers.
if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
- if (isa<PointerType>(CE1->getType()) && CE2->isCast() &&
+ if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
CE1->getOperand(0)->getType()->isIntegral()) {
- return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
+ bool isSigned = CE1->getOpcode() == Instruction::ZExt ? false :
+ (CE1->getOpcode() == Instruction::SExt ? true :
+ (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
+ return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
+ isSigned);
}
break;
@@ -1085,20 +916,20 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
if (GV->hasExternalWeakLinkage())
// Weak linkage GVals could be zero or not. We're comparing that
// to null pointer so its greater-or-equal
- return Instruction::SetGE;
+ return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
else
// If its not weak linkage, the GVal must have a non-zero address
// so the result is greater-than
- return Instruction::SetGT;
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
} else if (isa<ConstantPointerNull>(CE1Op0)) {
// If we are indexing from a null pointer, check to see if we have any
// non-zero indices.
for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
if (!CE1->getOperand(i)->isNullValue())
// Offsetting from null, must not be equal.
- return Instruction::SetGT;
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
// Only zero indexes from null, must still be zero.
- return Instruction::SetEQ;
+ return ICmpInst::ICMP_EQ;
}
// Otherwise, we can't really say if the first operand is null or not.
} else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
@@ -1106,11 +937,11 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
if (CPR2->hasExternalWeakLinkage())
// Weak linkage GVals could be zero or not. We're comparing it to
// a null pointer, so its less-or-equal
- return Instruction::SetLE;
+ return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
else
// If its not weak linkage, the GVal must have a non-zero address
// so the result is less-than
- return Instruction::SetLT;
+ return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
if (CPR1 == CPR2) {
// If this is a getelementptr of the same global, then it must be
@@ -1120,11 +951,11 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
assert(CE1->getNumOperands() == 2 &&
!CE1->getOperand(1)->isNullValue() &&
"Suprising getelementptr!");
- return Instruction::SetGT;
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
} else {
// If they are different globals, we don't know what the value is,
// but they can't be equal.
- return Instruction::SetNE;
+ return ICmpInst::ICMP_NE;
}
}
} else {
@@ -1140,7 +971,7 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
// obviously to the same or different globals.
if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
- return Instruction::SetNE;
+ return ICmpInst::ICMP_NE;
// Ok, we know that both getelementptr instructions are based on the
// same global. From this, we can precisely determine the relative
// ordering of the resultant pointers.
@@ -1152,9 +983,9 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
++i, ++GTI)
switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
GTI.getIndexedType())) {
- case -1: return Instruction::SetLT;
- case 1: return Instruction::SetGT;
- case -2: return Instruction::BinaryOpsEnd;
+ case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
+ case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
+ case -2: return ICmpInst::BAD_ICMP_PREDICATE;
}
// Ok, we ran out of things they have in common. If any leftovers
@@ -1162,283 +993,237 @@ static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
for (; i < CE1->getNumOperands(); ++i)
if (!CE1->getOperand(i)->isNullValue())
if (isa<ConstantIntegral>(CE1->getOperand(i)))
- return Instruction::SetGT;
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
else
- return Instruction::BinaryOpsEnd; // Might be equal.
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
for (; i < CE2->getNumOperands(); ++i)
if (!CE2->getOperand(i)->isNullValue())
if (isa<ConstantIntegral>(CE2->getOperand(i)))
- return Instruction::SetLT;
+ return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
else
- return Instruction::BinaryOpsEnd; // Might be equal.
- return Instruction::SetEQ;
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
+ return ICmpInst::ICMP_EQ;
}
}
}
-
default:
break;
}
}
- return Instruction::BinaryOpsEnd;
+ return ICmpInst::BAD_ICMP_PREDICATE;
}
-Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
- const Constant *V1,
- const Constant *V2) {
- Constant *C = 0;
- switch (Opcode) {
- default: break;
- case Instruction::Add: C = ConstRules::get(V1, V2).add(V1, V2); break;
- case Instruction::Sub: C = ConstRules::get(V1, V2).sub(V1, V2); break;
- case Instruction::Mul: C = ConstRules::get(V1, V2).mul(V1, V2); break;
- case Instruction::UDiv: C = ConstRules::get(V1, V2).udiv(V1, V2); break;
- case Instruction::SDiv: C = ConstRules::get(V1, V2).sdiv(V1, V2); break;
- case Instruction::FDiv: C = ConstRules::get(V1, V2).fdiv(V1, V2); break;
- case Instruction::URem: C = ConstRules::get(V1, V2).urem(V1, V2); break;
- case Instruction::SRem: C = ConstRules::get(V1, V2).srem(V1, V2); break;
- case Instruction::FRem: C = ConstRules::get(V1, V2).frem(V1, V2); break;
- case Instruction::And: C = ConstRules::get(V1, V2).op_and(V1, V2); break;
- case Instruction::Or: C = ConstRules::get(V1, V2).op_or (V1, V2); break;
- case Instruction::Xor: C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
- case Instruction::Shl: C = ConstRules::get(V1, V2).shl(V1, V2); break;
- case Instruction::LShr: C = ConstRules::get(V1, V2).lshr(V1, V2); break;
- case Instruction::AShr: C = ConstRules::get(V1, V2).ashr(V1, V2); break;
- case Instruction::SetEQ:
- // SetEQ(null,GV) -> false
- if (V1->isNullValue()) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V2))
- if (!GV->hasExternalWeakLinkage())
- return ConstantBool::getFalse();
- // SetEQ(GV,null) -> false
- } else if (V2->isNullValue()) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1))
- if (!GV->hasExternalWeakLinkage())
+Constant *llvm::ConstantFoldCompareInstruction(unsigned short predicate,
+ Constant *C1, Constant *C2) {
+
+ // Handle some degenerate cases first
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
+ return UndefValue::get(Type::BoolTy);
+
+ // icmp eq/ne(null,GV) -> false/true
+ if (C1->isNullValue()) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
+ if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
+ if (predicate == ICmpInst::ICMP_EQ)
return ConstantBool::getFalse();
- }
- C = ConstRules::get(V1, V2).equalto(V1, V2);
- break;
- case Instruction::SetLT: C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
- case Instruction::SetGT: C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
- case Instruction::SetNE:
- // SetNE(null,GV) -> true
- if (V1->isNullValue()) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V2))
- if (!GV->hasExternalWeakLinkage())
+ else if (predicate == ICmpInst::ICMP_NE)
return ConstantBool::getTrue();
- // SetNE(GV,null) -> true
- } else if (V2->isNullValue()) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1))
- if (!GV->hasExternalWeakLinkage())
+ // icmp eq/ne(GV,null) -> false/true
+ } else if (C2->isNullValue()) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
+ if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
+ if (predicate == ICmpInst::ICMP_EQ)
+ return ConstantBool::getFalse();
+ else if (predicate == ICmpInst::ICMP_NE)
return ConstantBool::getTrue();
- }
- // V1 != V2 === !(V1 == V2)
- C = ConstRules::get(V1, V2).equalto(V1, V2);
- if (C) return ConstantExpr::getNot(C);
- break;
- case Instruction::SetLE: // V1 <= V2 === !(V2 < V1)
- C = ConstRules::get(V1, V2).lessthan(V2, V1);
- if (C) return ConstantExpr::getNot(C);
- break;
- case Instruction::SetGE: // V1 >= V2 === !(V1 < V2)
- C = ConstRules::get(V1, V2).lessthan(V1, V2);
- if (C) return ConstantExpr::getNot(C);
- break;
}
- // If we successfully folded the expression, return it now.
- if (C) return C;
-
- if (SetCondInst::isComparison(Opcode)) {
- if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return UndefValue::get(Type::BoolTy);
- switch (evaluateRelation(const_cast<Constant*>(V1),
- const_cast<Constant*>(V2))) {
- default: assert(0 && "Unknown relational!");
- case Instruction::BinaryOpsEnd:
- break; // Couldn't determine anything about these constants.
- case Instruction::SetEQ: // We know the constants are equal!
- // If we know the constants are equal, we can decide the result of this
- // computation precisely.
- return ConstantBool::get(Opcode == Instruction::SetEQ ||
- Opcode == Instruction::SetLE ||
- Opcode == Instruction::SetGE);
- case Instruction::SetLT:
- // If we know that V1 < V2, we can decide the result of this computation
- // precisely.
- return ConstantBool::get(Opcode == Instruction::SetLT ||
- Opcode == Instruction::SetNE ||
- Opcode == Instruction::SetLE);
- case Instruction::SetGT:
- // If we know that V1 > V2, we can decide the result of this computation
- // precisely.
- return ConstantBool::get(Opcode == Instruction::SetGT ||
- Opcode == Instruction::SetNE ||
- Opcode == Instruction::SetGE);
- case Instruction::SetLE:
- // If we know that V1 <= V2, we can only partially decide this relation.
- if (Opcode == Instruction::SetGT) return ConstantBool::getFalse();
- if (Opcode == Instruction::SetLT) return ConstantBool::getTrue();
- break;
-
- case Instruction::SetGE:
- // If we know that V1 >= V2, we can only partially decide this relation.
- if (Opcode == Instruction::SetLT) return ConstantBool::getFalse();
- if (Opcode == Instruction::SetGT) return ConstantBool::getTrue();
- break;
-
- case Instruction::SetNE:
- // If we know that V1 != V2, we can only partially decide this relation.
- if (Opcode == Instruction::SetEQ) return ConstantBool::getFalse();
- if (Opcode == Instruction::SetNE) return ConstantBool::getTrue();
- break;
+ if (isa<ConstantBool>(C1) && isa<ConstantBool>(C2)) {
+ bool C1Val = cast<ConstantBool>(C1)->getValue();
+ bool C2Val = cast<ConstantBool>(C2)->getValue();
+ switch (predicate) {
+ default: assert(0 && "Invalid ICmp Predicate"); return 0;
+ case ICmpInst::ICMP_EQ: return ConstantBool::get(C1Val == C2Val);
+ case ICmpInst::ICMP_NE: return ConstantBool::get(C1Val != C2Val);
+ case ICmpInst::ICMP_ULT:return ConstantBool::get(C1Val < C2Val);
+ case ICmpInst::ICMP_UGT:return ConstantBool::get(C1Val > C2Val);
+ case ICmpInst::ICMP_ULE:return ConstantBool::get(C1Val <= C2Val);
+ case ICmpInst::ICMP_UGE:return ConstantBool::get(C1Val >= C2Val);
+ case ICmpInst::ICMP_SLT:return ConstantBool::get(C1Val < C2Val);
+ case ICmpInst::ICMP_SGT:return ConstantBool::get(C1Val > C2Val);
+ case ICmpInst::ICMP_SLE:return ConstantBool::get(C1Val <= C2Val);
+ case ICmpInst::ICMP_SGE:return ConstantBool::get(C1Val >= C2Val);
}
- }
-
- if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
- switch (Opcode) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor:
- return UndefValue::get(V1->getType());
-
- case Instruction::Mul:
- case Instruction::And:
- return Constant::getNullValue(V1->getType());
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- if (!isa<UndefValue>(V2)) // undef / X -> 0
- return Constant::getNullValue(V1->getType());
- return const_cast<Constant*>(V2); // X / undef -> undef
- case Instruction::Or: // X | undef -> -1
- return ConstantInt::getAllOnesValue(V1->getType());
- case Instruction::LShr:
- if (isa<UndefValue>(V2) && isa<UndefValue>(V1))
- return const_cast<Constant*>(V1); // undef lshr undef -> undef
- return Constant::getNullValue(V1->getType()); // X lshr undef -> 0
- // undef lshr X -> 0
- case Instruction::AShr:
- if (!isa<UndefValue>(V2))
- return const_cast<Constant*>(V1); // undef ashr X --> undef
- else if (isa<UndefValue>(V1))
- return const_cast<Constant*>(V1); // undef ashr undef -> undef
- else
- return const_cast<Constant*>(V1); // X ashr undef --> X
- case Instruction::Shl:
- // undef << X -> 0 or X << undef -> 0
- return Constant::getNullValue(V1->getType());
- }
- }
-
- if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
- if (isa<ConstantExpr>(V2)) {
- // There are many possible foldings we could do here. We should probably
- // at least fold add of a pointer with an integer into the appropriate
- // getelementptr. This will improve alias analysis a bit.
+ } else if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
+ if (ICmpInst::isSignedPredicate(ICmpInst::Predicate(predicate))) {
+ int64_t V1 = cast<ConstantInt>(C1)->getSExtValue();
+ int64_t V2 = cast<ConstantInt>(C2)->getSExtValue();
+ switch (predicate) {
+ default: assert(0 && "Invalid ICmp Predicate"); return 0;
+ case ICmpInst::ICMP_SLT:return ConstantBool::get(V1 < V2);
+ case ICmpInst::ICMP_SGT:return ConstantBool::get(V1 > V2);
+ case ICmpInst::ICMP_SLE:return ConstantBool::get(V1 <= V2);
+ case ICmpInst::ICMP_SGE:return ConstantBool::get(V1 >= V2);
+ }
} else {
- // Just implement a couple of simple identities.
- switch (Opcode) {
- case Instruction::Add:
- if (V2->isNullValue()) return const_cast<Constant*>(V1); // X + 0 == X
- break;
- case Instruction::Sub:
- if (V2->isNullValue()) return const_cast<Constant*>(V1); // X - 0 == X
- break;
- case Instruction::Mul:
- if (V2->isNullValue()) return const_cast<Constant*>(V2); // X * 0 == 0
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
- if (CI->getZExtValue() == 1)
- return const_cast<Constant*>(V1); // X * 1 == X
- break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
- if (CI->getZExtValue() == 1)
- return const_cast<Constant*>(V1); // X / 1 == X
- break;
- case Instruction::URem:
- case Instruction::SRem:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
- if (CI->getZExtValue() == 1)
- return Constant::getNullValue(CI->getType()); // X % 1 == 0
- break;
- case Instruction::And:
- if (cast<ConstantIntegral>(V2)->isAllOnesValue())
- return const_cast<Constant*>(V1); // X & -1 == X
- if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
- if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
- GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
-
- // Functions are at least 4-byte aligned. If and'ing the address of a
- // function with a constant < 4, fold it to zero.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
- if (CI->getZExtValue() < 4 && isa<Function>(CPR))
- return Constant::getNullValue(CI->getType());
+ uint64_t V1 = cast<ConstantInt>(C1)->getZExtValue();
+ uint64_t V2 = cast<ConstantInt>(C2)->getZExtValue();
+ switch (predicate) {
+ default: assert(0 && "Invalid ICmp Predicate"); return 0;
+ case ICmpInst::ICMP_EQ: return ConstantBool::get(V1 == V2);
+ case ICmpInst::ICMP_NE: return ConstantBool::get(V1 != V2);
+ case ICmpInst::ICMP_ULT:return ConstantBool::get(V1 < V2);
+ case ICmpInst::ICMP_UGT:return ConstantBool::get(V1 > V2);
+ case ICmpInst::ICMP_ULE:return ConstantBool::get(V1 <= V2);
+ case ICmpInst::ICMP_UGE:return ConstantBool::get(V1 >= V2);
+ }
+ }
+ } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
+ double C1Val = cast<ConstantFP>(C1)->getValue();
+ double C2Val = cast<ConstantFP>(C2)->getValue();
+ switch (predicate) {
+ default: assert(0 && "Invalid FCmp Predicate"); return 0;
+ case FCmpInst::FCMP_FALSE: return ConstantBool::getFalse();
+ case FCmpInst::FCMP_TRUE: return ConstantBool::getTrue();
+ case FCmpInst::FCMP_UNO:
+ case FCmpInst::FCMP_ORD: break; // Can't fold these
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_OEQ: return ConstantBool::get(C1Val == C2Val);
+ case FCmpInst::FCMP_ONE:
+ case FCmpInst::FCMP_UNE: return ConstantBool::get(C1Val != C2Val);
+ case FCmpInst::FCMP_OLT:
+ case FCmpInst::FCMP_ULT: return ConstantBool::get(C1Val < C2Val);
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_OGT: return ConstantBool::get(C1Val > C2Val);
+ case FCmpInst::FCMP_OLE:
+ case FCmpInst::FCMP_ULE: return ConstantBool::get(C1Val <= C2Val);
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGE: return ConstantBool::get(C1Val >= C2Val);
+ }
+ } else if (ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
+ if (ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
+ if (predicate == FCmpInst::FCMP_OEQ || predicate == FCmpInst::FCMP_UEQ) {
+ for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
+ Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
+ const_cast<Constant*>(CP1->getOperand(i)),
+ const_cast<Constant*>(CP2->getOperand(i)));
+ if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
+ return CB;
}
- break;
- case Instruction::Or:
- if (V2->isNullValue()) return const_cast<Constant*>(V1); // X | 0 == X
- if (cast<ConstantIntegral>(V2)->isAllOnesValue())
- return const_cast<Constant*>(V2); // X | -1 == -1
- break;
- case Instruction::Xor:
- if (V2->isNullValue()) return const_cast<Constant*>(V1); // X ^ 0 == X
- break;
+ // Otherwise, could not decide from any element pairs.
+ return 0;
+ } else if (predicate == ICmpInst::ICMP_EQ) {
+ for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
+ Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
+ const_cast<Constant*>(CP1->getOperand(i)),
+ const_cast<Constant*>(CP2->getOperand(i)));
+ if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
+ return CB;
+ }
+ // Otherwise, could not decide from any element pairs.
+ return 0;
}
}
+ }
- } else if (isa<ConstantExpr>(V2)) {
- // If V2 is a constant expr and V1 isn't, flop them around and fold the
- // other way if possible.
- switch (Opcode) {
- case Instruction::Add:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::SetEQ:
- case Instruction::SetNE:
- // No change of opcode required.
- return ConstantFoldBinaryInstruction(Opcode, V2, V1);
+ // Evaluate the relation between the two constants, per the predicate.
+ switch (evaluateICmpRelation(const_cast<Constant*>(C1),
+ const_cast<Constant*>(C2),
+ CmpInst::isSigned(predicate))) {
+ default: assert(0 && "Unknown relational!");
+ case ICmpInst::BAD_ICMP_PREDICATE:
+ break; // Couldn't determine anything about these constants.
+ case ICmpInst::ICMP_EQ: // We know the constants are equal!
+ // If we know the constants are equal, we can decide the result of this
+ // computation precisely.
+ return ConstantBool::get(predicate == ICmpInst::ICMP_EQ ||
+ predicate == ICmpInst::ICMP_ULE ||
+ predicate == ICmpInst::ICMP_SLE ||
+ predicate == ICmpInst::ICMP_UGE ||
+ predicate == ICmpInst::ICMP_SGE);
+ case ICmpInst::ICMP_ULT:
+ // If we know that C1 < C2, we can decide the result of this computation
+ // precisely.
+ return ConstantBool::get(predicate == ICmpInst::ICMP_ULT ||
+ predicate == ICmpInst::ICMP_NE ||
+ predicate == ICmpInst::ICMP_ULE);
+ case ICmpInst::ICMP_SLT:
+ // If we know that C1 < C2, we can decide the result of this computation
+ // precisely.
+ return ConstantBool::get(predicate == ICmpInst::ICMP_SLT ||
+ predicate == ICmpInst::ICMP_NE ||
+ predicate == ICmpInst::ICMP_SLE);
+ case ICmpInst::ICMP_UGT:
+ // If we know that C1 > C2, we can decide the result of this computation
+ // precisely.
+ return ConstantBool::get(predicate == ICmpInst::ICMP_UGT ||
+ predicate == ICmpInst::ICMP_NE ||
+ predicate == ICmpInst::ICMP_UGE);
+ case ICmpInst::ICMP_SGT:
+ // If we know that C1 > C2, we can decide the result of this computation
+ // precisely.
+ return ConstantBool::get(predicate == ICmpInst::ICMP_SGT ||
+ predicate == ICmpInst::ICMP_NE ||
+ predicate == ICmpInst::ICMP_SGE);
+ case ICmpInst::ICMP_ULE:
+ // If we know that C1 <= C2, we can only partially decide this relation.
+ if (predicate == ICmpInst::ICMP_UGT) return ConstantBool::getFalse();
+ if (predicate == ICmpInst::ICMP_ULT) return ConstantBool::getTrue();
+ break;
+ case ICmpInst::ICMP_SLE:
+ // If we know that C1 <= C2, we can only partially decide this relation.
+ if (predicate == ICmpInst::ICMP_SGT) return ConstantBool::getFalse();
+ if (predicate == ICmpInst::ICMP_SLT) return ConstantBool::getTrue();
+ break;
- case Instruction::SetLT:
- case Instruction::SetGT:
- case Instruction::SetLE:
- case Instruction::SetGE:
- // Change the opcode as necessary to swap the operands.
- Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
- return ConstantFoldBinaryInstruction(Opcode, V2, V1);
+ case ICmpInst::ICMP_UGE:
+ // If we know that C1 >= C2, we can only partially decide this relation.
+ if (predicate == ICmpInst::ICMP_ULT) return ConstantBool::getFalse();
+ if (predicate == ICmpInst::ICMP_UGT) return ConstantBool::getTrue();
+ break;
+ case ICmpInst::ICMP_SGE:
+ // If we know that C1 >= C2, we can only partially decide this relation.
+ if (predicate == ICmpInst::ICMP_SLT) return ConstantBool::getFalse();
+ if (predicate == ICmpInst::ICMP_SGT) return ConstantBool::getTrue();
+ break;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::Sub:
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- default: // These instructions cannot be flopped around.
+ case ICmpInst::ICMP_NE:
+ // If we know that C1 != C2, we can only partially decide this relation.
+ if (predicate == ICmpInst::ICMP_EQ) return ConstantBool::getFalse();
+ if (predicate == ICmpInst::ICMP_NE) return ConstantBool::getTrue();
+ break;
+ }
+
+ if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
+ // If C2 is a constant expr and C1 isn't, flop them around and fold the
+ // other way if possible.
+ switch (predicate) {
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ // No change of predicate required.
+ return ConstantFoldCompareInstruction(predicate, C2, C1);
+
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_SLE:
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE:
+ // Change the predicate as necessary to swap the operands.
+ predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)predicate);
+ return ConstantFoldCompareInstruction(predicate, C2, C1);
+
+ default: // These predicates cannot be flopped around.
break;
}
}
return 0;
}
-Constant *llvm::ConstantFoldCompare(
- unsigned opcode, Constant *C1, Constant *C2, unsigned short predicate)
-{
- // Place holder for future folding of ICmp and FCmp instructions
- return 0;
-}
-
Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
const std::vector<Value*> &IdxList) {
if (IdxList.size() == 0 ||