summaryrefslogtreecommitdiff
path: root/lib/VMCore/ConstantsContext.h
diff options
context:
space:
mode:
authorOwen Anderson <resistor@mac.com>2009-08-04 22:55:26 +0000
committerOwen Anderson <resistor@mac.com>2009-08-04 22:55:26 +0000
commite2942c0c7da45686b74e8e8248fd84e98fee435e (patch)
tree10fe0b0bccc61dfc964d457ebc889ad4a46b4835 /lib/VMCore/ConstantsContext.h
parent48b2f3e4850cd27d54224cd42da8a160d6b95984 (diff)
downloadllvm-e2942c0c7da45686b74e8e8248fd84e98fee435e.tar.gz
llvm-e2942c0c7da45686b74e8e8248fd84e98fee435e.tar.bz2
llvm-e2942c0c7da45686b74e8e8248fd84e98fee435e.tar.xz
It helps if I remember to actually add the file...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78116 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/ConstantsContext.h')
-rw-r--r--lib/VMCore/ConstantsContext.h774
1 files changed, 774 insertions, 0 deletions
diff --git a/lib/VMCore/ConstantsContext.h b/lib/VMCore/ConstantsContext.h
new file mode 100644
index 0000000000..90a2b6295a
--- /dev/null
+++ b/lib/VMCore/ConstantsContext.h
@@ -0,0 +1,774 @@
+//===---------------- ConstantsContext.h - Implementation ------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various helper methods and classes used by
+// LLVMContextImpl for creating and managing constants.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CONSTANTSCONTEXT_H
+#define LLVM_CONSTANTSCONTEXT_H
+
+#include "llvm/Instructions.h"
+#include "llvm/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/System/Mutex.h"
+#include "llvm/System/RWMutex.h"
+#include <map>
+
+namespace llvm {
+template<class ValType>
+struct ConstantTraits;
+
+/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement unary constant exprs.
+class UnaryConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
+ : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
+ Op<0>() = C;
+ }
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement binary constant exprs.
+class BinaryConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
+ : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// SelectConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement select constant exprs.
+class SelectConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractelement constant exprs.
+class ExtractElementConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ ExtractElementConstantExpr(Constant *C1, Constant *C2)
+ : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
+ Instruction::ExtractElement, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertelement constant exprs.
+class InsertElementConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C1->getType(), Instruction::InsertElement,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ShuffleVectorConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// shufflevector constant exprs.
+class ShuffleVectorConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(VectorType::get(
+ cast<VectorType>(C1->getType())->getElementType(),
+ cast<VectorType>(C3->getType())->getNumElements()),
+ Instruction::ShuffleVector,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractvalue constant exprs.
+class ExtractValueConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ ExtractValueConstantExpr(Constant *Agg,
+ const SmallVector<unsigned, 4> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ }
+
+ /// Indices - These identify which value to extract.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertvalue constant exprs.
+class InsertValueConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ InsertValueConstantExpr(Constant *Agg, Constant *Val,
+ const SmallVector<unsigned, 4> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ Op<1>() = Val;
+ }
+
+ /// Indices - These identify the position for the insertion.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+
+/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
+/// used behind the scenes to implement getelementpr constant exprs.
+class GetElementPtrConstantExpr : public ConstantExpr {
+ GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
+ const Type *DestTy);
+public:
+ static GetElementPtrConstantExpr *Create(Constant *C,
+ const std::vector<Constant*>&IdxList,
+ const Type *DestTy) {
+ return
+ new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+// CompareConstantExpr - This class is private to Constants.cpp, and is used
+// behind the scenes to implement ICmp and FCmp constant expressions. This is
+// needed in order to store the predicate value for these instructions.
+struct CompareConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ unsigned short predicate;
+ CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
+ unsigned short pred, Constant* LHS, Constant* RHS)
+ : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
+ Op<0>() = LHS;
+ Op<1>() = RHS;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+template <>
+struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
+
+
+template <>
+struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
+
+struct ExprMapKeyType {
+ typedef SmallVector<unsigned, 4> IndexList;
+
+ ExprMapKeyType(unsigned opc,
+ const std::vector<Constant*> &ops,
+ unsigned short pred = 0,
+ const IndexList &inds = IndexList())
+ : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
+ uint16_t opcode;
+ uint16_t predicate;
+ std::vector<Constant*> operands;
+ IndexList indices;
+ bool operator==(const ExprMapKeyType& that) const {
+ return this->opcode == that.opcode &&
+ this->predicate == that.predicate &&
+ this->operands == that.operands &&
+ this->indices == that.indices;
+ }
+ bool operator<(const ExprMapKeyType & that) const {
+ return this->opcode < that.opcode ||
+ (this->opcode == that.opcode && this->predicate < that.predicate) ||
+ (this->opcode == that.opcode && this->predicate == that.predicate &&
+ this->operands < that.operands) ||
+ (this->opcode == that.opcode && this->predicate == that.predicate &&
+ this->operands == that.operands && this->indices < that.indices);
+ }
+
+ bool operator!=(const ExprMapKeyType& that) const {
+ return !(*this == that);
+ }
+};
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ValueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
+};
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct ConstantCreator {
+ static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
+};
+
+template<class ConstantClass, class TypeClass>
+struct ConvertConstantType {
+ static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
+ llvm_unreachable("This type cannot be converted!");
+ }
+};
+
+template<>
+struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
+ static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
+ unsigned short pred = 0) {
+ if (Instruction::isCast(V.opcode))
+ return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
+ if ((V.opcode >= Instruction::BinaryOpsBegin &&
+ V.opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::Select)
+ return new SelectConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ExtractElement)
+ return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::InsertElement)
+ return new InsertElementConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ShuffleVector)
+ return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::InsertValue)
+ return new InsertValueConstantExpr(V.operands[0], V.operands[1],
+ V.indices, Ty);
+ if (V.opcode == Instruction::ExtractValue)
+ return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
+ if (V.opcode == Instruction::GetElementPtr) {
+ std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
+ return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
+ }
+
+ // The compare instructions are weird. We have to encode the predicate
+ // value and it is combined with the instruction opcode by multiplying
+ // the opcode by one hundred. We must decode this to get the predicate.
+ if (V.opcode == Instruction::ICmp)
+ return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::FCmp)
+ return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
+ V.operands[0], V.operands[1]);
+ llvm_unreachable("Invalid ConstantExpr!");
+ return 0;
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantExpr, Type> {
+ static void convert(ConstantExpr *OldC, const Type *NewTy) {
+ Constant *New;
+ switch (OldC->getOpcode()) {
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
+ NewTy);
+ break;
+ case Instruction::Select:
+ New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
+ OldC->getOperand(1),
+ OldC->getOperand(2));
+ break;
+ default:
+ assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
+ OldC->getOpcode() < Instruction::BinaryOpsEnd);
+ New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
+ OldC->getOperand(1));
+ break;
+ case Instruction::GetElementPtr:
+ // Make everyone now use a constant of the new type...
+ std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
+ New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
+ &Idx[0], Idx.size());
+ break;
+ }
+
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+// ConstantAggregateZero does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
+ static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
+ return new ConstantAggregateZero(Ty);
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantVector, VectorType> {
+ static void convert(ConstantVector *OldC, const VectorType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = ConstantVector::get(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantAggregateZero, Type> {
+ static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
+ // Make everyone now use a constant of the new type...
+ Constant *New = ConstantAggregateZero::get(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantArray, ArrayType> {
+ static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = ConstantArray::get(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantStruct, StructType> {
+ static void convert(ConstantStruct *OldC, const StructType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = ConstantStruct::get(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+// ConstantPointerNull does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
+ static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
+ return new ConstantPointerNull(Ty);
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantPointerNull, PointerType> {
+ static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ Constant *New = ConstantPointerNull::get(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+// UndefValue does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<UndefValue, Type, ValType> {
+ static UndefValue *create(const Type *Ty, const ValType &V) {
+ return new UndefValue(Ty);
+ }
+};
+
+template<>
+struct ConvertConstantType<UndefValue, Type> {
+ static void convert(UndefValue *OldC, const Type *NewTy) {
+ // Make everyone now use a constant of the new type.
+ Constant *New = UndefValue::get(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<class ValType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ValueMap : public AbstractTypeUser {
+public:
+ typedef std::pair<const Type*, ValType> MapKey;
+ typedef std::map<MapKey, Constant *> MapTy;
+ typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
+ typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+ /// AbstractTypeMap - Map for abstract type constants.
+ ///
+ AbstractTypeMapTy AbstractTypeMap;
+
+ /// ValueMapLock - Mutex for this map.
+ sys::SmartMutex<true> ValueMapLock;
+
+public:
+ // NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ /// NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
+ getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ ConstantClass* Create(const TypeClass *Ty, const ValType &V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ // If the type of the constant is abstract, make sure that an entry
+ // exists for it in the AbstractTypeMap.
+ if (Ty->isAbstract()) {
+ typename AbstractTypeMapTy::iterator TI =
+ AbstractTypeMap.find(Ty);
+
+ if (TI == AbstractTypeMap.end()) {
+ // Add ourselves to the ATU list of the type.
+ cast<DerivedType>(Ty)->addAbstractTypeUser(this);
+
+ AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
+ }
+ }
+
+ return Result;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = 0;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = static_cast<ConstantClass *>(I->second);
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+
+ void remove(ConstantClass *CP) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ // Now that we found the entry, make sure this isn't the entry that
+ // the AbstractTypeMap points to.
+ const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
+ if (Ty->isAbstract()) {
+ assert(AbstractTypeMap.count(Ty) &&
+ "Abstract type not in AbstractTypeMap?");
+ typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
+ if (ATMEntryIt == I) {
+ // Yes, we are removing the representative entry for this type.
+ // See if there are any other entries of the same type.
+ typename MapTy::iterator TmpIt = ATMEntryIt;
+
+ // First check the entry before this one...
+ if (TmpIt != Map.begin()) {
+ --TmpIt;
+ if (TmpIt->first.first != Ty) // Not the same type, move back...
+ ++TmpIt;
+ }
+
+ // If we didn't find the same type, try to move forward...
+ if (TmpIt == ATMEntryIt) {
+ ++TmpIt;
+ if (TmpIt == Map.end() || TmpIt->first.first != Ty)
+ --TmpIt; // No entry afterwards with the same type
+ }
+
+ // If there is another entry in the map of the same abstract type,
+ // update the AbstractTypeMap entry now.
+ if (TmpIt != ATMEntryIt) {
+ ATMEntryIt = TmpIt;
+ } else {
+ // Otherwise, we are removing the last instance of this type
+ // from the table. Remove from the ATM, and from user list.
+ cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
+ AbstractTypeMap.erase(Ty);
+ }
+ }
+ }
+
+ Map.erase(I);
+ }
+
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ /// NOTE: This function is not locked. It is the responsibility of the
+ /// caller to enforce proper synchronization if using this method.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // If this constant is the representative element for its abstract type,
+ // update the AbstractTypeMap so that the representative element is I.
+ if (C->getType()->isAbstract()) {
+ typename AbstractTypeMapTy::iterator ATI =
+ AbstractTypeMap.find(C->getType());
+ assert(ATI != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+ if (ATI->second == OldI)
+ ATI->second = I;
+ }
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename AbstractTypeMapTy::iterator I =
+ AbstractTypeMap.find(cast<Type>(OldTy));
+
+ assert(I != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+
+ // Convert a constant at a time until the last one is gone. The last one
+ // leaving will remove() itself, causing the AbstractTypeMapEntry to be
+ // eliminated eventually.
+ do {
+ ConvertConstantType<ConstantClass,
+ TypeClass>::convert(
+ static_cast<ConstantClass *>(I->second->second),
+ cast<TypeClass>(NewTy));
+
+ I = AbstractTypeMap.find(cast<Type>(OldTy));
+ } while (I != AbstractTypeMap.end());
+ }
+
+ // If the type became concrete without being refined to any other existing
+ // type, we just remove ourselves from the ATU list.
+ void typeBecameConcrete(const DerivedType *AbsTy) {
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ void dump() const {
+ DOUT << "Constant.cpp: ValueMap\n";
+ }
+};
+
+}
+
+#endif