summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorJakob Stoklund Olesen <stoklund@2pi.dk>2010-04-21 18:02:42 +0000
committerJakob Stoklund Olesen <stoklund@2pi.dk>2010-04-21 18:02:42 +0000
commit00207237ddfffe93b275914d086a0c7da1bbf63b (patch)
tree2537086a8c3260ab79ed5ff6094bedd0ce3228cd /lib
parent9cdb4109d5fbbff3b881d3288a6ec518abc7712e (diff)
downloadllvm-00207237ddfffe93b275914d086a0c7da1bbf63b.tar.gz
llvm-00207237ddfffe93b275914d086a0c7da1bbf63b.tar.bz2
llvm-00207237ddfffe93b275914d086a0c7da1bbf63b.tar.xz
Add fast register allocator, enabled with -regalloc=fast.
So far this is just a clone of -regalloc=local that has been lobotomized to run 25% faster. It drops the least-recently-used calculations, and is just plain stupid when it runs out of registers. The plan is to make this go even faster for -O0 by taking advantage of the short live intervals in unoptimized code. It should not be necessary to calculate liveness when most virtual registers are killed 2-3 instructions after they are born. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102006 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/CodeGen/CMakeLists.txt1
-rw-r--r--lib/CodeGen/RegAllocFast.cpp1107
2 files changed, 1108 insertions, 0 deletions
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index 9802423105..3e38872a36 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -50,6 +50,7 @@ add_llvm_library(LLVMCodeGen
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
+ RegAllocFast.cpp
RegAllocLinearScan.cpp
RegAllocLocal.cpp
RegAllocPBQP.cpp
diff --git a/lib/CodeGen/RegAllocFast.cpp b/lib/CodeGen/RegAllocFast.cpp
new file mode 100644
index 0000000000..fb53417c68
--- /dev/null
+++ b/lib/CodeGen/RegAllocFast.cpp
@@ -0,0 +1,1107 @@
+//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This register allocator allocates registers to a basic block at a time,
+// attempting to keep values in registers and reusing registers as appropriate.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "llvm/BasicBlock.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumStores, "Number of stores added");
+STATISTIC(NumLoads , "Number of loads added");
+
+static RegisterRegAlloc
+ fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
+
+namespace {
+ class RAFast : public MachineFunctionPass {
+ public:
+ static char ID;
+ RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
+ private:
+ const TargetMachine *TM;
+ MachineFunction *MF;
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+
+ // StackSlotForVirtReg - Maps virtual regs to the frame index where these
+ // values are spilled.
+ IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
+
+ // Virt2PhysRegMap - This map contains entries for each virtual register
+ // that is currently available in a physical register.
+ IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
+
+ unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
+ return Virt2PhysRegMap[VirtReg];
+ }
+
+ // PhysRegsUsed - This array is effectively a map, containing entries for
+ // each physical register that currently has a value (ie, it is in
+ // Virt2PhysRegMap). The value mapped to is the virtual register
+ // corresponding to the physical register (the inverse of the
+ // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
+ // because it is used by a future instruction, and to -2 if it is not
+ // allocatable. If the entry for a physical register is -1, then the
+ // physical register is "not in the map".
+ //
+ std::vector<int> PhysRegsUsed;
+
+ // UsedInInstr - BitVector of physregs that are used in the current
+ // instruction, and so cannot be allocated.
+ BitVector UsedInInstr;
+
+ // Virt2LastUseMap - This maps each virtual register to its last use
+ // (MachineInstr*, operand index pair).
+ IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
+ Virt2LastUseMap;
+
+ std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+ return Virt2LastUseMap[Reg];
+ }
+
+ // VirtRegModified - This bitset contains information about which virtual
+ // registers need to be spilled back to memory when their registers are
+ // scavenged. If a virtual register has simply been rematerialized, there
+ // is no reason to spill it to memory when we need the register back.
+ //
+ BitVector VirtRegModified;
+
+ // UsedInMultipleBlocks - Tracks whether a particular register is used in
+ // more than one block.
+ BitVector UsedInMultipleBlocks;
+
+ void markVirtRegModified(unsigned Reg, bool Val = true) {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+ Reg -= TargetRegisterInfo::FirstVirtualRegister;
+ if (Val)
+ VirtRegModified.set(Reg);
+ else
+ VirtRegModified.reset(Reg);
+ }
+
+ bool isVirtRegModified(unsigned Reg) const {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+ assert(Reg - TargetRegisterInfo::FirstVirtualRegister <
+ VirtRegModified.size() && "Illegal virtual register!");
+ return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
+ }
+
+ public:
+ virtual const char *getPassName() const {
+ return "Fast Register Allocator";
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequiredID(PHIEliminationID);
+ AU.addRequiredID(TwoAddressInstructionPassID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ /// runOnMachineFunction - Register allocate the whole function
+ bool runOnMachineFunction(MachineFunction &Fn);
+
+ /// AllocateBasicBlock - Register allocate the specified basic block.
+ void AllocateBasicBlock(MachineBasicBlock &MBB);
+
+
+ /// areRegsEqual - This method returns true if the specified registers are
+ /// related to each other. To do this, it checks to see if they are equal
+ /// or if the first register is in the alias set of the second register.
+ ///
+ bool areRegsEqual(unsigned R1, unsigned R2) const {
+ if (R1 == R2) return true;
+ for (const unsigned *AliasSet = TRI->getAliasSet(R2);
+ *AliasSet; ++AliasSet) {
+ if (*AliasSet == R1) return true;
+ }
+ return false;
+ }
+
+ /// getStackSpaceFor - This returns the frame index of the specified virtual
+ /// register on the stack, allocating space if necessary.
+ int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
+
+ /// removePhysReg - This method marks the specified physical register as no
+ /// longer being in use.
+ ///
+ void removePhysReg(unsigned PhysReg);
+
+ /// spillVirtReg - This method spills the value specified by PhysReg into
+ /// the virtual register slot specified by VirtReg. It then updates the RA
+ /// data structures to indicate the fact that PhysReg is now available.
+ ///
+ void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ unsigned VirtReg, unsigned PhysReg);
+
+ /// spillPhysReg - This method spills the specified physical register into
+ /// the virtual register slot associated with it. If OnlyVirtRegs is set to
+ /// true, then the request is ignored if the physical register does not
+ /// contain a virtual register.
+ ///
+ void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+ unsigned PhysReg, bool OnlyVirtRegs = false);
+
+ /// assignVirtToPhysReg - This method updates local state so that we know
+ /// that PhysReg is the proper container for VirtReg now. The physical
+ /// register must not be used for anything else when this is called.
+ ///
+ void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
+
+ /// isPhysRegAvailable - Return true if the specified physical register is
+ /// free and available for use. This also includes checking to see if
+ /// aliased registers are all free...
+ ///
+ bool isPhysRegAvailable(unsigned PhysReg) const;
+
+ /// isPhysRegSpillable - Can PhysReg be freed by spilling?
+ bool isPhysRegSpillable(unsigned PhysReg) const;
+
+ /// getFreeReg - Look to see if there is a free register available in the
+ /// specified register class. If not, return 0.
+ ///
+ unsigned getFreeReg(const TargetRegisterClass *RC);
+
+ /// getReg - Find a physical register to hold the specified virtual
+ /// register. If all compatible physical registers are used, this method
+ /// spills the last used virtual register to the stack, and uses that
+ /// register. If NoFree is true, that means the caller knows there isn't
+ /// a free register, do not call getFreeReg().
+ unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
+ unsigned VirtReg, bool NoFree = false);
+
+ /// reloadVirtReg - This method transforms the specified virtual
+ /// register use to refer to a physical register. This method may do this
+ /// in one of several ways: if the register is available in a physical
+ /// register already, it uses that physical register. If the value is not
+ /// in a physical register, and if there are physical registers available,
+ /// it loads it into a register: PhysReg if that is an available physical
+ /// register, otherwise any physical register of the right class.
+ /// If register pressure is high, and it is possible, it tries to fold the
+ /// load of the virtual register into the instruction itself. It avoids
+ /// doing this if register pressure is low to improve the chance that
+ /// subsequent instructions can use the reloaded value. This method
+ /// returns the modified instruction.
+ ///
+ MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+ unsigned OpNum, SmallSet<unsigned, 4> &RRegs,
+ unsigned PhysReg);
+
+ /// ComputeLocalLiveness - Computes liveness of registers within a basic
+ /// block, setting the killed/dead flags as appropriate.
+ void ComputeLocalLiveness(MachineBasicBlock& MBB);
+
+ void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
+ unsigned PhysReg);
+ };
+ char RAFast::ID = 0;
+}
+
+/// getStackSpaceFor - This allocates space for the specified virtual register
+/// to be held on the stack.
+int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
+ // Find the location Reg would belong...
+ int SS = StackSlotForVirtReg[VirtReg];
+ if (SS != -1)
+ return SS; // Already has space allocated?
+
+ // Allocate a new stack object for this spill location...
+ int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
+ RC->getAlignment());
+
+ // Assign the slot.
+ StackSlotForVirtReg[VirtReg] = FrameIdx;
+ return FrameIdx;
+}
+
+
+/// removePhysReg - This method marks the specified physical register as no
+/// longer being in use.
+///
+void RAFast::removePhysReg(unsigned PhysReg) {
+ PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
+}
+
+
+/// spillVirtReg - This method spills the value specified by PhysReg into the
+/// virtual register slot specified by VirtReg. It then updates the RA data
+/// structures to indicate the fact that PhysReg is now available.
+///
+void RAFast::spillVirtReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned VirtReg, unsigned PhysReg) {
+ assert(VirtReg && "Spilling a physical register is illegal!"
+ " Must not have appropriate kill for the register or use exists beyond"
+ " the intended one.");
+ DEBUG(dbgs() << " Spilling register " << TRI->getName(PhysReg)
+ << " containing %reg" << VirtReg);
+
+ if (!isVirtRegModified(VirtReg)) {
+ DEBUG(dbgs() << " which has not been modified, so no store necessary!");
+ std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
+ if (LastUse.first)
+ LastUse.first->getOperand(LastUse.second).setIsKill();
+ } else {
+ // Otherwise, there is a virtual register corresponding to this physical
+ // register. We only need to spill it into its stack slot if it has been
+ // modified.
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
+ int FrameIndex = getStackSpaceFor(VirtReg, RC);
+ DEBUG(dbgs() << " to stack slot #" << FrameIndex);
+ // If the instruction reads the register that's spilled, (e.g. this can
+ // happen if it is a move to a physical register), then the spill
+ // instruction is not a kill.
+ bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
+ TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
+ ++NumStores; // Update statistics
+ }
+
+ getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
+
+ DEBUG(dbgs() << '\n');
+ removePhysReg(PhysReg);
+}
+
+
+/// spillPhysReg - This method spills the specified physical register into the
+/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
+/// then the request is ignored if the physical register does not contain a
+/// virtual register.
+///
+void RAFast::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+ unsigned PhysReg, bool OnlyVirtRegs) {
+ if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
+ assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
+ if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
+ spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
+ return;
+ }
+
+ // If the selected register aliases any other registers, we must make
+ // sure that one of the aliases isn't alive.
+ for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
+ *AliasSet; ++AliasSet) {
+ if (PhysRegsUsed[*AliasSet] == -1 || // Spill aliased register.
+ PhysRegsUsed[*AliasSet] == -2) // If allocatable.
+ continue;
+
+ if (PhysRegsUsed[*AliasSet])
+ spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
+ }
+}
+
+
+/// assignVirtToPhysReg - This method updates local state so that we know
+/// that PhysReg is the proper container for VirtReg now. The physical
+/// register must not be used for anything else when this is called.
+///
+void RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
+ assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
+ // Update information to note the fact that this register was just used, and
+ // it holds VirtReg.
+ PhysRegsUsed[PhysReg] = VirtReg;
+ getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
+ UsedInInstr.set(PhysReg);
+}
+
+
+/// isPhysRegAvailable - Return true if the specified physical register is free
+/// and available for use. This also includes checking to see if aliased
+/// registers are all free...
+///
+bool RAFast::isPhysRegAvailable(unsigned PhysReg) const {
+ if (PhysRegsUsed[PhysReg] != -1) return false;
+
+ // If the selected register aliases any other allocated registers, it is
+ // not free!
+ for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
+ *AliasSet; ++AliasSet)
+ if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
+ return false; // Can't use this reg then.
+ return true;
+}
+
+/// isPhysRegSpillable - Return true if the specified physical register can be
+/// spilled for use in the current instruction.
+///
+bool RAFast::isPhysRegSpillable(unsigned PhysReg) const {
+ // Test that PhysReg and all aliases are either free or assigned to a VirtReg
+ // that is not used in the instruction.
+ if (PhysRegsUsed[PhysReg] != -1 &&
+ (PhysRegsUsed[PhysReg] <= 0 || UsedInInstr.test(PhysReg)))
+ return false;
+
+ for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
+ *AliasSet; ++AliasSet)
+ if (PhysRegsUsed[*AliasSet] != -1 &&
+ (PhysRegsUsed[*AliasSet] <= 0 || UsedInInstr.test(*AliasSet)))
+ return false;
+ return true;
+}
+
+
+/// getFreeReg - Look to see if there is a free register available in the
+/// specified register class. If not, return 0.
+///
+unsigned RAFast::getFreeReg(const TargetRegisterClass *RC) {
+ // Get iterators defining the range of registers that are valid to allocate in
+ // this class, which also specifies the preferred allocation order.
+ TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
+ TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
+
+ for (; RI != RE; ++RI)
+ if (isPhysRegAvailable(*RI)) { // Is reg unused?
+ assert(*RI != 0 && "Cannot use register!");
+ return *RI; // Found an unused register!
+ }
+ return 0;
+}
+
+
+/// getReg - Find a physical register to hold the specified virtual
+/// register. If all compatible physical registers are used, this method spills
+/// the last used virtual register to the stack, and uses that register.
+///
+unsigned RAFast::getReg(MachineBasicBlock &MBB, MachineInstr *I,
+ unsigned VirtReg, bool NoFree) {
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
+
+ // First check to see if we have a free register of the requested type...
+ unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
+
+ if (PhysReg != 0) {
+ // Assign the register.
+ assignVirtToPhysReg(VirtReg, PhysReg);
+ return PhysReg;
+ }
+
+ // If we didn't find an unused register, scavenge one now! Don't be fancy,
+ // just grab the first possible register.
+ TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
+ TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
+
+ for (; RI != RE; ++RI)
+ if (isPhysRegSpillable(*RI)) {
+ PhysReg = *RI;
+ break;
+ }
+
+ assert(PhysReg && "Physical register not assigned!?!?");
+ spillPhysReg(MBB, I, PhysReg);
+ assignVirtToPhysReg(VirtReg, PhysReg);
+ return PhysReg;
+}
+
+
+/// reloadVirtReg - This method transforms the specified virtual
+/// register use to refer to a physical register. This method may do this in
+/// one of several ways: if the register is available in a physical register
+/// already, it uses that physical register. If the value is not in a physical
+/// register, and if there are physical registers available, it loads it into a
+/// register: PhysReg if that is an available physical register, otherwise any
+/// register. If register pressure is high, and it is possible, it tries to
+/// fold the load of the virtual register into the instruction itself. It
+/// avoids doing this if register pressure is low to improve the chance that
+/// subsequent instructions can use the reloaded value. This method returns
+/// the modified instruction.
+///
+MachineInstr *RAFast::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+ unsigned OpNum,
+ SmallSet<unsigned, 4> &ReloadedRegs,
+ unsigned PhysReg) {
+ unsigned VirtReg = MI->getOperand(OpNum).getReg();
+
+ // If the virtual register is already available, just update the instruction
+ // and return.
+ if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
+ MI->getOperand(OpNum).setReg(PR); // Assign the input register
+ if (!MI->isDebugValue()) {
+ // Do not do these for DBG_VALUE as they can affect codegen.
+ UsedInInstr.set(PR);
+ getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
+ }
+ return MI;
+ }
+
+ // Otherwise, we need to fold it into the current instruction, or reload it.
+ // If we have registers available to hold the value, use them.
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
+ // If we already have a PhysReg (this happens when the instruction is a
+ // reg-to-reg copy with a PhysReg destination) use that.
+ if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) ||
+ !isPhysRegAvailable(PhysReg))
+ PhysReg = getFreeReg(RC);
+ int FrameIndex = getStackSpaceFor(VirtReg, RC);
+
+ if (PhysReg) { // Register is available, allocate it!
+ assignVirtToPhysReg(VirtReg, PhysReg);
+ } else { // No registers available.
+ // Force some poor hapless value out of the register file to
+ // make room for the new register, and reload it.
+ PhysReg = getReg(MBB, MI, VirtReg, true);
+ }
+
+ markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
+
+ DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into "
+ << TRI->getName(PhysReg) << "\n");
+
+ // Add move instruction(s)
+ TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
+ ++NumLoads; // Update statistics
+
+ MF->getRegInfo().setPhysRegUsed(PhysReg);
+ MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
+ getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
+
+ if (!ReloadedRegs.insert(PhysReg)) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Ran out of registers during register allocation!";
+ if (MI->isInlineAsm()) {
+ Msg << "\nPlease check your inline asm statement for invalid "
+ << "constraints:\n";
+ MI->print(Msg, TM);
+ }
+ report_fatal_error(Msg.str());
+ }
+ for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
+ *SubRegs; ++SubRegs) {
+ if (ReloadedRegs.insert(*SubRegs)) continue;
+
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Ran out of registers during register allocation!";
+ if (MI->isInlineAsm()) {
+ Msg << "\nPlease check your inline asm statement for invalid "
+ << "constraints:\n";
+ MI->print(Msg, TM);
+ }
+ report_fatal_error(Msg.str());
+ }
+
+ return MI;
+}
+
+/// isReadModWriteImplicitKill - True if this is an implicit kill for a
+/// read/mod/write register, i.e. update partial register.
+static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
+ MO.isDef() && !MO.isDead())
+ return true;
+ }
+ return false;
+}
+
+/// isReadModWriteImplicitDef - True if this is an implicit def for a
+/// read/mod/write register, i.e. update partial register.
+static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
+ !MO.isDef() && MO.isKill())
+ return true;
+ }
+ return false;
+}
+
+// precedes - Helper function to determine with MachineInstr A
+// precedes MachineInstr B within the same MBB.
+static bool precedes(MachineBasicBlock::iterator A,
+ MachineBasicBlock::iterator B) {
+ if (A == B)
+ return false;
+
+ MachineBasicBlock::iterator I = A->getParent()->begin();
+ while (I != A->getParent()->end()) {
+ if (I == A)
+ return true;
+ else if (I == B)
+ return false;
+
+ ++I;
+ }
+
+ return false;
+}
+
+/// ComputeLocalLiveness - Computes liveness of registers within a basic
+/// block, setting the killed/dead flags as appropriate.
+void RAFast::ComputeLocalLiveness(MachineBasicBlock& MBB) {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ // Keep track of the most recently seen previous use or def of each reg,
+ // so that we can update them with dead/kill markers.
+ DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+ I != E; ++I) {
+ if (I->isDebugValue())
+ continue;
+
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = I->getOperand(i);
+ // Uses don't trigger any flags, but we need to save
+ // them for later. Also, we have to process these
+ // _before_ processing the defs, since an instr
+ // uses regs before it defs them.
+ if (!MO.isReg() || !MO.getReg() || !MO.isUse())
+ continue;
+
+ LastUseDef[MO.getReg()] = std::make_pair(I, i);
+
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
+
+ const unsigned *Aliases = TRI->getAliasSet(MO.getReg());
+ if (Aliases == 0)
+ continue;
+
+ while (*Aliases) {
+ DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
+ alias = LastUseDef.find(*Aliases);
+
+ if (alias != LastUseDef.end() && alias->second.first != I)
+ LastUseDef[*Aliases] = std::make_pair(I, i);
+
+ ++Aliases;
+ }
+ }
+
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = I->getOperand(i);
+ // Defs others than 2-addr redefs _do_ trigger flag changes:
+ // - A def followed by a def is dead
+ // - A use followed by a def is a kill
+ if (!MO.isReg() || !MO.getReg() || !MO.isDef()) continue;
+
+ DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
+ last = LastUseDef.find(MO.getReg());
+ if (last != LastUseDef.end()) {
+ // Check if this is a two address instruction. If so, then
+ // the def does not kill the use.
+ if (last->second.first == I &&
+ I->isRegTiedToUseOperand(i))
+ continue;
+
+ MachineOperand &lastUD =
+ last->second.first->getOperand(last->second.second);
+ if (lastUD.isDef())
+ lastUD.setIsDead(true);
+ else
+ lastUD.setIsKill(true);
+ }
+
+ LastUseDef[MO.getReg()] = std::make_pair(I, i);
+ }
+ }
+
+ // Live-out (of the function) registers contain return values of the function,
+ // so we need to make sure they are alive at return time.
+ MachineBasicBlock::iterator Ret = MBB.getFirstTerminator();
+ bool BBEndsInReturn = (Ret != MBB.end() && Ret->getDesc().isReturn());
+
+ if (BBEndsInReturn)
+ for (MachineRegisterInfo::liveout_iterator
+ I = MF->getRegInfo().liveout_begin(),
+ E = MF->getRegInfo().liveout_end(); I != E; ++I)
+ if (!Ret->readsRegister(*I)) {
+ Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
+ LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
+ }
+
+ // Finally, loop over the final use/def of each reg
+ // in the block and determine if it is dead.
+ for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
+ I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
+ MachineInstr *MI = I->second.first;
+ unsigned idx = I->second.second;
+ MachineOperand &MO = MI->getOperand(idx);
+
+ bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
+
+ // A crude approximation of "live-out" calculation
+ bool usedOutsideBlock = isPhysReg ? false :
+ UsedInMultipleBlocks.test(MO.getReg() -
+ TargetRegisterInfo::FirstVirtualRegister);
+
+ // If the machine BB ends in a return instruction, then the value isn't used
+ // outside of the BB.
+ if (!isPhysReg && (!usedOutsideBlock || BBEndsInReturn)) {
+ // DBG_VALUE complicates this: if the only refs of a register outside
+ // this block are DBG_VALUE, we can't keep the reg live just for that,
+ // as it will cause the reg to be spilled at the end of this block when
+ // it wouldn't have been otherwise. Nullify the DBG_VALUEs when that
+ // happens.
+ bool UsedByDebugValueOnly = false;
+ for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
+ UE = MRI.reg_end(); UI != UE; ++UI) {
+ // Two cases:
+ // - used in another block
+ // - used in the same block before it is defined (loop)
+ if (UI->getParent() == &MBB &&
+ !(MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI)))
+ continue;
+
+ if (UI->isDebugValue()) {
+ UsedByDebugValueOnly = true;
+ continue;
+ }
+
+ // A non-DBG_VALUE use means we can leave DBG_VALUE uses alone.
+ UsedInMultipleBlocks.set(MO.getReg() -
+ TargetRegisterInfo::FirstVirtualRegister);
+ usedOutsideBlock = true;
+ UsedByDebugValueOnly = false;
+ break;
+ }
+
+ if (UsedByDebugValueOnly)
+ for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
+ UE = MRI.reg_end(); UI != UE; ++UI)
+ if (UI->isDebugValue() &&
+ (UI->getParent() != &MBB ||
+ (MO.isDef() && precedes(&*UI, MI))))
+ UI.getOperand().setReg(0U);
+ }
+
+ // Physical registers and those that are not live-out of the block are
+ // killed/dead at their last use/def within this block.
+ if (isPhysReg || !usedOutsideBlock || BBEndsInReturn) {
+ if (MO.isUse()) {
+ // Don't mark uses that are tied to defs as kills.
+ if (!MI->isRegTiedToDefOperand(idx))
+ MO.setIsKill(true);
+ } else {
+ MO.setIsDead(true);
+ }
+ }
+ }
+}
+
+void RAFast::AllocateBasicBlock(MachineBasicBlock &MBB) {
+ // loop over each instruction
+ MachineBasicBlock::iterator MII = MBB.begin();
+
+ DEBUG({
+ const BasicBlock *LBB = MBB.getBasicBlock();
+ if (LBB)
+ dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName();
+ });
+
+ // Add live-in registers as active.
+ for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
+ E = MBB.livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ MF->getRegInfo().setPhysRegUsed(Reg);
+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ *SubRegs; ++SubRegs) {
+ if (PhysRegsUsed[*SubRegs] == -2) continue;
+ PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
+ MF->getRegInfo().setPhysRegUsed(*SubRegs);
+ }
+ }
+
+ ComputeLocalLiveness(MBB);
+
+ // Otherwise, sequentially allocate each instruction in the MBB.
+ while (MII != MBB.end()) {
+ MachineInstr *MI = MII++;
+ const TargetInstrDesc &TID = MI->getDesc();
+ DEBUG({
+ dbgs() << "\nStarting RegAlloc of: " << *MI;
+ dbgs() << " Regs have values: ";
+ for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
+ if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+ dbgs() << "[" << TRI->getName(i)
+ << ",%reg" << PhysRegsUsed[i] << "] ";
+ dbgs() << '\n';
+ });
+
+ // Track registers used by instruction.
+ UsedInInstr.reset();
+
+ // Determine whether this is a copy instruction. The cases where the
+ // source or destination are phys regs are handled specially.
+ unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg;
+ unsigned SrcCopyPhysReg = 0U;
+ bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,
+ SrcCopySubReg, DstCopySubReg);
+ if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg))
+ SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg);
+
+ // Loop over the implicit uses, making sure they don't get reallocated.
+ if (TID.ImplicitUses) {
+ for (const unsigned *ImplicitUses = TID.ImplicitUses;
+ *ImplicitUses; ++ImplicitUses)
+ UsedInInstr.set(*ImplicitUses);
+ }
+
+ SmallVector<unsigned, 8> Kills;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isKill()) continue;
+
+ if (!MO.isImplicit())
+ Kills.push_back(MO.getReg());
+ else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
+ // These are extra physical register kills when a sub-register
+ // is defined (def of a sub-register is a read/mod/write of the
+ // larger registers). Ignore.
+ Kills.push_back(MO.getReg());
+ }
+
+ // If any physical regs are earlyclobber, spill any value they might
+ // have in them, then mark them unallocatable.
+ // If any virtual regs are earlyclobber, allocate them now (before
+ // freeing inputs that are killed).
+ if (MI->isInlineAsm()) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber() ||
+ !MO.getReg())
+ continue;
+
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned DestVirtReg = MO.getReg();
+ unsigned DestPhysReg;
+
+ // If DestVirtReg already has a value, use it.
+ if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
+ DestPhysReg = getReg(MBB, MI, DestVirtReg);
+ MF->getRegInfo().setPhysRegUsed(DestPhysReg);
+ markVirtRegModified(DestVirtReg);
+ getVirtRegLastUse(DestVirtReg) =
+ std::make_pair((MachineInstr*)0, 0);
+ DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg)
+ << " to %reg" << DestVirtReg << "\n");
+ MO.setReg(DestPhysReg); // Assign the earlyclobber register
+ } else {
+ unsigned Reg = MO.getReg();
+ if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
+ // These are extra physical register defs when a sub-register
+ // is defined (def of a sub-register is a read/mod/write of the
+ // larger registers). Ignore.
+ if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
+
+ MF->getRegInfo().setPhysRegUsed(Reg);
+ spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
+
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ *SubRegs; ++SubRegs) {
+ if (PhysRegsUsed[*SubRegs] == -2) continue;
+ MF->getRegInfo().setPhysRegUsed(*SubRegs);
+ PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
+ }
+ }
+ }
+ }
+
+ // If a DBG_VALUE says something is located in a spilled register,
+ // change the DBG_VALUE to be undef, which prevents the register
+ // from being reloaded here. Doing that would change the generated
+ // code, unless another use immediately follows this instruction.
+ if (MI->isDebugValue() &&
+ MI->getNumOperands()==3 && MI->getOperand(0).isReg()) {
+ unsigned VirtReg = MI->getOperand(0).getReg();
+ if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ !getVirt2PhysRegMapSlot(VirtReg))
+ MI->getOperand(0).setReg(0U);
+ }
+
+ // Get the used operands into registers. This has the potential to spill
+ // incoming values if we are out of registers. Note that we completely
+ // ignore physical register uses here. We assume that if an explicit
+ // physical register is referenced by the instruction, that it is guaranteed
+ // to be live-in, or the input is badly hosed.
+ //
+ SmallSet<unsigned, 4> ReloadedRegs;
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ // here we are looking for only used operands (never def&use)
+ if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
+ TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ MI = reloadVirtReg(MBB, MI, i, ReloadedRegs,
+ isCopy ? DstCopyReg : 0);
+ }
+
+ // If this instruction is the last user of this register, kill the
+ // value, freeing the register being used, so it doesn't need to be
+ // spilled to memory.
+ //
+ for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+ unsigned VirtReg = Kills[i];
+ unsigned PhysReg = VirtReg;
+ if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+ // If the virtual register was never materialized into a register, it
+ // might not be in the map, but it won't hurt to zero it out anyway.
+ unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
+ PhysReg = PhysRegSlot;
+ PhysRegSlot = 0;
+ } else if (PhysRegsUsed[PhysReg] == -2) {
+ // Unallocatable register dead, ignore.
+ continue;
+ } else {
+ assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
+ "Silently clearing a virtual register?");
+ }
+
+ if (!PhysReg) continue;
+
+ DEBUG(dbgs() << " Last use of " << TRI->getName(PhysReg)
+ << "[%reg" << VirtReg <<"], removing it from live set\n");
+ removePhysReg(PhysReg);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
+ *SubRegs; ++SubRegs) {
+ if (PhysRegsUsed[*SubRegs] != -2) {
+ DEBUG(dbgs() << " Last use of "
+ << TRI->getName(*SubRegs) << "[%reg" << VirtReg
+ <<"], removing it from live set\n");
+ removePhysReg(*SubRegs);
+ }
+ }
+ }
+
+ // Track registers defined by instruction.
+ UsedInInstr.reset();
+
+ // Loop over all of the operands of the instruction, spilling registers that
+ // are defined, and marking explicit destinations in the PhysRegsUsed map.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() || MO.isImplicit() || !MO.getReg() ||
+ MO.isEarlyClobber() ||
+ !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
+ // These are extra physical register defs when a sub-register
+ // is defined (def of a sub-register is a read/mod/write of the
+ // larger registers). Ignore.
+ if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
+
+ MF->getRegInfo().setPhysRegUsed(Reg);
+ spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
+
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ *SubRegs; ++SubRegs) {
+ if (PhysRegsUsed[*SubRegs] == -2) continue;
+
+ MF->getRegInfo().setPhysRegUsed(*SubRegs);
+ PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
+ }
+ }
+
+ // Loop over the implicit defs, spilling them as well.
+ if (TID.ImplicitDefs) {
+ for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
+ *ImplicitDefs; ++ImplicitDefs) {
+ unsigned Reg = *ImplicitDefs;
+ if (PhysRegsUsed[Reg] != -2) {
+ spillPhysReg(MBB, MI, Reg, true);
+ PhysRegsUsed[Reg] = 0; // It is free and reserved now
+ }
+ MF->getRegInfo().setPhysRegUsed(Reg);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ *SubRegs; ++SubRegs) {
+ if (PhysRegsUsed[*SubRegs] == -2) continue;
+
+ PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
+ MF->getRegInfo().setPhysRegUsed(*SubRegs);
+ }
+ }
+ }
+
+ SmallVector<unsigned, 8> DeadDefs;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDead())
+ DeadDefs.push_back(MO.getReg());
+ }
+
+ // Okay, we have allocated all of the source operands and spilled any values
+ // that would be destroyed by defs of this instruction. Loop over the
+ // explicit defs and assign them to a register, spilling incoming values if
+ // we need to scavenge a register.
+ //
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() || !MO.getReg() ||
+ MO.isEarlyClobber() ||
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+
+ unsigned DestVirtReg = MO.getReg();
+ unsigned DestPhysReg;
+
+ // If DestVirtReg already has a value, use it.
+ if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) {
+ // If this is a copy try to reuse the input as the output;
+ // that will make the copy go away.
+ // If this is a copy, the source reg is a phys reg, and
+ // that reg is available, use that phys reg for DestPhysReg.
+ // If this is a copy, the source reg is a virtual reg, and
+ // the phys reg that was assigned to that virtual reg is now
+ // available, use that phys reg for DestPhysReg. (If it's now
+ // available that means this was the last use of the source.)
+ if (isCopy &&
+ TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) &&
+ isPhysRegAvailable(SrcCopyReg)) {
+ DestPhysReg = SrcCopyReg;
+ assignVirtToPhysReg(DestVirtReg, DestPhysReg);
+ } else if (isCopy &&
+ TargetRegisterInfo::isVirtualRegister(SrcCopyReg) &&
+ SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) &&
+ MF->getRegInfo().getRegClass(DestVirtReg)->
+ contains(SrcCopyPhysReg)) {
+ DestPhysReg = SrcCopyPhysReg;
+ assignVirtToPhysReg(DestVirtReg, DestPhysReg);
+ } else
+ DestPhysReg = getReg(MBB, MI, DestVirtReg);
+ }
+ MF->getRegInfo().setPhysRegUsed(DestPhysReg);
+ markVirtRegModified(DestVirtReg);
+ getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
+ DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg)
+ << " to %reg" << DestVirtReg << "\n");
+ MO.setReg(DestPhysReg); // Assign the output register
+ UsedInInstr.set(DestPhysReg);
+ }
+
+ // If this instruction defines any registers that are immediately dead,
+ // kill them now.
+ //
+ for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
+ unsigned VirtReg = DeadDefs[i];
+ unsigned PhysReg = VirtReg;
+ if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+ unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
+ PhysReg = PhysRegSlot;
+ assert(PhysReg != 0);
+ PhysRegSlot = 0;
+ } else if (PhysRegsUsed[PhysReg] == -2) {
+ // Unallocatable register dead, ignore.
+ continue;
+ } else if (!PhysReg)
+ continue;
+
+ DEBUG(dbgs() << " Register " << TRI->getName(PhysReg)
+ << " [%reg" << VirtReg
+ << "] is never used, removing it from live set\n");
+ removePhysReg(PhysReg);
+ for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
+ *AliasSet; ++AliasSet) {
+ if (PhysRegsUsed[*AliasSet] != -2) {
+ DEBUG(dbgs() << " Register " << TRI->getName(*AliasSet)
+ << " [%reg" << *AliasSet
+ << "] is never used, removing it from live set\n");
+ removePhysReg(*AliasSet);
+ }
+ }
+ }
+
+ // Finally, if this is a noop copy instruction, zap it. (Except that if
+ // the copy is dead, it must be kept to avoid messing up liveness info for
+ // the register scavenger. See pr4100.)
+ if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,
+ SrcCopySubReg, DstCopySubReg) &&
+ SrcCopyReg == DstCopyReg && DeadDefs.empty())
+ MBB.erase(MI);
+ }
+
+ MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
+
+ // Spill all physical registers holding virtual registers now.
+ for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
+ if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
+ if (unsigned VirtReg = PhysRegsUsed[i])
+ spillVirtReg(MBB, MI, VirtReg, i);
+ else
+ removePhysReg(i);
+ }
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
+ DEBUG(dbgs() << "Machine Function\n");
+ MF = &Fn;
+ TM = &Fn.getTarget();
+ TRI = TM->getRegisterInfo();
+ TII = TM->getInstrInfo();
+
+ PhysRegsUsed.assign(TRI->getNumRegs(), -1);
+ UsedInInstr.resize(TRI->getNumRegs());
+
+ // At various places we want to efficiently check to see whether a register
+ // is allocatable. To handle this, we mark all unallocatable registers as
+ // being pinned down, permanently.
+ {
+ BitVector Allocable = TRI->getAllocatableSet(Fn);
+ for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
+ if (!Allocable[i])
+ PhysRegsUsed[i] = -2; // Mark the reg unallocable.
+ }
+
+ // initialize the virtual->physical register map to have a 'null'
+ // mapping for all virtual registers
+ unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
+ StackSlotForVirtReg.grow(LastVirtReg);
+ Virt2PhysRegMap.grow(LastVirtReg);
+ Virt2LastUseMap.grow(LastVirtReg);
+ VirtRegModified.resize(LastVirtReg+1 -
+ TargetRegisterInfo::FirstVirtualRegister);
+ UsedInMultipleBlocks.resize(LastVirtReg+1 -
+ TargetRegisterInfo::FirstVirtualRegister);
+
+ // Loop over all of the basic blocks, eliminating virtual register references
+ for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
+ MBB != MBBe; ++MBB)
+ AllocateBasicBlock(*MBB);
+
+ StackSlotForVirtReg.clear();
+ PhysRegsUsed.clear();
+ VirtRegModified.clear();
+ UsedInMultipleBlocks.clear();
+ Virt2PhysRegMap.clear();
+ Virt2LastUseMap.clear();
+ return true;
+}
+
+FunctionPass *llvm::createFastRegisterAllocator() {
+ return new RAFast();
+}