summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorNick Lewycky <nicholas@mxc.ca>2010-05-13 05:48:45 +0000
committerNick Lewycky <nicholas@mxc.ca>2010-05-13 05:48:45 +0000
commit33ab0b15689abd32f72a5417cd104bde19f4b4aa (patch)
tree96efcf929bf419633d28abead2009726bb87d10b /lib
parent054be92e1da7015190377d6bade57196f28cf33a (diff)
downloadllvm-33ab0b15689abd32f72a5417cd104bde19f4b4aa.tar.gz
llvm-33ab0b15689abd32f72a5417cd104bde19f4b4aa.tar.bz2
llvm-33ab0b15689abd32f72a5417cd104bde19f4b4aa.tar.xz
Replace the core comparison login in merge functions. We can now merge
vector<>::push_back() in: int foo(vector<int> &a, vector<unsigned> &b) { a.push_back(10); b.push_back(11); } to two calls to the same push_back function, or fold away the two copies of push_back() in: struct T { int; }; struct S { char; }; vector<T*> t; vector<S*> s; void f(T *x) { t.push_back(x); } void g(S *x) { s.push_back(x); } but leave f() and g() separate, since they refer to two different global variables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103698 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp468
1 files changed, 276 insertions, 192 deletions
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index b07e22c12f..65c456134c 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -17,32 +17,55 @@
// important that the hash function be high quality. The equality comparison
// iterates through each instruction in each basic block.
//
-// When a match is found, the functions are folded. We can only fold two
-// functions when we know that the definition of one of them is not
-// overridable.
+// When a match is found the functions are folded. If both functions are
+// overridable, we move the functionality into a new internal function and
+// leave two overridable thunks to it.
//
//===----------------------------------------------------------------------===//
//
// Future work:
//
-// * fold vector<T*>::push_back and vector<S*>::push_back.
-//
-// These two functions have different types, but in a way that doesn't matter
-// to us. As long as we never see an S or T itself, using S* and S** is the
-// same as using a T* and T**.
-//
// * virtual functions.
//
// Many functions have their address taken by the virtual function table for
// the object they belong to. However, as long as it's only used for a lookup
// and call, this is irrelevant, and we'd like to fold such implementations.
//
+// * use SCC to cut down on pair-wise comparisons and solve larger cycles.
+//
+// The current implementation loops over a pair-wise comparison of all
+// functions in the program where the two functions in the pair are treated as
+// assumed to be equal until proven otherwise. We could both use fewer
+// comparisons and optimize more complex cases if we used strongly connected
+// components of the call graph.
+//
+// * be smarter about bitcast.
+//
+// In order to fold functions, we will sometimes add either bitcast instructions
+// or bitcast constant expressions. Unfortunately, this can confound further
+// analysis since the two functions differ where one has a bitcast and the
+// other doesn't. We should learn to peer through bitcasts without imposing bad
+// performance properties.
+//
+// * don't emit aliases for Mach-O.
+//
+// Mach-O doesn't support aliases which means that we must avoid introducing
+// them in the bitcode on architectures which don't support them, such as
+// Mac OSX. There's a few approaches to this problem;
+// a) teach codegen to lower global aliases to thunks on platforms which don't
+// support them.
+// b) always emit thunks, and create a separate thunk-to-alias pass which
+// runs on ELF systems. This has the added benefit of transforming other
+// thunks such as those produced by a C++ frontend into aliases when legal
+// to do so.
+//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mergefunc"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
@@ -54,6 +77,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetData.h"
#include <map>
#include <vector>
using namespace llvm;
@@ -61,17 +85,33 @@ using namespace llvm;
STATISTIC(NumFunctionsMerged, "Number of functions merged");
namespace {
- struct MergeFunctions : public ModulePass {
+ class MergeFunctions : public ModulePass {
+ public:
static char ID; // Pass identification, replacement for typeid
MergeFunctions() : ModulePass(&ID) {}
bool runOnModule(Module &M);
+
+ private:
+ bool isEquivalentGEP(const GetElementPtrInst *GEP1,
+ const GetElementPtrInst *GEP2);
+
+ bool equals(const BasicBlock *BB1, const BasicBlock *BB2);
+ bool equals(const Function *F, const Function *G);
+
+ bool compare(const Value *V1, const Value *V2);
+
+ const Function *LHS, *RHS;
+ typedef DenseMap<const Value *, unsigned long> IDMap;
+ IDMap Map;
+ DenseMap<const Function *, IDMap> Domains;
+ DenseMap<const Function *, unsigned long> DomainCount;
+ TargetData *TD;
};
}
char MergeFunctions::ID = 0;
-static RegisterPass<MergeFunctions>
-X("mergefunc", "Merge Functions");
+static RegisterPass<MergeFunctions> X("mergefunc", "Merge Functions");
ModulePass *llvm::createMergeFunctionsPass() {
return new MergeFunctions();
@@ -95,15 +135,6 @@ static unsigned long hash(const Function *F) {
return ID.ComputeHash();
}
-/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
-/// walking the chain of cast operands. Otherwise, returns the argument.
-static Value* IgnoreBitcasts(Value *V) {
- while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
- V = BC->getOperand(0);
-
- return V;
-}
-
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
/// type equivalence rules apply.
static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
@@ -113,6 +144,14 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
return false;
switch(Ty1->getTypeID()) {
+ default:
+ llvm_unreachable("Unknown type!");
+ // Fall through in Release-Asserts mode.
+ case Type::IntegerTyID:
+ case Type::OpaqueTyID:
+ // Ty1 == Ty2 would have returned true earlier.
+ return false;
+
case Type::VoidTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
@@ -123,15 +162,6 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
case Type::MetadataTyID:
return true;
- case Type::IntegerTyID:
- case Type::OpaqueTyID:
- // Ty1 == Ty2 would have returned true earlier.
- return false;
-
- default:
- llvm_unreachable("Unknown type!");
- return false;
-
case Type::PointerTyID: {
const PointerType *PTy1 = cast<PointerType>(Ty1);
const PointerType *PTy2 = cast<PointerType>(Ty2);
@@ -154,6 +184,21 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
return true;
}
+ case Type::UnionTyID: {
+ const UnionType *UTy1 = cast<UnionType>(Ty1);
+ const UnionType *UTy2 = cast<UnionType>(Ty2);
+
+ // TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc.
+ if (UTy1->getNumElements() != UTy2->getNumElements())
+ return false;
+
+ for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
+ if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
+ return false;
+ }
+ return true;
+ }
+
case Type::FunctionTyID: {
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
@@ -236,123 +281,136 @@ isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
return true;
}
-static bool compare(const Value *V, const Value *U) {
- assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
- "Must not compare basic blocks.");
-
- assert(isEquivalentType(V->getType(), U->getType()) &&
- "Two of the same operation have operands of different type.");
+bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1,
+ const GetElementPtrInst *GEP2) {
+ if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
+ SmallVector<Value *, 8> Indices1, Indices2;
+ for (GetElementPtrInst::const_op_iterator I = GEP1->idx_begin(),
+ E = GEP1->idx_end(); I != E; ++I) {
+ Indices1.push_back(*I);
+ }
+ for (GetElementPtrInst::const_op_iterator I = GEP2->idx_begin(),
+ E = GEP2->idx_end(); I != E; ++I) {
+ Indices2.push_back(*I);
+ }
+ uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
+ Indices1.data(), Indices1.size());
+ uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
+ Indices2.data(), Indices2.size());
+ return Offset1 == Offset2;
+ }
- // TODO: If the constant is an expression of F, we should accept that it's
- // equal to the same expression in terms of G.
- if (isa<Constant>(V))
- return V == U;
+ // Equivalent types aren't enough.
+ if (GEP1->getPointerOperand()->getType() !=
+ GEP2->getPointerOperand()->getType())
+ return false;
- // The caller has ensured that ValueMap[V] != U. Since Arguments are
- // pre-loaded into the ValueMap, and Instructions are added as we go, we know
- // that this can only be a mis-match.
- if (isa<Instruction>(V) || isa<Argument>(V))
+ if (GEP1->getNumOperands() != GEP2->getNumOperands())
return false;
- if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
- const InlineAsm *IAF = cast<InlineAsm>(V);
- const InlineAsm *IAG = cast<InlineAsm>(U);
- return IAF->getAsmString() == IAG->getAsmString() &&
- IAF->getConstraintString() == IAG->getConstraintString();
+ for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
+ if (!compare(GEP1->getOperand(i), GEP2->getOperand(i)))
+ return false;
}
- return false;
+ return true;
}
-static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
- DenseMap<const Value *, const Value *> &ValueMap,
- DenseMap<const Value *, const Value *> &SpeculationMap) {
- // Speculatively add it anyways. If it's false, we'll notice a difference
- // later, and this won't matter.
- ValueMap[BB1] = BB2;
+bool MergeFunctions::compare(const Value *V1, const Value *V2) {
+ if (V1 == LHS || V1 == RHS)
+ if (V2 == LHS || V2 == RHS)
+ return true;
- BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
- BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
+ // TODO: constant expressions in terms of LHS and RHS
+ if (isa<Constant>(V1))
+ return V1 == V2;
- do {
- if (isa<BitCastInst>(FI)) {
- ++FI;
- continue;
- }
- if (isa<BitCastInst>(GI)) {
- ++GI;
- continue;
- }
+ if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
+ const InlineAsm *IA1 = cast<InlineAsm>(V1);
+ const InlineAsm *IA2 = cast<InlineAsm>(V2);
+ return IA1->getAsmString() == IA2->getAsmString() &&
+ IA1->getConstraintString() == IA2->getConstraintString();
+ }
- if (!isEquivalentOperation(FI, GI))
- return false;
+ // We enumerate constants globally and arguments, basic blocks or
+ // instructions within the function they belong to.
+ const Function *Domain1 = NULL;
+ if (const Argument *A = dyn_cast<Argument>(V1)) {
+ Domain1 = A->getParent();
+ } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V1)) {
+ Domain1 = BB->getParent();
+ } else if (const Instruction *I = dyn_cast<Instruction>(V1)) {
+ Domain1 = I->getParent()->getParent();
+ }
- if (isa<GetElementPtrInst>(FI)) {
- const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
- const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
- if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
- // It's effectively a bitcast.
- ++FI, ++GI;
- continue;
- }
+ const Function *Domain2 = NULL;
+ if (const Argument *A = dyn_cast<Argument>(V2)) {
+ Domain2 = A->getParent();
+ } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V2)) {
+ Domain2 = BB->getParent();
+ } else if (const Instruction *I = dyn_cast<Instruction>(V2)) {
+ Domain2 = I->getParent()->getParent();
+ }
- // TODO: we only really care about the elements before the index
- if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
- return false;
- }
+ if (Domain1 != Domain2)
+ if (Domain1 != LHS && Domain1 != RHS)
+ if (Domain2 != LHS && Domain2 != RHS)
+ return false;
- if (ValueMap[FI] == GI) {
- ++FI, ++GI;
- continue;
- }
+ IDMap &Map1 = Domains[Domain1];
+ unsigned long &ID1 = Map1[V1];
+ if (!ID1)
+ ID1 = ++DomainCount[Domain1];
+
+ IDMap &Map2 = Domains[Domain2];
+ unsigned long &ID2 = Map2[V2];
+ if (!ID2)
+ ID2 = ++DomainCount[Domain2];
+
+ return ID1 == ID2;
+}
+
+bool MergeFunctions::equals(const BasicBlock *BB1, const BasicBlock *BB2) {
+ BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
+ BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
- if (ValueMap[FI] != NULL)
+ do {
+ if (!compare(FI, GI))
return false;
- for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
- Value *OpF = IgnoreBitcasts(FI->getOperand(i));
- Value *OpG = IgnoreBitcasts(GI->getOperand(i));
+ if (isa<GetElementPtrInst>(FI) && isa<GetElementPtrInst>(GI)) {
+ const GetElementPtrInst *GEP1 = cast<GetElementPtrInst>(FI);
+ const GetElementPtrInst *GEP2 = cast<GetElementPtrInst>(GI);
- if (ValueMap[OpF] == OpG)
- continue;
+ if (!compare(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
+ return false;
- if (ValueMap[OpF] != NULL)
+ if (!isEquivalentGEP(GEP1, GEP2))
+ return false;
+ } else {
+ if (!isEquivalentOperation(FI, GI))
return false;
- if (OpF->getValueID() != OpG->getValueID() ||
- !isEquivalentType(OpF->getType(), OpG->getType()))
- return false;
+ for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
+ Value *OpF = FI->getOperand(i);
+ Value *OpG = GI->getOperand(i);
- if (isa<PHINode>(FI)) {
- if (SpeculationMap[OpF] == NULL)
- SpeculationMap[OpF] = OpG;
- else if (SpeculationMap[OpF] != OpG)
- return false;
- continue;
- } else if (isa<BasicBlock>(OpF)) {
- assert(isa<TerminatorInst>(FI) &&
- "BasicBlock referenced by non-Terminator non-PHI");
- // This call changes the ValueMap, hence we can't use
- // Value *& = ValueMap[...]
- if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
- SpeculationMap))
- return false;
- } else {
- if (!compare(OpF, OpG))
+ if (!compare(OpF, OpG))
+ return false;
+
+ if (OpF->getValueID() != OpG->getValueID() ||
+ !isEquivalentType(OpF->getType(), OpG->getType()))
return false;
}
-
- ValueMap[OpF] = OpG;
}
- ValueMap[FI] = GI;
++FI, ++GI;
} while (FI != FE && GI != GE);
return FI == FE && GI == GE;
}
-static bool equals(const Function *F, const Function *G) {
+bool MergeFunctions::equals(const Function *F, const Function *G) {
// We need to recheck everything, but check the things that weren't included
// in the hash first.
@@ -382,27 +440,46 @@ static bool equals(const Function *F, const Function *G) {
if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
return false;
- DenseMap<const Value *, const Value *> ValueMap;
- DenseMap<const Value *, const Value *> SpeculationMap;
- ValueMap[F] = G;
-
assert(F->arg_size() == G->arg_size() &&
"Identical functions have a different number of args.");
- for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
- fe = F->arg_end(); fi != fe; ++fi, ++gi)
- ValueMap[fi] = gi;
+ LHS = F;
+ RHS = G;
- if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
- SpeculationMap))
- return false;
+ // Visit the arguments so that they get enumerated in the order they're
+ // passed in.
+ for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
+ fe = F->arg_end(); fi != fe; ++fi, ++gi) {
+ if (!compare(fi, gi))
+ llvm_unreachable("Arguments repeat");
+ }
- for (DenseMap<const Value *, const Value *>::iterator
- I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
- if (ValueMap[I->first] != I->second)
+ SmallVector<const BasicBlock *, 8> FBBs, GBBs;
+ SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F.
+ FBBs.push_back(&F->getEntryBlock());
+ GBBs.push_back(&G->getEntryBlock());
+ VisitedBBs.insert(FBBs[0]);
+ while (!FBBs.empty()) {
+ const BasicBlock *FBB = FBBs.pop_back_val();
+ const BasicBlock *GBB = GBBs.pop_back_val();
+ if (!compare(FBB, GBB) || !equals(FBB, GBB)) {
+ Domains.clear();
+ DomainCount.clear();
return false;
+ }
+ const TerminatorInst *FTI = FBB->getTerminator();
+ const TerminatorInst *GTI = GBB->getTerminator();
+ assert(FTI->getNumSuccessors() == GTI->getNumSuccessors());
+ for (unsigned i = 0, e = FTI->getNumSuccessors(); i != e; ++i) {
+ if (!VisitedBBs.insert(FTI->getSuccessor(i)))
+ continue;
+ FBBs.push_back(FTI->getSuccessor(i));
+ GBBs.push_back(GTI->getSuccessor(i));
+ }
}
+ Domains.clear();
+ DomainCount.clear();
return true;
}
@@ -476,20 +553,32 @@ static LinkageCategory categorize(const Function *F) {
}
static void ThunkGToF(Function *F, Function *G) {
+ if (!G->mayBeOverridden()) {
+ // Redirect direct callers of G to F.
+ Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
+ for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
+ UI != UE;) {
+ Value::use_iterator TheIter = UI;
+ ++UI;
+ CallSite CS(*TheIter);
+ if (CS && CS.isCallee(TheIter))
+ TheIter.getUse().set(BitcastF);
+ }
+ }
+
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
G->getParent());
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
- std::vector<Value *> Args;
+ SmallVector<Value *, 16> Args;
unsigned i = 0;
const FunctionType *FFTy = F->getFunctionType();
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
AI != AE; ++AI) {
- if (FFTy->getParamType(i) == AI->getType())
+ if (FFTy->getParamType(i) == AI->getType()) {
Args.push_back(AI);
- else {
- Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
- Args.push_back(BCI);
+ } else {
+ Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB));
}
++i;
}
@@ -510,8 +599,6 @@ static void ThunkGToF(Function *F, Function *G) {
NewG->takeName(G);
G->replaceAllUsesWith(NewG);
G->eraseFromParent();
-
- // TODO: look at direct callers to G and make them all direct callers to F.
}
static void AliasGToF(Function *F, Function *G) {
@@ -542,67 +629,66 @@ static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
}
switch (catF) {
+ case ExternalStrong:
+ switch (catG) {
case ExternalStrong:
- switch (catG) {
- case ExternalStrong:
- case ExternalWeak:
- ThunkGToF(F, G);
- break;
- case Internal:
- if (G->hasAddressTaken())
- ThunkGToF(F, G);
- else
- AliasGToF(F, G);
- break;
- }
+ case ExternalWeak:
+ ThunkGToF(F, G);
+ break;
+ case Internal:
+ if (G->hasAddressTaken())
+ ThunkGToF(F, G);
+ else
+ AliasGToF(F, G);
break;
+ }
+ break;
- case ExternalWeak: {
- assert(catG == ExternalWeak);
+ case ExternalWeak: {
+ assert(catG == ExternalWeak);
- // Make them both thunks to the same internal function.
- F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
- Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
- F->getParent());
- H->copyAttributesFrom(F);
- H->takeName(F);
- F->replaceAllUsesWith(H);
+ // Make them both thunks to the same internal function.
+ F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
+ Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
+ F->getParent());
+ H->copyAttributesFrom(F);
+ H->takeName(F);
+ F->replaceAllUsesWith(H);
- ThunkGToF(F, G);
- ThunkGToF(F, H);
+ ThunkGToF(F, G);
+ ThunkGToF(F, H);
- F->setLinkage(GlobalValue::InternalLinkage);
- } break;
+ F->setLinkage(GlobalValue::InternalLinkage);
+ } break;
- case Internal:
- switch (catG) {
- case ExternalStrong:
- llvm_unreachable(0);
- // fall-through
- case ExternalWeak:
- if (F->hasAddressTaken())
- ThunkGToF(F, G);
- else
- AliasGToF(F, G);
- break;
- case Internal: {
- bool addrTakenF = F->hasAddressTaken();
- bool addrTakenG = G->hasAddressTaken();
- if (!addrTakenF && addrTakenG) {
- std::swap(FnVec[i], FnVec[j]);
- std::swap(F, G);
- std::swap(addrTakenF, addrTakenG);
- }
+ case Internal:
+ switch (catG) {
+ case ExternalStrong:
+ llvm_unreachable(0);
+ // fall-through
+ case ExternalWeak:
+ if (F->hasAddressTaken())
+ ThunkGToF(F, G);
+ else
+ AliasGToF(F, G);
+ break;
+ case Internal: {
+ bool addrTakenF = F->hasAddressTaken();
+ bool addrTakenG = G->hasAddressTaken();
+ if (!addrTakenF && addrTakenG) {
+ std::swap(FnVec[i], FnVec[j]);
+ std::swap(F, G);
+ std::swap(addrTakenF, addrTakenG);
+ }
- if (addrTakenF && addrTakenG) {
- ThunkGToF(F, G);
- } else {
- assert(!addrTakenG);
- AliasGToF(F, G);
- }
- } break;
+ if (addrTakenF && addrTakenG) {
+ ThunkGToF(F, G);
+ } else {
+ assert(!addrTakenG);
+ AliasGToF(F, G);
}
- break;
+ } break;
+ } break;
}
++NumFunctionsMerged;
@@ -619,22 +705,20 @@ bool MergeFunctions::runOnModule(Module &M) {
std::map<unsigned long, std::vector<Function *> > FnMap;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
- if (F->isDeclaration() || F->isIntrinsic())
+ if (F->isDeclaration())
continue;
FnMap[hash(F)].push_back(F);
}
- // TODO: instead of running in a loop, we could also fold functions in
- // callgraph order. Constructing the CFG probably isn't cheaper than just
- // running in a loop, unless it happened to already be available.
+ TD = getAnalysisIfAvailable<TargetData>();
bool LocalChanged;
do {
LocalChanged = false;
DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
for (std::map<unsigned long, std::vector<Function *> >::iterator
- I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
+ I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
std::vector<Function *> &FnVec = I->second;
DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");