summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDale Johannesen <dalej@apple.com>2007-09-06 18:13:44 +0000
committerDale Johannesen <dalej@apple.com>2007-09-06 18:13:44 +0000
commit43421b3dd70af5b70e71816521f37502c397cc65 (patch)
treeb314e17b0444f33dc3be37eaeaeaa8ea7dd1d17e /lib
parent325be7c608a37d87e4f3d731e11fa3dd34f529b5 (diff)
downloadllvm-43421b3dd70af5b70e71816521f37502c397cc65.tar.gz
llvm-43421b3dd70af5b70e71816521f37502c397cc65.tar.bz2
llvm-43421b3dd70af5b70e71816521f37502c397cc65.tar.xz
Next round of APFloat changes.
Use APFloat in UpgradeParser and AsmParser. Change all references to ConstantFP to use the APFloat interface rather than double. Remove the ConstantFP double interfaces. Use APFloat functions for constant folding arithmetic and comparisons. (There are still way too many places APFloat is just a wrapper around host float/double, but we're getting there.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41747 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/Analysis/ConstantFolding.cpp55
-rw-r--r--lib/Analysis/ScalarEvolution.cpp3
-rw-r--r--lib/AsmParser/Lexer.cpp.cvs18
-rw-r--r--lib/AsmParser/Lexer.l6
-rw-r--r--lib/AsmParser/Lexer.l.cvs6
-rw-r--r--lib/AsmParser/ParserInternals.h16
-rw-r--r--lib/AsmParser/llvmAsmParser.h.cvs2
-rw-r--r--lib/AsmParser/llvmAsmParser.y18
-rw-r--r--lib/AsmParser/llvmAsmParser.y.cvs18
-rw-r--r--lib/Bitcode/Reader/BitcodeReader.cpp15
-rw-r--r--lib/Bitcode/Writer/BitcodeWriter.cpp5
-rw-r--r--lib/CodeGen/AsmPrinter.cpp3
-rw-r--r--lib/CodeGen/MachOWriter.cpp6
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp5
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp4
-rw-r--r--lib/ExecutionEngine/JIT/JIT.cpp6
-rw-r--r--lib/Target/CBackend/CBackend.cpp34
-rw-r--r--lib/Target/MSIL/MSILWriter.cpp10
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp33
-rw-r--r--lib/Transforms/IPO/SimplifyLibCalls.cpp27
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp2
-rw-r--r--lib/VMCore/AsmWriter.cpp9
-rw-r--r--lib/VMCore/ConstantFold.cpp163
-rw-r--r--lib/VMCore/Constants.cpp37
24 files changed, 295 insertions, 206 deletions
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 70ce34969c..6c828fa004 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -407,8 +407,14 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty) {
errno = 0;
V = NativeFP(V);
- if (errno == 0)
- return ConstantFP::get(Ty, V);
+ if (errno == 0) {
+ if (Ty==Type::FloatTy)
+ return ConstantFP::get(Ty, APFloat((float)V));
+ else if (Ty==Type::DoubleTy)
+ return ConstantFP::get(Ty, APFloat(V));
+ else
+ assert(0);
+ }
errno = 0;
return 0;
}
@@ -418,14 +424,21 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
const Type *Ty) {
errno = 0;
V = NativeFP(V, W);
- if (errno == 0)
- return ConstantFP::get(Ty, V);
+ if (errno == 0) {
+ if (Ty==Type::FloatTy)
+ return ConstantFP::get(Ty, APFloat((float)V));
+ else if (Ty==Type::DoubleTy)
+ return ConstantFP::get(Ty, APFloat(V));
+ else
+ assert(0);
+ }
errno = 0;
return 0;
}
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
+
Constant *
llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
const ValueName *NameVal = F->getValueName();
@@ -436,7 +449,14 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
const Type *Ty = F->getReturnType();
if (NumOperands == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- double V = Op->getValue();
+ if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ return 0;
+ /// Currently APFloat versions of these functions do not exist, so we use
+ /// the host native double versions. Float versions are not called
+ /// directly but for all these it is true (float)(f((double)arg)) ==
+ /// f(arg). Long double not supported yet.
+ double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
+ Op->getValueAPF().convertToDouble();
switch (Str[0]) {
case 'a':
if (Len == 4 && !strcmp(Str, "acos"))
@@ -460,7 +480,7 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
break;
case 'f':
if (Len == 4 && !strcmp(Str, "fabs"))
- return ConstantFP::get(Ty, fabs(V));
+ return ConstantFoldFP(fabs, V, Ty);
else if (Len == 5 && !strcmp(Str, "floor"))
return ConstantFoldFP(floor, V, Ty);
break;
@@ -472,9 +492,10 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
else if (!strcmp(Str, "llvm.sqrt.f32") ||
!strcmp(Str, "llvm.sqrt.f64")) {
if (V >= -0.0)
- return ConstantFP::get(Ty, sqrt(V));
+ return ConstantFoldFP(sqrt, V, Ty);
else // Undefined
- return ConstantFP::get(Ty, 0.0);
+ return ConstantFP::get(Ty, Ty==Type::FloatTy ? APFloat(0.0f) :
+ APFloat(0.0));
}
break;
case 's':
@@ -512,9 +533,15 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
}
} else if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- double Op1V = Op1->getValue();
+ double Op1V = Ty==Type::FloatTy ?
+ (double)Op1->getValueAPF().convertToFloat():
+ Op1->getValueAPF().convertToDouble();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- double Op2V = Op2->getValue();
+ if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ return 0;
+ double Op2V = Ty==Type::FloatTy ?
+ (double)Op2->getValueAPF().convertToFloat():
+ Op2->getValueAPF().convertToDouble();
if (Len == 3 && !strcmp(Str, "pow")) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
@@ -525,11 +552,11 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
}
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (!strcmp(Str, "llvm.powi.f32")) {
- return ConstantFP::get(Ty, std::pow((float)Op1V,
- (int)Op2C->getZExtValue()));
+ return ConstantFP::get(Ty, APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
} else if (!strcmp(Str, "llvm.powi.f64")) {
- return ConstantFP::get(Ty, std::pow((double)Op1V,
- (int)Op2C->getZExtValue()));
+ return ConstantFP::get(Ty, APFloat((double)std::pow((double)Op1V,
+ (int)Op2C->getZExtValue())));
}
}
}
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 5bae18cc4c..aaba49eacd 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -485,7 +485,8 @@ SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
if (Val == 0)
C = Constant::getNullValue(Ty);
else if (Ty->isFloatingPoint())
- C = ConstantFP::get(Ty, Val);
+ C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
+ APFloat::IEEEdouble, Val));
else
C = ConstantInt::get(Ty, Val);
return SCEVUnknown::get(C);
diff --git a/lib/AsmParser/Lexer.cpp.cvs b/lib/AsmParser/Lexer.cpp.cvs
index 30ddb8fa0f..326bdf0ac7 100644
--- a/lib/AsmParser/Lexer.cpp.cvs
+++ b/lib/AsmParser/Lexer.cpp.cvs
@@ -2129,15 +2129,17 @@ YY_RULE_SETUP
case 145:
YY_RULE_SETUP
#line 440 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
-{ llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
+{ llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
YY_BREAK
case 146:
YY_RULE_SETUP
#line 441 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
-{ llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
+{ llvmAsmlval.FPVal = new APFloat(HexToFP(yytext));
+ return FPVAL;
+ }
YY_BREAK
case YY_STATE_EOF(INITIAL):
-#line 443 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
+#line 445 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
@@ -2148,20 +2150,20 @@ case YY_STATE_EOF(INITIAL):
YY_BREAK
case 147:
YY_RULE_SETUP
-#line 451 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
+#line 453 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{ /* Ignore whitespace */ }
YY_BREAK
case 148:
YY_RULE_SETUP
-#line 452 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
+#line 454 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{ return yytext[0]; }
YY_BREAK
case 149:
YY_RULE_SETUP
-#line 454 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
+#line 456 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
YY_FATAL_ERROR( "flex scanner jammed" );
YY_BREAK
-#line 2165 "Lexer.cpp"
+#line 2167 "Lexer.cpp"
case YY_END_OF_BUFFER:
{
@@ -3043,5 +3045,5 @@ int main()
return 0;
}
#endif
-#line 454 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
+#line 456 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
diff --git a/lib/AsmParser/Lexer.l b/lib/AsmParser/Lexer.l
index 64e6d16eda..390544d8c3 100644
--- a/lib/AsmParser/Lexer.l
+++ b/lib/AsmParser/Lexer.l
@@ -437,8 +437,10 @@ shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); }
return GLOBALVAL_ID;
}
-{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
-{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
+{FPConstant} { llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
+{HexFPConstant} { llvmAsmlval.FPVal = new APFloat(HexToFP(yytext));
+ return FPVAL;
+ }
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
diff --git a/lib/AsmParser/Lexer.l.cvs b/lib/AsmParser/Lexer.l.cvs
index 64e6d16eda..390544d8c3 100644
--- a/lib/AsmParser/Lexer.l.cvs
+++ b/lib/AsmParser/Lexer.l.cvs
@@ -437,8 +437,10 @@ shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); }
return GLOBALVAL_ID;
}
-{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
-{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
+{FPConstant} { llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
+{HexFPConstant} { llvmAsmlval.FPVal = new APFloat(HexToFP(yytext));
+ return FPVAL;
+ }
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
diff --git a/lib/AsmParser/ParserInternals.h b/lib/AsmParser/ParserInternals.h
index e315902c31..61de652c51 100644
--- a/lib/AsmParser/ParserInternals.h
+++ b/lib/AsmParser/ParserInternals.h
@@ -22,7 +22,7 @@
#include "llvm/Instructions.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/ADT/StringExtras.h"
-
+#include "llvm/ADT/APFloat.h"
// Global variables exported from the lexer...
@@ -93,10 +93,10 @@ struct ValID {
std::string *Name; // If it's a named reference. Memory must be deleted.
int64_t ConstPool64; // Constant pool reference. This is the value
uint64_t UConstPool64;// Unsigned constant pool reference.
- double ConstPoolFP; // Floating point constant pool reference
+ APFloat *ConstPoolFP; // Floating point constant pool reference
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
- };
+ };
static ValID createLocalID(unsigned Num) {
ValID D; D.Type = LocalID; D.Num = Num; return D;
@@ -119,7 +119,7 @@ struct ValID {
ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val; return D;
}
- static ValID create(double Val) {
+ static ValID create(APFloat *Val) {
ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val; return D;
}
@@ -168,7 +168,7 @@ struct ValID {
case GlobalID : return '@' + utostr(Num);
case LocalName : return *Name;
case GlobalName : return *Name;
- case ConstFPVal : return ftostr(ConstPoolFP);
+ case ConstFPVal : return ftostr(*ConstPoolFP);
case ConstNullVal : return "null";
case ConstUndefVal : return "undef";
case ConstZeroVal : return "zeroinitializer";
@@ -194,7 +194,8 @@ struct ValID {
case GlobalName: return *Name < *V.Name;
case ConstSIntVal: return ConstPool64 < V.ConstPool64;
case ConstUIntVal: return UConstPool64 < V.UConstPool64;
- case ConstFPVal: return ConstPoolFP < V.ConstPoolFP;
+ case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) ==
+ APFloat::cmpLessThan;
case ConstNullVal: return false;
case ConstUndefVal: return false;
case ConstZeroVal: return false;
@@ -212,7 +213,8 @@ struct ValID {
case GlobalName: return *Name == *(V.Name);
case ConstSIntVal: return ConstPool64 == V.ConstPool64;
case ConstUIntVal: return UConstPool64 == V.UConstPool64;
- case ConstFPVal: return ConstPoolFP == V.ConstPoolFP;
+ case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) ==
+ APFloat::cmpEqual;
case ConstantVal: return ConstantValue == V.ConstantValue;
case ConstNullVal: return true;
case ConstUndefVal: return true;
diff --git a/lib/AsmParser/llvmAsmParser.h.cvs b/lib/AsmParser/llvmAsmParser.h.cvs
index 353388b01a..feb3ff6d30 100644
--- a/lib/AsmParser/llvmAsmParser.h.cvs
+++ b/lib/AsmParser/llvmAsmParser.h.cvs
@@ -355,7 +355,7 @@ typedef union YYSTYPE {
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
- double FPVal;
+ llvm::APFloat *FPVal;
bool BoolVal;
std::string *StrVal; // This memory must be deleted
diff --git a/lib/AsmParser/llvmAsmParser.y b/lib/AsmParser/llvmAsmParser.y
index 93f7a085bc..83dfa31f03 100644
--- a/lib/AsmParser/llvmAsmParser.y
+++ b/lib/AsmParser/llvmAsmParser.y
@@ -412,11 +412,15 @@ static Value *getExistingVal(const Type *Ty, const ValID &D) {
}
case ValID::ConstFPVal: // Is it a floating point const pool reference?
- if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
+ if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
GenerateError("FP constant invalid for type");
return 0;
}
- return ConstantFP::get(Ty, D.ConstPoolFP);
+ // Lexer has no type info, so builds all FP constants as double.
+ // Fix this here.
+ if (Ty==Type::FloatTy)
+ D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty)) {
@@ -992,7 +996,7 @@ Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
- double FPVal;
+ llvm::APFloat *FPVal;
bool BoolVal;
std::string *StrVal; // This memory must be deleted
@@ -1862,9 +1866,13 @@ ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
CHECK_FOR_ERROR
}
| FPType FPVAL { // Float & Double constants
- if (!ConstantFP::isValueValidForType($1, $2))
+ if (!ConstantFP::isValueValidForType($1, *$2))
GEN_ERROR("Floating point constant invalid for type");
- $$ = ConstantFP::get($1, $2);
+ // Lexer has no type info, so builds all FP constants as double.
+ // Fix this here.
+ if ($1==Type::FloatTy)
+ $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
+ $$ = ConstantFP::get($1, *$2);
CHECK_FOR_ERROR
};
diff --git a/lib/AsmParser/llvmAsmParser.y.cvs b/lib/AsmParser/llvmAsmParser.y.cvs
index 93f7a085bc..83dfa31f03 100644
--- a/lib/AsmParser/llvmAsmParser.y.cvs
+++ b/lib/AsmParser/llvmAsmParser.y.cvs
@@ -412,11 +412,15 @@ static Value *getExistingVal(const Type *Ty, const ValID &D) {
}
case ValID::ConstFPVal: // Is it a floating point const pool reference?
- if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
+ if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
GenerateError("FP constant invalid for type");
return 0;
}
- return ConstantFP::get(Ty, D.ConstPoolFP);
+ // Lexer has no type info, so builds all FP constants as double.
+ // Fix this here.
+ if (Ty==Type::FloatTy)
+ D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty)) {
@@ -992,7 +996,7 @@ Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
- double FPVal;
+ llvm::APFloat *FPVal;
bool BoolVal;
std::string *StrVal; // This memory must be deleted
@@ -1862,9 +1866,13 @@ ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
CHECK_FOR_ERROR
}
| FPType FPVAL { // Float & Double constants
- if (!ConstantFP::isValueValidForType($1, $2))
+ if (!ConstantFP::isValueValidForType($1, *$2))
GEN_ERROR("Floating point constant invalid for type");
- $$ = ConstantFP::get($1, $2);
+ // Lexer has no type info, so builds all FP constants as double.
+ // Fix this here.
+ if ($1==Type::FloatTy)
+ $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
+ $$ = ConstantFP::get($1, *$2);
CHECK_FOR_ERROR
};
diff --git a/lib/Bitcode/Reader/BitcodeReader.cpp b/lib/Bitcode/Reader/BitcodeReader.cpp
index 6ad1fd595b..fcf2e510f9 100644
--- a/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -626,13 +626,16 @@ bool BitcodeReader::ParseConstants() {
if (Record.empty())
return Error("Invalid FLOAT record");
if (CurTy == Type::FloatTy)
- V = ConstantFP::get(CurTy, BitsToFloat(Record[0]));
+ V = ConstantFP::get(CurTy, APFloat((float)BitsToDouble(Record[0])));
else if (CurTy == Type::DoubleTy)
- V = ConstantFP::get(CurTy, BitsToDouble(Record[0]));
- // FIXME: Make long double constants work.
- else if (CurTy == Type::X86_FP80Ty ||
- CurTy == Type::FP128Ty || CurTy == Type::PPC_FP128Ty)
- assert(0 && "Long double constants not handled yet.");
+ V = ConstantFP::get(CurTy, APFloat(BitsToDouble(Record[0])));
+ // FIXME: Make long double constants work. BitsToDouble does not make it.
+ else if (CurTy == Type::X86_FP80Ty)
+ V = ConstantFP::get(CurTy, APFloat(BitsToDouble(Record[0])));
+ else if (CurTy == Type::FP128Ty)
+ V = ConstantFP::get(CurTy, APFloat(BitsToDouble(Record[0])));
+ else if (CurTy == Type::PPC_FP128Ty)
+ assert(0 && "PowerPC long double constants not handled yet.");
else
V = UndefValue::get(CurTy);
break;
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
index 17c14f0a0d..ab3d9834d1 100644
--- a/lib/Bitcode/Writer/BitcodeWriter.cpp
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -527,9 +527,10 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Code = bitc::CST_CODE_FLOAT;
const Type *Ty = CFP->getType();
if (Ty == Type::FloatTy) {
- Record.push_back(FloatToBits((float)CFP->getValue()));
+ Record.push_back(DoubleToBits((double)CFP->getValueAPF().
+ convertToFloat()));
} else if (Ty == Type::DoubleTy) {
- Record.push_back(DoubleToBits((double)CFP->getValue()));
+ Record.push_back(DoubleToBits(CFP->getValueAPF().convertToDouble()));
// FIXME: make long double constants work.
} else if (Ty == Type::X86_FP80Ty ||
Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
diff --git a/lib/CodeGen/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter.cpp
index fa6f5691fc..e80afd40ee 100644
--- a/lib/CodeGen/AsmPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter.cpp
@@ -829,8 +829,8 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// FP Constants are printed as integer constants to avoid losing
// precision...
- double Val = CFP->getValue();
if (CFP->getType() == Type::DoubleTy) {
+ double Val = CFP->getValueAPF().convertToDouble();
if (TAI->getData64bitsDirective())
O << TAI->getData64bitsDirective() << DoubleToBits(Val) << "\t"
<< TAI->getCommentString() << " double value: " << Val << "\n";
@@ -851,6 +851,7 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
}
return;
} else {
+ float Val = CFP->getValueAPF().convertToFloat();
O << TAI->getData32bitsDirective() << FloatToBits(Val)
<< "\t" << TAI->getCommentString() << " float " << Val << "\n";
return;
diff --git a/lib/CodeGen/MachOWriter.cpp b/lib/CodeGen/MachOWriter.cpp
index 36060e150e..af2555d3ee 100644
--- a/lib/CodeGen/MachOWriter.cpp
+++ b/lib/CodeGen/MachOWriter.cpp
@@ -861,7 +861,8 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
break;
}
case Type::FloatTyID: {
- uint64_t val = FloatToBits(cast<ConstantFP>(PC)->getValue());
+ uint64_t val = FloatToBits(cast<ConstantFP>(PC)->
+ getValueAPF().convertToFloat());
if (TD->isBigEndian())
val = ByteSwap_32(val);
ptr[0] = val;
@@ -871,7 +872,8 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
break;
}
case Type::DoubleTyID: {
- uint64_t val = DoubleToBits(cast<ConstantFP>(PC)->getValue());
+ uint64_t val = DoubleToBits(cast<ConstantFP>(PC)->
+ getValueAPF().convertToDouble());
if (TD->isBigEndian())
val = ByteSwap_64(val);
ptr[0] = val;
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index a695048a5a..d1e9365274 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -840,7 +840,7 @@ SDOperand SelectionDAGLowering::getValue(const Value *V) {
return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
&Ops[0], Ops.size());
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- return N = DAG.getConstantFP(CFP->getValue(), VT);
+ return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
} else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
unsigned NumElements = PTy->getNumElements();
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
@@ -2003,7 +2003,8 @@ void SelectionDAGLowering::visitSub(User &I) {
const Type *ElTy = DestTy->getElementType();
if (ElTy->isFloatingPoint()) {
unsigned VL = DestTy->getNumElements();
- std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
+ std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy,
+ ElTy==Type::FloatTy ? APFloat(-0.0f) : APFloat(-0.0)));
Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
if (CV == CNZ) {
SDOperand Op2 = getValue(I.getOperand(1));
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
index 325ab8af52..fb9ff371d5 100644
--- a/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -525,10 +525,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue Result;
switch (C->getType()->getTypeID()) {
case Type::FloatTyID:
- Result.FloatVal = (float)cast<ConstantFP>(C)->getValue();
+ Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
break;
case Type::DoubleTyID:
- Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue();
+ Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
break;
case Type::IntegerTyID:
Result.IntVal = cast<ConstantInt>(C)->getValue();
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp
index 766d62ce19..848786f314 100644
--- a/lib/ExecutionEngine/JIT/JIT.cpp
+++ b/lib/ExecutionEngine/JIT/JIT.cpp
@@ -206,8 +206,10 @@ GenericValue JIT::runFunction(Function *F,
switch (ArgTy->getTypeID()) {
default: assert(0 && "Unknown argument type for function call!");
case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break;
- case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break;
- case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break;
+ case Type::FloatTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.FloatVal));
+ break;
+ case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.DoubleVal));
+ break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4) {
diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp
index b0c76c8e8e..ff95e90dc7 100644
--- a/lib/Target/CBackend/CBackend.cpp
+++ b/lib/Target/CBackend/CBackend.cpp
@@ -604,17 +604,19 @@ void CWriter::printConstantVector(ConstantVector *CP) {
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
+ APFloat APF = APFloat(CFP->getValueAPF()); // copy
+ if (CFP->getType()==Type::FloatTy)
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
- sprintf(Buffer, "%a", CFP->getValue());
-
+ sprintf(Buffer, "%a", APF.convertToDouble());
if (!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3))
- return atof(Buffer) == CFP->getValue();
+ return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
return false;
#else
- std::string StrVal = ftostr(CFP->getValue());
+ std::string StrVal = ftostr(APF);
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
@@ -625,7 +627,7 @@ static bool isFPCSafeToPrint(const ConstantFP *CFP) {
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
- return atof(StrVal.c_str()) == CFP->getValue();
+ return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
return false;
#endif
}
@@ -882,9 +884,13 @@ void CWriter::printConstant(Constant *CPV) {
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
<< "*)&FPConstant" << I->second << ')';
} else {
- if (IsNAN(FPC->getValue())) {
+ double V = FPC->getType() == Type::FloatTy ?
+ FPC->getValueAPF().convertToFloat() :
+ FPC->getValueAPF().convertToDouble();
+ if (IsNAN(V)) {
// The value is NaN
+ // FIXME the actual NaN bits should be emitted.
// The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
// it's 0x7ff4.
const unsigned long QuietNaN = 0x7ff8UL;
@@ -893,7 +899,7 @@ void CWriter::printConstant(Constant *CPV) {
// We need to grab the first part of the FP #
char Buffer[100];
- uint64_t ll = DoubleToBits(FPC->getValue());
+ uint64_t ll = DoubleToBits(V);
sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
std::string Num(&Buffer[0], &Buffer[6]);
@@ -905,9 +911,9 @@ void CWriter::printConstant(Constant *CPV) {
else
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
<< Buffer << "\") /*nan*/ ";
- } else if (IsInf(FPC->getValue())) {
+ } else if (IsInf(V)) {
// The value is Inf
- if (FPC->getValue() < 0) Out << '-';
+ if (V < 0) Out << '-';
Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
<< " /*inf*/ ";
} else {
@@ -915,12 +921,12 @@ void CWriter::printConstant(Constant *CPV) {
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
// Print out the constant as a floating point number.
char Buffer[100];
- sprintf(Buffer, "%a", FPC->getValue());
+ sprintf(Buffer, "%a", V);
Num = Buffer;
#else
- Num = ftostr(FPC->getValue());
+ Num = ftostr(FPC->getValueAPF());
#endif
- Out << Num;
+ Out << Num;
}
}
break;
@@ -1715,15 +1721,15 @@ void CWriter::printFloatingPointConstants(Function &F) {
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
!FPConstantMap.count(FPC)) {
- double Val = FPC->getValue();
-
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy) {
+ double Val = FPC->getValueAPF().convertToDouble();
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << DoubleToBits(Val) << std::dec
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::FloatTy) {
+ float Val = FPC->getValueAPF().convertToFloat();
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << FloatToBits(Val) << std::dec
<< "U; /* " << Val << " */\n";
diff --git a/lib/Target/MSIL/MSILWriter.cpp b/lib/Target/MSIL/MSILWriter.cpp
index 5859adf87a..71789703ff 100644
--- a/lib/Target/MSIL/MSILWriter.cpp
+++ b/lib/Target/MSIL/MSILWriter.cpp
@@ -428,10 +428,10 @@ void MSILWriter::printConstLoad(const Constant* C) {
uint64_t X;
unsigned Size;
if (FP->getType()->getTypeID()==Type::FloatTyID) {
- X = FloatToBits(FP->getValue());
+ X = FloatToBits(FP->getValueAPF().convertToFloat());
Size = 4;
} else {
- X = DoubleToBits(FP->getValue());
+ X = DoubleToBits(FP->getValueAPF().convertToDouble());
Size = 8;
}
Out << "\tldc.r" << Size << "\t( " << utohexstr(X) << ')';
@@ -1472,9 +1472,11 @@ void MSILWriter::printStaticConstant(const Constant* C, uint64_t& Offset) {
TySize = TD->getTypeSize(Ty);
const ConstantFP* FP = cast<ConstantFP>(C);
if (Ty->getTypeID() == Type::FloatTyID)
- Out << "int32 (" << FloatToBits(FP->getValue()) << ')';
+ Out << "int32 (" <<
+ FloatToBits(FP->getValueAPF().convertToFloat()) << ')';
else
- Out << "int64 (" << DoubleToBits(FP->getValue()) << ')';
+ Out << "int64 (" <<
+ DoubleToBits(FP->getValueAPF().convertToDouble()) << ')';
break;
}
case Type::ArrayTyID:
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 8cfd5f9a3c..22b282bd5f 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -3412,11 +3412,11 @@ SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
const Type *OpNTy = MVT::getTypeForValueType(EltVT);
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
- Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
+ Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToDouble(~(1ULL << 63))));
CV.push_back(C);
CV.push_back(C);
} else {
- Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
+ Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToFloat(~(1U << 31))));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
@@ -3440,11 +3440,11 @@ SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
const Type *OpNTy = MVT::getTypeForValueType(EltVT);
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
- Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
+ Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToDouble(1ULL << 63)));
CV.push_back(C);
CV.push_back(C);
} else {
- Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
+ Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToFloat(1U << 31)));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
@@ -3475,18 +3475,19 @@ SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
SrcVT = VT;
+ SrcTy = MVT::getTypeForValueType(SrcVT);
}
// First get the sign bit of second operand.
std::vector<Constant*> CV;
if (SrcVT == MVT::f64) {
- CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToDouble(1ULL << 63))));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0)));
} else {
- CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToFloat(1U << 31))));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
}
Constant *C = ConstantVector::get(CV);
SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
@@ -3508,13 +3509,13 @@ SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
// Clear first operand sign bit.
CV.clear();
if (VT == MVT::f64) {
- CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToDouble(~(1ULL << 63)))));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0)));
} else {
- CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
- CV.push_back(ConstantFP::get(SrcTy, 0.0));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToFloat(~(1U << 31)))));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
+ CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
diff --git a/lib/Transforms/IPO/SimplifyLibCalls.cpp b/lib/Transforms/IPO/SimplifyLibCalls.cpp
index 5925f582ad..01d3c9ff2e 100644
--- a/lib/Transforms/IPO/SimplifyLibCalls.cpp
+++ b/lib/Transforms/IPO/SimplifyLibCalls.cpp
@@ -1118,27 +1118,32 @@ public:
Value* base = ci->getOperand(1);
Value* expn = ci->getOperand(2);
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
- double Op1V = Op1->getValue();
- if (Op1V == 1.0) // pow(1.0,x) -> 1.0
- return ReplaceCallWith(ci, ConstantFP::get(Ty, 1.0));
+ if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ return false; // FIXME long double not yet supported
+ if (Op1->isExactlyValue(1.0)) // pow(1.0,x) -> 1.0
+ return ReplaceCallWith(ci, ConstantFP::get(Ty,
+ Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
} else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
- double Op2V = Op2->getValue();
- if (Op2V == 0.0) {
+ if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ return false; // FIXME long double not yet supported
+ if (Op2->getValueAPF().isZero()) {
// pow(x,0.0) -> 1.0
- return ReplaceCallWith(ci, ConstantFP::get(Ty,1.0));
- } else if (Op2V == 0.5) {
+ return ReplaceCallWith(ci, ConstantFP::get(Ty,
+ Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
+ } else if (Op2->isExactlyValue(0.5)) {
// pow(x,0.5) -> sqrt(x)
CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
ci->getName()+".pow",ci);
return ReplaceCallWith(ci, sqrt_inst);
- } else if (Op2V == 1.0) {
+ } else if (Op2->isExactlyValue(1.0)) {
// pow(x,1.0) -> x
return ReplaceCallWith(ci, base);
- } else if (Op2V == -1.0) {
+ } else if (Op2->isExactlyValue(-1.0)) {
// pow(x,-1.0) -> 1.0/x
Value *div_inst =
- BinaryOperator::createFDiv(ConstantFP::get(Ty, 1.0), base,
- ci->getName()+".pow", ci);
+ BinaryOperator::createFDiv(ConstantFP::get(Ty,
+ Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)),
+ base, ci->getName()+".pow", ci);
return ReplaceCallWith(ci, div_inst);
}
}
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index 4902fb710a..26df55531a 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -2348,7 +2348,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
// "In IEEE floating point, x*1 is not equivalent to x for nans. However,
// ANSI says we can drop signals, so we can do this anyway." (from GCC)
- if (Op1F->getValue() == 1.0)
+ if (Op1F->isExactlyValue(1.0))
return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
}
diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp
index 9286e15d6c..a7b1239bcf 100644
--- a/lib/VMCore/AsmWriter.cpp
+++ b/lib/VMCore/AsmWriter.cpp
@@ -486,7 +486,10 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
- std::string StrVal = ftostr(CFP->getValue());
+ bool isDouble = &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble;
+ double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
+ CFP->getValueAPF().convertToFloat();
+ std::string StrVal = ftostr(CFP->getValueAPF());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
@@ -496,7 +499,7 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
- if (atof(StrVal.c_str()) == CFP->getValue()) {
+ if (atof(StrVal.c_str()) == Val) {
Out << StrVal;
return;
}
@@ -505,7 +508,7 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
// output the string in hexadecimal format!
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
- Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
+ Out << "0x" << utohexstr(DoubleToBits(Val));
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index fb2e65f6ba..5686a0e35f 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -68,7 +68,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
for (unsigned i = 0; i != SrcNumElts; ++i) {
ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
double V = CI->getValue().bitsToDouble();
- Result.push_back(ConstantFP::get(Type::DoubleTy, V));
+ Result.push_back(ConstantFP::get(Type::DoubleTy, APFloat(V)));
}
return ConstantVector::get(Result);
}
@@ -76,7 +76,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
for (unsigned i = 0; i != SrcNumElts; ++i) {
ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
float V = CI->getValue().bitsToFloat();
- Result.push_back(ConstantFP::get(Type::FloatTy, V));
+ Result.push_back(ConstantFP::get(Type::FloatTy, APFloat(V)));
}
return ConstantVector::get(Result);
}
@@ -87,7 +87,8 @@ static Constant *CastConstantVector(ConstantVector *CV,
if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
for (unsigned i = 0; i != SrcNumElts; ++i) {
uint64_t V =
- DoubleToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
+ DoubleToBits(cast<ConstantFP>(CV->getOperand(i))->
+ getValueAPF().convertToDouble());
Constant *C = ConstantInt::get(Type::Int64Ty, V);
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
}
@@ -96,7 +97,8 @@ static Constant *CastConstantVector(ConstantVector *CV,
assert(SrcEltTy->getTypeID() == Type::FloatTyID);
for (unsigned i = 0; i != SrcNumElts; ++i) {
- uint32_t V = FloatToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
+ uint32_t V = FloatToBits(cast<ConstantFP>(CV->getOperand(i))->
+ getValueAPF().convertToFloat());
Constant *C = ConstantInt::get(Type::Int32Ty, V);
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
}
@@ -175,20 +177,31 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
switch (opc) {
case Instruction::FPTrunc:
case Instruction::FPExt:
- if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
- return ConstantFP::get(DestTy, FPC->getValue());
+ if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ APFloat Val = FPC->getValueAPF();
+ Val.convert(DestTy==Type::FloatTy ? APFloat::IEEEsingle :
+ APFloat::IEEEdouble,
+ APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(DestTy, Val);
+ }
return 0; // Can't fold.
case Instruction::FPToUI:
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ APFloat V = FPC->getValueAPF();
+ bool isDouble = &V.getSemantics()==&APFloat::IEEEdouble;
uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
+ APInt Val(APIntOps::RoundDoubleToAPInt(isDouble ? V.convertToDouble() :
+ (double)V.convertToFloat(), DestBitWidth));
return ConstantInt::get(Val);
}
return 0; // Can't fold.
case Instruction::FPToSI:
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ APFloat V = FPC->getValueAPF();
+ bool isDouble = &V.getSemantics()==&APFloat::IEEEdouble;
uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
- APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
+ APInt Val(APIntOps::RoundDoubleToAPInt(isDouble ? V.convertToDouble() :
+ (double)V.convertToFloat(), DestBitWidth));
return ConstantInt::get(Val);
}
return 0; // Can't fold.
@@ -201,12 +214,22 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
return ConstantInt::get(DestTy, 0);
return 0; // Other pointer types cannot be casted
case Instruction::UIToFP:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return ConstantFP::get(DestTy, CI->getValue().roundToDouble());
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (DestTy==Type::FloatTy)
+ return ConstantFP::get(DestTy,
+ APFloat((float)CI->getValue().roundToDouble()));
+ else
+ return ConstantFP::get(DestTy, APFloat(CI->getValue().roundToDouble()));
+ }
return 0;
case Instruction::SIToFP:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return ConstantFP::get(DestTy, CI->getValue().signedRoundToDouble());
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ double d = CI->getValue().signedRoundToDouble();
+ if (DestTy==Type::FloatTy)
+ return ConstantFP::get(DestTy, APFloat((float)d));
+ else
+ return ConstantFP::get(DestTy, APFloat(d));
+ }
return 0;
case Instruction::ZExt:
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
@@ -309,9 +332,9 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
if (DestTy->isFloatingPoint()) {
if (DestTy == Type::FloatTy)
- return ConstantFP::get(DestTy, CI->getValue().bitsToFloat());
+ return ConstantFP::get(DestTy, APFloat(CI->getValue().bitsToFloat()));
assert(DestTy == Type::DoubleTy && "Unknown FP type!");
- return ConstantFP::get(DestTy, CI->getValue().bitsToDouble());
+ return ConstantFP::get(DestTy, APFloat(CI->getValue().bitsToDouble()));
}
// Otherwise, can't fold this (vector?)
return 0;
@@ -322,11 +345,13 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
// FP -> Integral.
if (DestTy == Type::Int32Ty) {
APInt Val(32, 0);
- return ConstantInt::get(Val.floatToBits(FP->getValue()));
+ return ConstantInt::get(Val.floatToBits(FP->
+ getValueAPF().convertToFloat()));
} else {
assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
APInt Val(64, 0);
- return ConstantInt::get(Val.doubleToBits(FP->getValue()));
+ return ConstantInt::get(Val.doubleToBits(FP->
+ getValueAPF().convertToDouble()));
}
}
return 0;
@@ -660,39 +685,50 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
}
} else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
- double C1Val = CFP1->getValue();
- double C2Val = CFP2->getValue();
+ APFloat C1V = CFP1->getValueAPF();
+ APFloat C2V = CFP2->getValueAPF();
+ APFloat C3V = C1V; // copy for modification
+ bool isDouble = CFP1->getType()==Type::DoubleTy;
switch (Opcode) {
default:
break;
- case Instruction::Add:
- return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
+ case Instruction::Add:
+ (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::Sub:
- return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
- case Instruction::Mul:
- return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
+ (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(CFP1->getType(), C3V);
+ case Instruction::Mul:
+ (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::FDiv:
- if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
- if (CFP1->isExactlyValue(0.0) || CFP1->isExactlyValue(-0.0))
+ // FIXME better to look at the return code
+ if (C2V.isZero())
+ if (C1V.isZero())
// IEEE 754, Section 7.1, #4
- return ConstantFP::get(CFP1->getType(),
- std::numeric_limits<double>::quiet_NaN());
- else if (CFP2->isExactlyValue(-0.0) || C1Val < 0.0)
+ return ConstantFP::get(CFP1->getType(), isDouble ?
+ APFloat(std::numeric_limits<double>::quiet_NaN()) :
+ APFloat(std::numeric_limits<float>::quiet_NaN()));
+ else if (C2V.isNegZero() || C1V.isNegative())
// IEEE 754, Section 7.2, negative infinity case
- return ConstantFP::get(CFP1->getType(),
- -std::numeric_limits<double>::infinity());
+ return ConstantFP::get(CFP1->getType(), isDouble ?
+ APFloat(-std::numeric_limits<double>::infinity()) :
+ APFloat(-std::numeric_limits<float>::infinity()));
else
// IEEE 754, Section 7.2, positive infinity case
- return ConstantFP::get(CFP1->getType(),
- std::numeric_limits<double>::infinity());
- return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
+ return ConstantFP::get(CFP1->getType(), isDouble ?
+ APFloat(std::numeric_limits<double>::infinity()) :
+ APFloat(std::numeric_limits<float>::infinity()));
+ (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::FRem:
- if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
+ if (C2V.isZero())
// IEEE 754, Section 7.1, #5
- return ConstantFP::get(CFP1->getType(),
- std::numeric_limits<double>::quiet_NaN());
- return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
-
+ return ConstantFP::get(CFP1->getType(), isDouble ?
+ APFloat(std::numeric_limits<double>::quiet_NaN()) :
+ APFloat(std::numeric_limits<float>::quiet_NaN()));
+ (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(CFP1->getType(), C3V);
}
}
} else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
@@ -1123,52 +1159,47 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
- double C1Val = cast<ConstantFP>(C1)->getValue();
- double C2Val = cast<ConstantFP>(C2)->getValue();
+ APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
+ APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
+ APFloat::cmpResult R = C1V.compare(C2V);
switch (pred) {
default: assert(0 && "Invalid FCmp Predicate"); return 0;
case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
case FCmpInst::FCMP_UNO:
- return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
case FCmpInst::FCMP_ORD:
- return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
case FCmpInst::FCMP_UEQ:
- if (C1Val != C1Val || C2Val != C2Val)
- return ConstantInt::getTrue();
- /* FALL THROUGH */
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpEqual);
case FCmpInst::FCMP_OEQ:
- return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
case FCmpInst::FCMP_UNE:
- if (C1Val != C1Val || C2Val != C2Val)
- return ConstantInt::getTrue();
- /* FALL THROUGH */
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
case FCmpInst::FCMP_ONE:
- return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULT:
- if (C1Val != C1Val || C2Val != C2Val)
- return ConstantInt::getTrue();
- /* FALL THROUGH */
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpLessThan);
case FCmpInst::FCMP_OLT:
- return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
case FCmpInst::FCMP_UGT:
- if (C1Val != C1Val || C2Val != C2Val)
- return ConstantInt::getTrue();
- /* FALL THROUGH */
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OGT:
- return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULE:
- if (C1Val != C1Val || C2Val != C2Val)
- return ConstantInt::getTrue();
- /* FALL THROUGH */
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OLE:
- return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ R==APFloat::cmpEqual);
case FCmpInst::FCMP_UGE:
- if (C1Val != C1Val || C2Val != C2Val)
- return ConstantInt::getTrue();
- /* FALL THROUGH */
+ return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
case FCmpInst::FCMP_OGE:
- return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
+ return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpEqual);
}
} else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index f7cbe82e72..1708e46079 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -107,11 +107,13 @@ Constant *Constant::getNullValue(const Type *Ty) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::FloatTyID:
+ return ConstantFP::get(Ty, APFloat(0.0f));
case Type::DoubleTyID:
+ return ConstantFP::get(Ty, APFloat(0.0));
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID:
- return ConstantFP::get(Ty, 0.0);
+ return ConstantFP::get(Ty, APFloat(0.0)); //FIXME
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
@@ -238,11 +240,6 @@ ConstantInt *ConstantInt::get(const APInt& V) {
// ConstantFP
//===----------------------------------------------------------------------===//
-
-ConstantFP::ConstantFP(const Type *Ty, double V)
- : Constant(Ty, ConstantFPVal, 0, 0),
- Val(Ty==Type::FloatTy ? APFloat((float)V) : APFloat(V)) {
-}
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
: Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
// temporary
@@ -293,27 +290,6 @@ typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
static ManagedStatic<FPMapTy> FPConstants;
-ConstantFP *ConstantFP::get(const Type *Ty, double V) {
- if (Ty == Type::FloatTy) {
- DenseMapAPFloatKeyInfo::KeyTy Key(APFloat((float)V));
- ConstantFP *&Slot = (*FPConstants)[Key];
- if (Slot) return Slot;
- return Slot = new ConstantFP(Ty, APFloat((float)V));
- } else if (Ty == Type::DoubleTy) {
- // Without the redundant cast, the following is taken to be
- // a function declaration. What a language.
- DenseMapAPFloatKeyInfo::KeyTy Key(APFloat((double)V));
- ConstantFP *&Slot = (*FPConstants)[Key];
- if (Slot) return Slot;
- return Slot = new ConstantFP(Ty, APFloat(V));
- } else if (Ty == Type::X86_FP80Ty ||
- Ty == Type::PPC_FP128Ty || Ty == Type::FP128Ty) {
- assert(0 && "Long double constants not handled yet.");
- } else {
- assert(0 && "Unknown FP Type!");
- }
-}
-
ConstantFP *ConstantFP::get(const Type *Ty, const APFloat& V) {
// temporary
if (Ty==Type::FloatTy)
@@ -1934,12 +1910,15 @@ Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
if (PTy->getElementType()->isFloatingPoint()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
- ConstantFP::get(PTy->getElementType(),-0.0));
+ ConstantFP::get(PTy->getElementType(),
+ PTy->getElementType()==Type::FloatTy ?
+ APFloat(-0.0f) : APFloat(0.0)));
return ConstantVector::get(PTy, zeros);
}
if (Ty->isFloatingPoint())
- return ConstantFP::get(Ty, -0.0);
+ return ConstantFP::get(Ty, Ty==Type::FloatTy ? APFloat(-0.0f) :
+ APFloat(-0.0));
return Constant::getNullValue(Ty);
}