summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDan Gohman <gohman@apple.com>2010-04-21 01:22:34 +0000
committerDan Gohman <gohman@apple.com>2010-04-21 01:22:34 +0000
commit5eb6d65a27fd77a0bf10bd49f5cccb9f1796d98b (patch)
tree8815249891afaebae858de28ca18094a2823bbcf /lib
parent52d2b0ed00d71c8ba0ff1a0b35cad4ffebc81dd5 (diff)
downloadllvm-5eb6d65a27fd77a0bf10bd49f5cccb9f1796d98b.tar.gz
llvm-5eb6d65a27fd77a0bf10bd49f5cccb9f1796d98b.tar.bz2
llvm-5eb6d65a27fd77a0bf10bd49f5cccb9f1796d98b.tar.xz
Move several SelectionDAG-independent utility functions out of the
SelectionDAG directory and into a new Analysis.cpp file. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101975 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/CodeGen/Analysis.cpp285
-rw-r--r--lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp262
-rw-r--r--lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h49
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp1
4 files changed, 287 insertions, 310 deletions
diff --git a/lib/CodeGen/Analysis.cpp b/lib/CodeGen/Analysis.cpp
new file mode 100644
index 0000000000..f71eee5d01
--- /dev/null
+++ b/lib/CodeGen/Analysis.cpp
@@ -0,0 +1,285 @@
+//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines several CodeGen-specific LLVM IR analysis utilties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
+/// of insertvalue or extractvalue indices that identify a member, return
+/// the linearized index of the start of the member.
+///
+unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+ const unsigned *Indices,
+ const unsigned *IndicesEnd,
+ unsigned CurIndex) {
+ // Base case: We're done.
+ if (Indices && Indices == IndicesEnd)
+ return CurIndex;
+
+ // Given a struct type, recursively traverse the elements.
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (StructType::element_iterator EB = STy->element_begin(),
+ EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI) {
+ if (Indices && *Indices == unsigned(EI - EB))
+ return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
+ CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
+ }
+ return CurIndex;
+ }
+ // Given an array type, recursively traverse the elements.
+ else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ const Type *EltTy = ATy->getElementType();
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
+ if (Indices && *Indices == i)
+ return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
+ CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
+ }
+ return CurIndex;
+ }
+ // We haven't found the type we're looking for, so keep searching.
+ return CurIndex + 1;
+}
+
+/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
+/// EVTs that represent all the individual underlying
+/// non-aggregate types that comprise it.
+///
+/// If Offsets is non-null, it points to a vector to be filled in
+/// with the in-memory offsets of each of the individual values.
+///
+void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+ SmallVectorImpl<EVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets,
+ uint64_t StartingOffset) {
+ // Given a struct type, recursively traverse the elements.
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
+ for (StructType::element_iterator EB = STy->element_begin(),
+ EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI)
+ ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
+ StartingOffset + SL->getElementOffset(EI - EB));
+ return;
+ }
+ // Given an array type, recursively traverse the elements.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ const Type *EltTy = ATy->getElementType();
+ uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
+ StartingOffset + i * EltSize);
+ return;
+ }
+ // Interpret void as zero return values.
+ if (Ty->isVoidTy())
+ return;
+ // Base case: we can get an EVT for this LLVM IR type.
+ ValueVTs.push_back(TLI.getValueType(Ty));
+ if (Offsets)
+ Offsets->push_back(StartingOffset);
+}
+
+/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
+GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
+ V = V->stripPointerCasts();
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
+
+ if (GV && GV->getName() == ".llvm.eh.catch.all.value") {
+ assert(GV->hasInitializer() &&
+ "The EH catch-all value must have an initializer");
+ Value *Init = GV->getInitializer();
+ GV = dyn_cast<GlobalVariable>(Init);
+ if (!GV) V = cast<ConstantPointerNull>(Init);
+ }
+
+ assert((GV || isa<ConstantPointerNull>(V)) &&
+ "TypeInfo must be a global variable or NULL");
+ return GV;
+}
+
+/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
+/// processed uses a memory 'm' constraint.
+bool
+llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
+ const TargetLowering &TLI) {
+ for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
+ InlineAsm::ConstraintInfo &CI = CInfos[i];
+ for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
+ TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
+ if (CType == TargetLowering::C_Memory)
+ return true;
+ }
+
+ // Indirect operand accesses access memory.
+ if (CI.isIndirect)
+ return true;
+ }
+
+ return false;
+}
+
+/// getFCmpCondCode - Return the ISD condition code corresponding to
+/// the given LLVM IR floating-point condition code. This includes
+/// consideration of global floating-point math flags.
+///
+ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
+ ISD::CondCode FPC, FOC;
+ switch (Pred) {
+ case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
+ case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
+ case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
+ case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
+ case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
+ case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
+ case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
+ case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
+ case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
+ case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
+ case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
+ case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
+ case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
+ case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
+ case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
+ case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
+ default:
+ llvm_unreachable("Invalid FCmp predicate opcode!");
+ FOC = FPC = ISD::SETFALSE;
+ break;
+ }
+ if (FiniteOnlyFPMath())
+ return FOC;
+ else
+ return FPC;
+}
+
+/// getICmpCondCode - Return the ISD condition code corresponding to
+/// the given LLVM IR integer condition code.
+///
+ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
+ switch (Pred) {
+ case ICmpInst::ICMP_EQ: return ISD::SETEQ;
+ case ICmpInst::ICMP_NE: return ISD::SETNE;
+ case ICmpInst::ICMP_SLE: return ISD::SETLE;
+ case ICmpInst::ICMP_ULE: return ISD::SETULE;
+ case ICmpInst::ICMP_SGE: return ISD::SETGE;
+ case ICmpInst::ICMP_UGE: return ISD::SETUGE;
+ case ICmpInst::ICMP_SLT: return ISD::SETLT;
+ case ICmpInst::ICMP_ULT: return ISD::SETULT;
+ case ICmpInst::ICMP_SGT: return ISD::SETGT;
+ case ICmpInst::ICMP_UGT: return ISD::SETUGT;
+ default:
+ llvm_unreachable("Invalid ICmp predicate opcode!");
+ return ISD::SETNE;
+ }
+}
+
+/// Test if the given instruction is in a position to be optimized
+/// with a tail-call. This roughly means that it's in a block with
+/// a return and there's nothing that needs to be scheduled
+/// between it and the return.
+///
+/// This function only tests target-independent requirements.
+bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
+ const TargetLowering &TLI) {
+ const Instruction *I = CS.getInstruction();
+ const BasicBlock *ExitBB = I->getParent();
+ const TerminatorInst *Term = ExitBB->getTerminator();
+ const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
+ const Function *F = ExitBB->getParent();
+
+ // The block must end in a return statement or unreachable.
+ //
+ // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
+ // an unreachable, for now. The way tailcall optimization is currently
+ // implemented means it will add an epilogue followed by a jump. That is
+ // not profitable. Also, if the callee is a special function (e.g.
+ // longjmp on x86), it can end up causing miscompilation that has not
+ // been fully understood.
+ if (!Ret &&
+ (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
+
+ // If I will have a chain, make sure no other instruction that will have a
+ // chain interposes between I and the return.
+ if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
+ !I->isSafeToSpeculativelyExecute())
+ for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
+ --BBI) {
+ if (&*BBI == I)
+ break;
+ // Debug info intrinsics do not get in the way of tail call optimization.
+ if (isa<DbgInfoIntrinsic>(BBI))
+ continue;
+ if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
+ !BBI->isSafeToSpeculativelyExecute())
+ return false;
+ }
+
+ // If the block ends with a void return or unreachable, it doesn't matter
+ // what the call's return type is.
+ if (!Ret || Ret->getNumOperands() == 0) return true;
+
+ // If the return value is undef, it doesn't matter what the call's
+ // return type is.
+ if (isa<UndefValue>(Ret->getOperand(0))) return true;
+
+ // Conservatively require the attributes of the call to match those of
+ // the return. Ignore noalias because it doesn't affect the call sequence.
+ unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
+ if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
+ return false;
+
+ // It's not safe to eliminate the sign / zero extension of the return value.
+ if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
+ return false;
+
+ // Otherwise, make sure the unmodified return value of I is the return value.
+ for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
+ U = dyn_cast<Instruction>(U->getOperand(0))) {
+ if (!U)
+ return false;
+ if (!U->hasOneUse())
+ return false;
+ if (U == I)
+ break;
+ // Check for a truly no-op truncate.
+ if (isa<TruncInst>(U) &&
+ TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
+ continue;
+ // Check for a truly no-op bitcast.
+ if (isa<BitCastInst>(U) &&
+ (U->getOperand(0)->getType() == U->getType() ||
+ (U->getOperand(0)->getType()->isPointerTy() &&
+ U->getType()->isPointerTy())))
+ continue;
+ // Otherwise it's not a true no-op.
+ return false;
+ }
+
+ return true;
+}
+
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
index cc9a3d5722..8fe619eaaf 100644
--- a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
+++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
@@ -14,19 +14,18 @@
#define DEBUG_TYPE "function-lowering-info"
#include "FunctionLoweringInfo.h"
-#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
@@ -34,92 +33,12 @@
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
-/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
-/// of insertvalue or extractvalue indices that identify a member, return
-/// the linearized index of the start of the member.
-///
-unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex) {
- // Base case: We're done.
- if (Indices && Indices == IndicesEnd)
- return CurIndex;
-
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI) {
- if (Indices && *Indices == unsigned(EI - EB))
- return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // Given an array type, recursively traverse the elements.
- else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
- if (Indices && *Indices == i)
- return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // We haven't found the type we're looking for, so keep searching.
- return CurIndex + 1;
-}
-
-/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
-/// EVTs that represent all the individual underlying
-/// non-aggregate types that comprise it.
-///
-/// If Offsets is non-null, it points to a vector to be filled in
-/// with the in-memory offsets of each of the individual values.
-///
-void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets,
- uint64_t StartingOffset) {
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI)
- ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
- StartingOffset + SL->getElementOffset(EI - EB));
- return;
- }
- // Given an array type, recursively traverse the elements.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
- StartingOffset + i * EltSize);
- return;
- }
- // Interpret void as zero return values.
- if (Ty->isVoidTy())
- return;
- // Base case: we can get an EVT for this LLVM IR type.
- ValueVTs.push_back(TLI.getValueType(Ty));
- if (Offsets)
- Offsets->push_back(StartingOffset);
-}
-
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
@@ -285,24 +204,6 @@ unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
return FirstReg;
}
-/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
-GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
- V = V->stripPointerCasts();
- GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
-
- if (GV && GV->getName() == ".llvm.eh.catch.all.value") {
- assert(GV->hasInitializer() &&
- "The EH catch-all value must have an initializer");
- Value *Init = GV->getInitializer();
- GV = dyn_cast<GlobalVariable>(Init);
- if (!GV) V = cast<ConstantPointerNull>(Init);
- }
-
- assert((GV || isa<ConstantPointerNull>(V)) &&
- "TypeInfo must be a global variable or NULL");
- return GV;
-}
-
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
/// call, and add them to the specified machine basic block.
void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
@@ -370,164 +271,3 @@ void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB,
#endif
}
}
-
-/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
-/// processed uses a memory 'm' constraint.
-bool
-llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
- const TargetLowering &TLI) {
- for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
- InlineAsm::ConstraintInfo &CI = CInfos[i];
- for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
- if (CType == TargetLowering::C_Memory)
- return true;
- }
-
- // Indirect operand accesses access memory.
- if (CI.isIndirect)
- return true;
- }
-
- return false;
-}
-
-/// getFCmpCondCode - Return the ISD condition code corresponding to
-/// the given LLVM IR floating-point condition code. This includes
-/// consideration of global floating-point math flags.
-///
-ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
- ISD::CondCode FPC, FOC;
- switch (Pred) {
- case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
- case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
- case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
- case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
- case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
- case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
- case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
- case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
- case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
- case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
- case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
- case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
- case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
- case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
- case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
- case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
- default:
- llvm_unreachable("Invalid FCmp predicate opcode!");
- FOC = FPC = ISD::SETFALSE;
- break;
- }
- if (FiniteOnlyFPMath())
- return FOC;
- else
- return FPC;
-}
-
-/// getICmpCondCode - Return the ISD condition code corresponding to
-/// the given LLVM IR integer condition code.
-///
-ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
- switch (Pred) {
- case ICmpInst::ICMP_EQ: return ISD::SETEQ;
- case ICmpInst::ICMP_NE: return ISD::SETNE;
- case ICmpInst::ICMP_SLE: return ISD::SETLE;
- case ICmpInst::ICMP_ULE: return ISD::SETULE;
- case ICmpInst::ICMP_SGE: return ISD::SETGE;
- case ICmpInst::ICMP_UGE: return ISD::SETUGE;
- case ICmpInst::ICMP_SLT: return ISD::SETLT;
- case ICmpInst::ICMP_ULT: return ISD::SETULT;
- case ICmpInst::ICMP_SGT: return ISD::SETGT;
- case ICmpInst::ICMP_UGT: return ISD::SETUGT;
- default:
- llvm_unreachable("Invalid ICmp predicate opcode!");
- return ISD::SETNE;
- }
-}
-
-/// Test if the given instruction is in a position to be optimized
-/// with a tail-call. This roughly means that it's in a block with
-/// a return and there's nothing that needs to be scheduled
-/// between it and the return.
-///
-/// This function only tests target-independent requirements.
-bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
- const TargetLowering &TLI) {
- const Instruction *I = CS.getInstruction();
- const BasicBlock *ExitBB = I->getParent();
- const TerminatorInst *Term = ExitBB->getTerminator();
- const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
- const Function *F = ExitBB->getParent();
-
- // The block must end in a return statement or unreachable.
- //
- // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
- // an unreachable, for now. The way tailcall optimization is currently
- // implemented means it will add an epilogue followed by a jump. That is
- // not profitable. Also, if the callee is a special function (e.g.
- // longjmp on x86), it can end up causing miscompilation that has not
- // been fully understood.
- if (!Ret &&
- (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
-
- // If I will have a chain, make sure no other instruction that will have a
- // chain interposes between I and the return.
- if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
- !I->isSafeToSpeculativelyExecute())
- for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
- --BBI) {
- if (&*BBI == I)
- break;
- // Debug info intrinsics do not get in the way of tail call optimization.
- if (isa<DbgInfoIntrinsic>(BBI))
- continue;
- if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
- !BBI->isSafeToSpeculativelyExecute())
- return false;
- }
-
- // If the block ends with a void return or unreachable, it doesn't matter
- // what the call's return type is.
- if (!Ret || Ret->getNumOperands() == 0) return true;
-
- // If the return value is undef, it doesn't matter what the call's
- // return type is.
- if (isa<UndefValue>(Ret->getOperand(0))) return true;
-
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore noalias because it doesn't affect the call sequence.
- unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
- if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
- return false;
-
- // It's not safe to eliminate the sign / zero extension of the return value.
- if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
- return false;
-
- // Otherwise, make sure the unmodified return value of I is the return value.
- for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
- U = dyn_cast<Instruction>(U->getOperand(0))) {
- if (!U)
- return false;
- if (!U->hasOneUse())
- return false;
- if (U == I)
- break;
- // Check for a truly no-op truncate.
- if (isa<TruncInst>(U) &&
- TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
- continue;
- // Check for a truly no-op bitcast.
- if (isa<BitCastInst>(U) &&
- (U->getOperand(0)->getType() == U->getType() ||
- (U->getOperand(0)->getType()->isPointerTy() &&
- U->getType()->isPointerTy())))
- continue;
- // Otherwise it's not a true no-op.
- return false;
- }
-
- return true;
-}
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h
index 0d9af1a9bf..333fe228d5 100644
--- a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h
+++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h
@@ -118,30 +118,6 @@ public:
}
};
-/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
-/// of insertvalue or extractvalue indices that identify a member, return
-/// the linearized index of the start of the member.
-///
-unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex = 0);
-
-/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
-/// EVTs that represent all the individual underlying
-/// non-aggregate types that comprise it.
-///
-/// If Offsets is non-null, it points to a vector to be filled in
-/// with the in-memory offsets of each of the individual values.
-///
-void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets = 0,
- uint64_t StartingOffset = 0);
-
-/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
-GlobalVariable *ExtractTypeInfo(Value *V);
-
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
/// call, and add them to the specified machine basic block.
void AddCatchInfo(const CallInst &I,
@@ -151,31 +127,6 @@ void AddCatchInfo(const CallInst &I,
void CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB,
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI);
-/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
-/// processed uses a memory 'm' constraint.
-bool hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
- const TargetLowering &TLI);
-
-/// getFCmpCondCode - Return the ISD condition code corresponding to
-/// the given LLVM IR floating-point condition code. This includes
-/// consideration of global floating-point math flags.
-///
-ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred);
-
-/// getICmpCondCode - Return the ISD condition code corresponding to
-/// the given LLVM IR integer condition code.
-///
-ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred);
-
-/// Test if the given instruction is in a position to be optimized
-/// with a tail-call. This roughly means that it's in a block with
-/// a return and there's nothing that needs to be scheduled
-/// between it and the return.
-///
-/// This function only tests target-independent requirements.
-bool isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
- const TargetLowering &TLI);
-
} // end namespace llvm
#endif
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index ce5a65b7a1..b64ab49751 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -30,6 +30,7 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/GCMetadata.h"