summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorVikram S. Adve <vadve@cs.uiuc.edu>2003-07-10 20:07:54 +0000
committerVikram S. Adve <vadve@cs.uiuc.edu>2003-07-10 20:07:54 +0000
commit951df2b1bd3dae1eb3126cda56ee9ca67a44a33b (patch)
tree37a729199e920df9540d0c1b6f6a457ed0618f48 /lib
parent940a3a47b0394916fb02f86b656bfc33078a8394 (diff)
downloadllvm-951df2b1bd3dae1eb3126cda56ee9ca67a44a33b.tar.gz
llvm-951df2b1bd3dae1eb3126cda56ee9ca67a44a33b.tar.bz2
llvm-951df2b1bd3dae1eb3126cda56ee9ca67a44a33b.tar.xz
Several important bug fixes:
(1) Cannot use ANDN(ot), ORN, and XORN for boolean ops, only bitwise ops. (2) Conditional move instructions must distinguish signed and unsigned condition codes, e.g., MOVLE vs. MOVLEU. (3) Conditional-move-on-register was using the cond-move-on-cc opcodes, which produces a valid-looking instruction with bogus registers! (4) Here's a really cute one: dividing-by-2^k for negative numbers needs to add 2^k-1 before shifting, not add 1 after shifting. Sadly, these are the same when k=0 so our poor test case worked fine. (5) Casting between signed and unsigned values was not correct: completely reimplemented. (6) Zero-extension on unsigned values was bogus: I was only doing the SRL and not the SLLX before it. Don't know WHAT I was thinking! (7) And the most important class of changes: Sign-extensions on signed values. Signed values are not sign-extended after ordinary operations, so they must be sign-extended before the following cases: -- passing to an external or unknown function -- returning from a function -- using as operand 2 of DIV or REM -- using as either operand of condition-code setting operation (currently only SUBCC), with smaller than 32-bit operands Also, a couple of improvements: (1) Fold cast-to-bool into Not(bool). Need to do this for And, Or, XOR also. (2) Convert SetCC-Const into a conditional-move-on-register (case 41) if the constant is 0. This was only being done for branch-on-SetCC-Const when the branch is folded with the SetCC-Const. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7159 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/Target/SparcV9/SparcV9InstrSelection.cpp634
1 files changed, 474 insertions, 160 deletions
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
index abb7fbecc8..0dbdb1b967 100644
--- a/lib/Target/SparcV9/SparcV9InstrSelection.cpp
+++ b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
@@ -25,6 +25,7 @@
#include "llvm/Intrinsics.h"
#include "Support/MathExtras.h"
#include <math.h>
+#include <algorithm>
static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
std::vector<MachineInstr*>& mvec) {
@@ -429,13 +430,8 @@ ChooseMovFpcciInstruction(const InstructionNode* instrNode)
}
-// Assumes that SUBcc v1, v2 -> v3 has been executed.
-// In most cases, we want to clear v3 and then follow it by instruction
-// MOVcc 1 -> v3.
-// Set mustClearReg=false if v3 need not be cleared before conditional move.
-// Set valueToMove=0 if we want to conditionally move 0 instead of 1
-// (i.e., we want to test inverse of a condition)
-// (The latter two cases do not seem to arise because SetNE needs nothing.)
+// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
+// based on the type of SetCC operation.
//
// WARNING: since this function has only one caller, it always returns
// the opcode that expects an immediate and a register. If this function
@@ -444,25 +440,58 @@ ChooseMovFpcciInstruction(const InstructionNode* instrNode)
//
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
// new cases of opcodes.
+//
+static MachineOpCode
+ChooseMovpcciForSetCC(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = V9::INVALID_OPCODE;
+
+ const Type* opType = instrNode->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || isa<PointerType>(opType));
+ bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
+
+ switch(instrNode->getInstruction()->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = V9::MOVEi; break;
+ case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
+ case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break;
+ case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break;
+ case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break;
+ case Instruction::SetNE: opCode = V9::MOVNEi; break;
+ default: assert(0 && "Unrecognized LLVM instr!"); break;
+ }
+
+ return opCode;
+}
+
+
+// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
+// instruction based on the type of SetCC operation. These instructions
+// compare a register with 0 and perform the move is the comparison is true.
+//
+// WARNING: like the previous function, this function it always returns
+// the opcode that expects an immediate and a register. See above.
+//
static MachineOpCode
-ChooseMovpcciAfterSub(const InstructionNode* instrNode)
+ChooseMovpregiForSetCC(const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
switch(instrNode->getInstruction()->getOpcode())
{
- case Instruction::SetEQ: opCode = V9::MOVEi; break;
- case Instruction::SetLE: opCode = V9::MOVLEi; break;
- case Instruction::SetGE: opCode = V9::MOVGEi; break;
- case Instruction::SetLT: opCode = V9::MOVLi; break;
- case Instruction::SetGT: opCode = V9::MOVGi; break;
- case Instruction::SetNE: opCode = V9::MOVNEi; break;
+ case Instruction::SetEQ: opCode = V9::MOVRZi; break;
+ case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
+ case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
+ case Instruction::SetLT: opCode = V9::MOVRLZi; break;
+ case Instruction::SetGT: opCode = V9::MOVRGZi; break;
+ case Instruction::SetNE: opCode = V9::MOVRNZi; break;
default: assert(0 && "Unrecognized VM instr!"); break;
}
return opCode;
}
+
static inline MachineOpCode
ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType)
{
@@ -963,27 +992,46 @@ CreateDivConstInstruction(TargetMachine &target,
Value* shiftOperand;
if (resultType->isSigned()) {
- // The result may be negative and we need to add one before shifting
- // a negative value. Use:
- // srl i0, 31, x0; add x0, i0, i1 (if i0 is <= 32 bits)
- // or
- // srlx i0, 63, x0; add x0, i0, i1 (if i0 is 64 bits)
- // to compute i1=i0+1 if i0 < 0 and i1=i0 otherwise.
+ // For N / 2^k, if the operand N is negative,
+ // we need to add (2^k - 1) before right-shifting by k, i.e.,
+ //
+ // (N / 2^k) = N >> k, if N >= 0;
+ // (N + 2^k - 1) >> k, if N < 0
//
- TmpInstruction *srlTmp, *addTmp;
+ // If N is <= 32 bits, use:
+ // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else
+ // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
+ // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
+ // sra t3, k, result // result = N / 2^k
+ //
+ // If N is 64 bits, use:
+ // srax N, k-1, t1 // t1 = sign bit in high k positions
+ // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
+ // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
+ // sra t3, k, result // result = N / 2^k
+ //
+ TmpInstruction *sraTmp, *srlTmp, *addTmp;
MachineCodeForInstruction& mcfi
= MachineCodeForInstruction::get(destVal);
- srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
+ sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
+ srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
+ // Create the SRA or SRAX instruction to get the sign bit
+ mvec.push_back(BuildMI((resultType==Type::LongTy) ?
+ V9::SRAXi6 : V9::SRAi5, 3)
+ .addReg(LHS)
+ .addSImm((resultType==Type::LongTy)? pow-1 : 31)
+ .addRegDef(sraTmp));
+
// Create the SRL or SRLX instruction to get the sign bit
mvec.push_back(BuildMI((resultType==Type::LongTy) ?
V9::SRLXi6 : V9::SRLi5, 3)
- .addReg(LHS)
- .addSImm((resultType==Type::LongTy)? 63 : 31)
+ .addReg(sraTmp)
+ .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
.addRegDef(srlTmp));
- // Create the ADD instruction to add 1 for negative values
+ // Create the ADD instruction to add 2^pow-1 for negative values
mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
.addRegDef(addTmp));
@@ -1441,6 +1489,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
unsigned allocaSize = 0;
MachineInstr* M, *M2;
unsigned L;
+ bool foldCase = false;
mvec.clear();
@@ -1489,9 +1538,11 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
.addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def);
- // Insert a copy to copy the return value to the appropriate register
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction
+ // If ther is a value to return, we need to:
+ // (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
+ // (b) Insert a copy to copy the return value to the appropriate reg.
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction
//
if (retVal != NULL) {
const UltraSparcRegInfo& regInfo =
@@ -1503,19 +1554,39 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
: (unsigned) SparcIntRegClass::i0);
retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
- // Create a virtual register to represent it and mark
- // this vreg as being an implicit operand of the ret MI
+ // () Insert sign-extension instructions for small signed values.
+ //
+ Value* retValToUse = retVal;
+ if (retType->isIntegral() && retType->isSigned()) {
+ unsigned retSize = target.getTargetData().getTypeSize(retType);
+ if (retSize <= 4) {
+ // create a temporary virtual reg. to hold the sign-extension
+ retValToUse = new TmpInstruction(mcfi, retVal);
+
+ // sign-extend retVal and put the result in the temporary reg.
+ target.getInstrInfo().CreateSignExtensionInstructions
+ (target, returnInstr->getParent()->getParent(),
+ retVal, retValToUse, 8*retSize, mvec, mcfi);
+ }
+ }
+
+ // (b) Now, insert a copy to to the appropriate register:
+ // -- For FP values, create a FMOVS or FMOVD instruction
+ // -- For non-FP values, create an add-with-0 instruction
+ //
+ // First, create a virtual register to represent the register and
+ // mark this vreg as being an implicit operand of the ret MI.
TmpInstruction* retVReg =
- new TmpInstruction(mcfi, retVal, NULL, "argReg");
-
+ new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
+
retMI->addImplicitRef(retVReg);
if (retType->isFloatingPoint())
M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
- .addReg(retVal).addReg(retVReg, MOTy::Def));
+ .addReg(retValToUse).addReg(retVReg, MOTy::Def));
else
M = (BuildMI(ChooseAddInstructionByType(retType), 3)
- .addReg(retVal).addSImm((int64_t) 0)
+ .addReg(retValToUse).addSImm((int64_t) 0)
.addReg(retVReg, MOTy::Def));
// Mark the operand with the register it should be assigned
@@ -1667,8 +1738,26 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
assert(0 && "VRegList should never be the topmost non-chain rule");
break;
- case 21: // bool: Not(bool,reg): Both these are implemented as:
- case 421: // reg: BNot(reg,reg): reg = reg XOR-NOT 0
+ case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg
+ { // First find the unary operand. It may be left or right, usually right.
+ Instruction* notI = subtreeRoot->getInstruction();
+ Value* notArg = BinaryOperator::getNotArgument(
+ cast<BinaryOperator>(subtreeRoot->getInstruction()));
+ unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
+
+ // Unconditionally set register to 0
+ mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
+ .addReg(notI, MOTy::UseAndDef));
+
+ break;
+ }
+
+ case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0
{ // First find the unary operand. It may be left or right, usually right.
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(subtreeRoot->getInstruction()));
@@ -1678,11 +1767,28 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
break;
}
+ case 322: // reg: Not(tobool, reg):
+ // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
+ foldCase = true;
+ // Just fall through!
+
case 22: // reg: ToBoolTy(reg):
{
- const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || isa<PointerType>(opType));
- forwardOperandNum = 0; // forward first operand to user
+ Instruction* castI = subtreeRoot->getInstruction();
+ Value* opVal = subtreeRoot->leftChild()->getValue();
+ assert(opVal->getType()->isIntegral() ||
+ isa<PointerType>(opVal->getType()));
+
+ // Unconditionally set register to 0
+ mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
+ mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
+ .addReg(castI, MOTy::UseAndDef));
+
break;
}
@@ -1692,6 +1798,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
case 26: // reg: ToShortTy(reg)
case 27: // reg: ToUIntTy(reg)
case 28: // reg: ToIntTy(reg)
+ case 29: // reg: ToULongTy(reg)
+ case 30: // reg: ToLongTy(reg)
{
//======================================================================
// Rules for integer conversions:
@@ -1713,64 +1821,87 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
//
// Since we assume 2s complement representations, this implies:
//
- // -- if operand is smaller than destination, zero-extend or sign-extend
- // according to the signedness of the *operand*: source decides.
- // ==> we have to do nothing here!
+ // -- If operand is smaller than destination, zero-extend or sign-extend
+ // according to the signedness of the *operand*: source decides:
+ // (1) If operand is signed, sign-extend it.
+ // If dest is unsigned, zero-ext the result!
+ // (2) If operand is unsigned, our current invariant is that
+ // it's high bits are correct, so zero-extension is not needed.
//
- // -- if operand is same size as or larger than destination, and the
- // destination is *unsigned*, zero-extend the operand: dest. decides
- //
- // -- if operand is same size as or larger than destination, and the
- // destination is *signed*, the choice is implementation defined:
- // we sign-extend the operand: i.e., again dest. decides.
- // Note: this matches both Sun's cc and gcc3.2.
+ // -- If operand is same size as or larger than destination,
+ // zero-extend or sign-extend according to the signedness of
+ // the *destination*: destination decides:
+ // (1) If destination is signed, sign-extend (truncating if needed)
+ // This choice is implementation defined. We sign-extend the
+ // operand, which matches both Sun's cc and gcc3.2.
+ // (2) If destination is unsigned, zero-extend (truncating if needed)
//======================================================================
Instruction* destI = subtreeRoot->getInstruction();
+ Function* currentFunc = destI->getParent()->getParent();
+ MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
+
Value* opVal = subtreeRoot->leftChild()->getValue();
const Type* opType = opVal->getType();
- if (opType->isIntegral() || isa<PointerType>(opType)) {
- unsigned opSize = target.getTargetData().getTypeSize(opType);
- unsigned destSize =
- target.getTargetData().getTypeSize(destI->getType());
- if (opSize >= destSize) {
- // Operand is same size as or larger than dest:
- // zero- or sign-extend, according to the signeddness of
- // the destination (see above).
- if (destI->getType()->isSigned())
- target.getInstrInfo().CreateSignExtensionInstructions(target,
- destI->getParent()->getParent(), opVal, destI, 8*destSize,
- mvec, MachineCodeForInstruction::get(destI));
- else
- target.getInstrInfo().CreateZeroExtensionInstructions(target,
- destI->getParent()->getParent(), opVal, destI, 8*destSize,
- mvec, MachineCodeForInstruction::get(destI));
- } else
- forwardOperandNum = 0; // forward first operand to user
+ const Type* destType = destI->getType();
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+ unsigned destSize = target.getTargetData().getTypeSize(destType);
+
+ bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
+
+ if (opType == Type::BoolTy ||
+ opType == destType ||
+ isIntegral && opSize == destSize && opSize == 8) {
+ // nothing to do in all these cases
+ forwardOperandNum = 0; // forward first operand to user
+
} else if (opType->isFloatingPoint()) {
- CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
- MachineCodeForInstruction::get(destI));
+
+ CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
if (destI->getType()->isUnsigned())
maskUnsignedResult = true; // not handled by fp->int code
- } else
- assert(0 && "Unrecognized operand type for convert-to-unsigned");
- break;
- }
+ } else if (isIntegral) {
+
+ bool opSigned = opType->isSigned();
+ bool destSigned = destType->isSigned();
+ unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
+
+ assert(! (opSize == destSize && opSigned == destSigned) &&
+ "How can different int types have same size and signedness?");
+
+ bool signExtend = (opSize < destSize && opSigned ||
+ opSize >= destSize && destSigned);
+
+ bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
+ opSigned && !destSigned);
+ assert(!signAndZeroExtend || signExtend);
+
+ bool zeroExtendOnly = opSize >= destSize && !destSigned;
+ assert(!zeroExtendOnly || !signExtend);
+
+ if (signExtend) {
+ Value* signExtDest = (signAndZeroExtend
+ ? new TmpInstruction(mcfi, destType, opVal)
+ : destI);
+
+ target.getInstrInfo().CreateSignExtensionInstructions
+ (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
+
+ if (signAndZeroExtend)
+ target.getInstrInfo().CreateZeroExtensionInstructions
+ (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
+ }
+ else if (zeroExtendOnly) {
+ target.getInstrInfo().CreateZeroExtensionInstructions
+ (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
+ }
+ else
+ forwardOperandNum = 0; // forward first operand to user
- case 29: // reg: ToULongTy(reg)
- case 30: // reg: ToLongTy(reg)
- {
- Value* opVal = subtreeRoot->leftChild()->getValue();
- const Type* opType = opVal->getType();
- if (opType->isIntegral() || isa<PointerType>(opType))
- forwardOperandNum = 0; // forward first operand to user
- else if (opType->isFloatingPoint()) {
- Instruction* destI = subtreeRoot->getInstruction();
- CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
- MachineCodeForInstruction::get(destI));
} else
- assert(0 && "Unrecognized operand type for convert-to-signed");
+ assert(0 && "Unrecognized operand type for convert-to-integer");
+
break;
}
@@ -1914,126 +2045,234 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// ELSE FALL THROUGH
case 36: // reg: Div(reg, reg)
+ {
maskUnsignedResult = true;
- Add3OperandInstr(ChooseDivInstruction(target, subtreeRoot),
- subtreeRoot, mvec);
+
+ // If second operand of divide is smaller than 64 bits, we have
+ // to make sure the unused top bits are correct because they affect
+ // the result. These bits are already correct for unsigned values.
+ // They may be incorrect for signed values, so sign extend to fill in.
+ Instruction* divI = subtreeRoot->getInstruction();
+ Value* divOp2 = subtreeRoot->rightChild()->getValue();
+ Value* divOpToUse = divOp2;
+ if (divOp2->getType()->isSigned()) {
+ unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
+ if (opSize < 8) {
+ MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
+ divOpToUse = new TmpInstruction(mcfi, divOp2);
+ target.getInstrInfo().
+ CreateSignExtensionInstructions(target,
+ divI->getParent()->getParent(),
+ divOp2, divOpToUse,
+ 8*opSize, mvec, mcfi);
+ }
+ }
+
+ mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
+ .addReg(subtreeRoot->leftChild()->getValue())
+ .addReg(divOpToUse)
+ .addRegDef(divI));
+
break;
+ }
case 37: // reg: Rem(reg, reg)
case 237: // reg: Rem(reg, Constant)
{
maskUnsignedResult = true;
- Instruction* remInstr = subtreeRoot->getInstruction();
-
- MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(remInstr);
- TmpInstruction* quot = new TmpInstruction(mcfi,
- subtreeRoot->leftChild()->getValue(),
- subtreeRoot->rightChild()->getValue());
- TmpInstruction* prod = new TmpInstruction(mcfi,
- quot,
- subtreeRoot->rightChild()->getValue());
+
+ Instruction* remI = subtreeRoot->getInstruction();
+ Value* divOp1 = subtreeRoot->leftChild()->getValue();
+ Value* divOp2 = subtreeRoot->rightChild()->getValue();
+
+ MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
- M = BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
- .addReg(subtreeRoot->leftChild()->getValue())
- .addReg(subtreeRoot->rightChild()->getValue())
- .addRegDef(quot);
- mvec.push_back(M);
+ // If second operand of divide is smaller than 64 bits, we have
+ // to make sure the unused top bits are correct because they affect
+ // the result. These bits are already correct for unsigned values.
+ // They may be incorrect for signed values, so sign extend to fill in.
+ //
+ Value* divOpToUse = divOp2;
+ if (divOp2->getType()->isSigned()) {
+ unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
+ if (opSize < 8) {
+ divOpToUse = new TmpInstruction(mcfi, divOp2);
+ target.getInstrInfo().
+ CreateSignExtensionInstructions(target,
+ remI->getParent()->getParent(),
+ divOp2, divOpToUse,
+ 8*opSize, mvec, mcfi);
+ }
+ }
+
+ // Now compute: result = rem V1, V2 as:
+ // result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
+ //
+ TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
+ TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
+
+ mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
+ .addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
- unsigned MulOpcode =
- ChooseMulInstructionByType(subtreeRoot->getInstruction()->getType());
- Value *MulRHS = subtreeRoot->rightChild()->getValue();
- M = BuildMI(MulOpcode, 3).addReg(quot).addReg(MulRHS).addReg(prod,
- MOTy::Def);
- mvec.push_back(M);
+ mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
+ .addReg(quot).addReg(divOpToUse).addRegDef(prod));
+
+ mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
+ .addReg(divOp1).addReg(prod).addRegDef(remI));
- unsigned Opcode = ChooseSubInstructionByType(
- subtreeRoot->getInstruction()->getType());
- M = BuildMI(Opcode, 3).addReg(subtreeRoot->leftChild()->getValue())
- .addReg(prod).addRegDef(subtreeRoot->getValue());
- mvec.push_back(M);
break;
}
case 38: // bool: And(bool, bool)
+ case 138: // bool: And(bool, not)
case 238: // bool: And(bool, boolconst)
case 338: // reg : BAnd(reg, reg)
case 538: // reg : BAnd(reg, Constant)
Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
break;
- case 138: // bool: And(bool, not)
case 438: // bool: BAnd(bool, bnot)
{ // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it.
+ // If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent();
- Value *LHS = subtreeRoot->leftChild()->getValue();
- Value *Dest = subtreeRoot->getValue();
- mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(LHS).addReg(notArg)
- .addReg(Dest, MOTy::Def));
+ Value *lhs = subtreeRoot->leftChild()->getValue();
+ Value *dest = subtreeRoot->getValue();
+ mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
+ .addReg(dest, MOTy::Def));
+
+ if (notArg->getType() == Type::BoolTy)
+ { // set 1 in result register if result of above is non-zero
+ mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+ .addReg(dest, MOTy::UseAndDef));
+ }
+
break;
}
case 39: // bool: Or(bool, bool)
+ case 139: // bool: Or(bool, not)
case 239: // bool: Or(bool, boolconst)
case 339: // reg : BOr(reg, reg)
case 539: // reg : BOr(reg, Constant)
Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
break;
- case 139: // bool: Or(bool, not)
case 439: // bool: BOr(bool, bnot)
{ // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it.
+ // If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent();
- Value *LHS = subtreeRoot->leftChild()->getValue();
- Value *Dest = subtreeRoot->getValue();
- mvec.push_back(BuildMI(V9::ORNr, 3).addReg(LHS).addReg(notArg)
- .addReg(Dest, MOTy::Def));
+ Value *lhs = subtreeRoot->leftChild()->getValue();
+ Value *dest = subtreeRoot->getValue();
+
+ mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
+ .addReg(dest, MOTy::Def));
+
+ if (notArg->getType() == Type::BoolTy)
+ { // set 1 in result register if result of above is non-zero
+ mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+ .addReg(dest, MOTy::UseAndDef));
+ }
+
break;
}
case 40: // bool: Xor(bool, bool)
+ case 140: // bool: Xor(bool, not)
case 240: // bool: Xor(bool, boolconst)
case 340: // reg : BXor(reg, reg)
case 540: // reg : BXor(reg, Constant)
Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
break;
- case 140: // bool: Xor(bool, not)
case 440: // bool: BXor(bool, bnot)
{ // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it.
+ // If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent();
- Value *LHS = subtreeRoot->leftChild()->getValue();
- Value *Dest = subtreeRoot->getValue();
- mvec.push_back(BuildMI(V9::XNORr, 3).addReg(LHS).addReg(notArg)
- .addReg(Dest, MOTy::Def));
+ Value *lhs = subtreeRoot->leftChild()->getValue();
+ Value *dest = subtreeRoot->getValue();
+ mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
+ .addReg(dest, MOTy::Def));
+
+ if (notArg->getType() == Type::BoolTy)
+ { // set 1 in result register if result of above is non-zero
+ mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+ .addReg(dest, MOTy::UseAndDef));
+ }
break;
}
- case 41: // boolconst: SetCC(reg, Constant)
+ case 41: // setCCconst: SetCC(reg, Constant)
+ { // Comparison is with a constant:
+ //
+ // If the bool result must be computed into a register (see below),
+ // and the constant is int ZERO, we can use the MOVR[op] instructions
+ // and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 42, so just fall through.
//
- // If the SetCC was folded into the user (parent), it will be
- // caught above. All other cases are the same as case 42,
- // so just fall through.
+ // The result of the SetCC must be computed and stored in a register if
+ // it is used outside the current basic block (so it must be computed
+ // as a boolreg) or it is used by anything other than a branch.
+ // We will use a conditional move to do this.
//
+ Instruction* setCCInstr = subtreeRoot->getInstruction();
+ bool computeBoolVal = (subtreeRoot->parent() == NULL ||
+ ! AllUsesAreBranches(setCCInstr));
+
+ if (computeBoolVal)
+ {
+ InstrTreeNode* constNode = subtreeRoot->rightChild();
+ assert(constNode &&
+ constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ Constant *constVal = cast<Constant>(constNode->getValue());
+ bool isValidConst;
+
+ if ((constVal->getType()->isInteger()
+ || isa<PointerType>(constVal->getType()))
+ && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
+ && isValidConst)
+ {
+ // That constant is an integer zero after all...
+ // Use a MOVR[op] to compute the boolean result
+ // Unconditionally set register to 0
+ mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
+ .addRegDef(setCCInstr));
+
+ // Now conditionally move 1 into the register.
+ // Mark the register as a use (as well as a def) because the old
+ // value will be retained if the condition is false.
+ MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
+ mvec.push_back(BuildMI(movOpCode, 3)
+ .addReg(subtreeRoot->leftChild()->getValue())
+ .addZImm(1).addReg(setCCInstr, MOTy::UseAndDef));
+
+ break;
+ }
+ }
+ // ELSE FALL THROUGH
+ }
+
case 42: // bool: SetCC(reg, reg):
{
// This generates a SUBCC instruction, putting the difference in a
// result reg. if needed, and/or setting a condition code if needed.
//
Instruction* setCCInstr = subtreeRoot->getInstruction();
- Value* leftVal = subtreeRoot->leftChild()->getValue();
- bool isFPCompare = leftVal->getType()->isFloatingPoint();
+ Value* leftVal = subtreeRoot->leftChild()->getValue();
+ Value* rightVal = subtreeRoot->rightChild()->getValue();
+ const Type* opType = leftVal->getType();
+ bool isFPCompare = opType->isFloatingPoint();
// If the boolean result of the SetCC is used outside the current basic
// block (so it must be computed as a boolreg) or is used by anything
@@ -2058,26 +2297,52 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
setCCInstr->getParent()->getParent(),
leftVal->getType(),
MachineCodeForInstruction::get(setCCInstr));
+
+ // If the operands are signed values smaller than 4 bytes, then they
+ // must be sign-extended in order to do a valid 32-bit comparison
+ // and get the right result in the 32-bit CC register (%icc).
+ //
+ Value* leftOpToUse = leftVal;
+ Value* rightOpToUse = rightVal;
+ if (opType->isIntegral() && opType->isSigned()) {
+ unsigned opSize = target.getTargetData().getTypeSize(opType);
+ if (opSize < 4) {
+ MachineCodeForInstruction& mcfi =
+ MachineCodeForInstruction::get(setCCInstr);
+
+ // create temporary virtual regs. to hold the sign-extensions
+ leftOpToUse = new TmpInstruction(mcfi, leftVal);
+ rightOpToUse = new TmpInstruction(mcfi, rightVal);
+
+ // sign-extend each operand and put the result in the temporary reg.
+ target.getInstrInfo().CreateSignExtensionInstructions
+ (target, setCCInstr->getParent()->getParent(),
+ leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
+ target.getInstrInfo().CreateSignExtensionInstructions
+ (target, setCCInstr->getParent()->getParent(),
+ rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
+ }
+ }
+
if (! isFPCompare) {
// Integer condition: set CC and discard result.
- M = BuildMI(V9::SUBccr, 4)
- .addReg(subtreeRoot->leftChild()->getValue())
- .addReg(subtreeRoot->rightChild()->getValue())
- .addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def)
- .addCCReg(tmpForCC, MOTy::Def);
+ mvec.push_back(BuildMI(V9::SUBccr, 4)
+ .addReg(leftOpToUse)
+ .addReg(rightOpToUse)
+ .addMReg(target.getRegInfo().getZeroRegNum(),MOTy::Def)
+ .addCCReg(tmpForCC, MOTy::Def));
} else {
// FP condition: dest of FCMP should be some FCCn register
- M = BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
- .addCCReg(tmpForCC, MOTy::Def)
- .addReg(subtreeRoot->leftChild()->getValue())
- .addReg(subtreeRoot->rightChild()->getValue());
+ mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
+ .addCCReg(tmpForCC, MOTy::Def)
+ .addReg(leftOpToUse)
+ .addReg(rightOpToUse));
}
- mvec.push_back(M);
if (computeBoolVal) {
MachineOpCode movOpCode = (isFPCompare
? ChooseMovFpcciInstruction(subtreeRoot)
- : ChooseMovpcciAfterSub(subtreeRoot));
+ : ChooseMovpcciForSetCC(subtreeRoot));
// Unconditionally set register to 0
M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
@@ -2172,8 +2437,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// This can also handle any intrinsics that are just function calls.
//
if (! specialIntrinsic) {
- MachineFunction& MF =
- MachineFunction::get(callInstr->getParent()->getParent());
+ Function* currentFunc = callInstr->getParent()->getParent();
+ MachineFunction& MF = MachineFunction::get(currentFunc);
MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(callInstr);
const UltraSparcRegInfo& regInfo =
@@ -2211,19 +2476,45 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
assert(callInstr->getOperand(0) == callee
&& "This is assumed in the loop below!");
-
+
+ // Insert sign-extension instructions for small signed values,
+ // if this is an unknown function (i.e., called via a funcptr)
+ // or an external one (i.e., which may not be compiled by llc).
+ //
+ if (calledFunc == NULL || calledFunc->isExternal()) {
+ for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
+ Value* argVal = callInstr->getOperand(i);
+ const Type* argType = argVal->getType();
+ if (argType->isIntegral() && argType->isSigned()) {
+ unsigned argSize = target.getTargetData().getTypeSize(argType);
+ if (argSize <= 4) {
+ // create a temporary virtual reg. to hold the sign-extension
+ TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
+
+ // sign-extend argVal and put the result in the temporary reg.
+ target.getInstrInfo().CreateSignExtensionInstructions
+ (target, currentFunc, argVal, argExtend,
+ 8*argSize, mvec, mcfi);
+
+ // replace argVal with argExtend in CallArgsDescriptor
+ argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
+ }
+ }
+ }
+ }
+
// Insert copy instructions to get all the arguments into
// all the places that they need to be.
//
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
int argNo = i-1;
- Value* argVal = callInstr->getOperand(i);
+ CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
+ Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
const Type* argType = argVal->getType();
unsigned regType = regInfo.getRegType(argType);
unsigned argSize = target.getTargetData().getTypeSize(argType);
int regNumForArg = TargetRegInfo::getInvalidRegNum();
unsigned regClassIDOfArgReg;
- CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
// Check for FP arguments to varargs functions.
// Any such argument in the first $K$ args must be passed in an
@@ -2346,7 +2637,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
new TmpInstruction(mcfi, argVal, NULL, "argReg");
callMI->addImplicitRef(argVReg);
-
+
// Generate the reg-to-reg copy into the outgoing arg reg.
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
@@ -2357,7 +2648,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
M = (BuildMI(ChooseAddInstructionByType(argType), 3)
.addReg(argVal).addSImm((int64_t) 0)
.addReg(argVReg, MOTy::Def));
-
+
// Mark the operand with the register it should be assigned
M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
@@ -2505,20 +2796,43 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
if (dest->getType()->isUnsigned()) {
unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
if (destSize <= 4) {
- // Mask high bits. Use a TmpInstruction to represent the
+ // Mask high 64 - N bits, where N = 4*destSize.
+
+ // Use a TmpInstruction to represent the
// intermediate result before masking. Since those instructions
// have already been generated, go back and substitute tmpI
// for dest in the result position of each one of them.
- TmpInstruction *tmpI =
- new TmpInstruction(MachineCodeForInstruction::get(dest),
- dest->getType(), dest, NULL, "maskHi");
+ //
+ MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
+ TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
+ dest, NULL, "maskHi");
+ Value* srlArgToUse = tmpI;
+
+ unsigned numSubst = 0;
+ for (unsigned i=0, N=mvec.size(); i < N; ++i) {
+ bool someArgsWereIgnored = false;
+ numSubst += mvec[i]->substituteValue(dest, tmpI, /*defsOnly*/ true,
+ /*defsAndUses*/ false,
+ someArgsWereIgnored);
+ assert(!someArgsWereIgnored &&
+ "Operand `dest' exists but not replaced: probably bogus!");
+ }
+ assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
+
+ // Left shift 32-N if size (N) is less than 32 bits.
+ // Use another tmp. virtual registe to represent this result.
+ if (destSize < 4) {
+ srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
+ tmpI, NULL, "maskHi2");
+ mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
+ .addZImm(8*(4-destSize))
+ .addReg(srlArgToUse, MOTy::Def));
+ }
- for (unsigned i=0, N=mvec.size(); i < N; ++i)
- mvec[i]->substituteValue(dest, tmpI);
+ // Logical right shift 32-N to get zero extension in top 64-N bits.
+ mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
+ .addZImm(8*(4-destSize)).addReg(dest, MOTy::Def));
- M = BuildMI(V9::SRLi5, 3).addReg(tmpI).addZImm(8*(4-destSize))
- .addReg(dest, MOTy::Def);
- mvec.push_back(M);
} else if (destSize < 8) {
assert(0 && "Unsupported type size: 32 < size < 64 bits");
}