summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorAndrew Trick <atrick@apple.com>2013-08-23 17:48:43 +0000
committerAndrew Trick <atrick@apple.com>2013-08-23 17:48:43 +0000
commitea57433cee8bd59acaa99d148b45df92347cea68 (patch)
treec8f164ca4a89c1452d93c5b374fd46e253d9fb7c /lib
parent99093638a024fc23609a323677e67bb1dc63ebe7 (diff)
downloadllvm-ea57433cee8bd59acaa99d148b45df92347cea68.tar.gz
llvm-ea57433cee8bd59acaa99d148b45df92347cea68.tar.bz2
llvm-ea57433cee8bd59acaa99d148b45df92347cea68.tar.xz
Adds cyclic critical path computation and heuristics, temporarily disabled.
Estimate the cyclic critical path within a single block loop. If the acyclic critical path is longer, then the loop will exhaust OOO resources after some number of iterations. If lag between the acyclic critical path and cyclic critical path is longer the the time it takes to issue those loop iterations, then aggressively schedule for latency. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189120 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/CodeGen/MachineScheduler.cpp89
-rw-r--r--lib/CodeGen/ScheduleDAGInstrs.cpp61
2 files changed, 129 insertions, 21 deletions
diff --git a/lib/CodeGen/MachineScheduler.cpp b/lib/CodeGen/MachineScheduler.cpp
index da6920575d..36eeb67d64 100644
--- a/lib/CodeGen/MachineScheduler.cpp
+++ b/lib/CodeGen/MachineScheduler.cpp
@@ -53,6 +53,9 @@ static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
static bool ViewMISchedDAGs = false;
#endif // NDEBUG
+static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
+ cl::desc("Enable cyclic critical path analysis."), cl::init(false));
+
static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
cl::desc("Enable load clustering."), cl::init(true));
@@ -1207,16 +1210,21 @@ public:
struct SchedRemainder {
// Critical path through the DAG in expected latency.
unsigned CriticalPath;
+ unsigned CyclicCritPath;
// Scaled count of micro-ops left to schedule.
unsigned RemIssueCount;
+ bool IsAcyclicLatencyLimited;
+
// Unscheduled resources
SmallVector<unsigned, 16> RemainingCounts;
void reset() {
CriticalPath = 0;
+ CyclicCritPath = 0;
RemIssueCount = 0;
+ IsAcyclicLatencyLimited = false;
RemainingCounts.clear();
}
@@ -1434,6 +1442,8 @@ public:
virtual void registerRoots();
protected:
+ void checkAcyclicLatency();
+
void tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone,
@@ -1547,8 +1557,32 @@ void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
Bot.releaseNode(SU, SU->BotReadyCycle);
}
+void ConvergingScheduler::checkAcyclicLatency() {
+ if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
+ return;
+
+ unsigned BufferLimit =
+ SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
+ unsigned LatencyLag = Rem.CriticalPath - Rem.CyclicCritPath;
+ Rem.IsAcyclicLatencyLimited =
+ (LatencyLag * SchedModel->getLatencyFactor()) > BufferLimit;
+
+ DEBUG(dbgs() << "BufferLimit " << BufferLimit << "u / "
+ << Rem.RemIssueCount << "u = "
+ << (BufferLimit + Rem.RemIssueCount) / Rem.RemIssueCount << " iters. "
+ << "Latency = " << LatencyLag << "c = "
+ << LatencyLag * SchedModel->getLatencyFactor() << "u\n";
+ if (Rem.IsAcyclicLatencyLimited)
+ dbgs() << " ACYCLIC LATENCY LIMIT\n");
+}
+
void ConvergingScheduler::registerRoots() {
Rem.CriticalPath = DAG->ExitSU.getDepth();
+
+ if (EnableCyclicPath) {
+ Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
+ checkAcyclicLatency();
+ }
// Some roots may not feed into ExitSU. Check all of them in case.
for (std::vector<SUnit*>::const_iterator
I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
@@ -2096,6 +2130,32 @@ static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
return 0;
}
+static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand,
+ ConvergingScheduler::SchedCandidate &Cand,
+ ConvergingScheduler::SchedBoundary &Zone) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, ConvergingScheduler::TopDepthReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, ConvergingScheduler::TopPathReduce))
+ return true;
+ }
+ else {
+ if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, ConvergingScheduler::BotHeightReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, ConvergingScheduler::BotPathReduce))
+ return true;
+ }
+ return false;
+}
+
/// Apply a set of heursitics to a new candidate. Heuristics are currently
/// hierarchical. This may be more efficient than a graduated cost model because
/// we don't need to evaluate all aspects of the model for each node in the
@@ -2135,6 +2195,10 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
RegExcess))
return;
+ // For loops that are acyclic path limited, aggressively schedule for latency.
+ if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone))
+ return;
+
// Avoid increasing the max critical pressure in the scheduled region.
if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical))
@@ -2174,27 +2238,10 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
return;
// Avoid serializing long latency dependence chains.
- if (Cand.Policy.ReduceLatency) {
- if (Zone.isTop()) {
- if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, TopDepthReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, TopPathReduce))
- return;
- }
- else {
- if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
- if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
- TryCand, Cand, BotHeightReduce))
- return;
- }
- if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
- TryCand, Cand, BotPathReduce))
- return;
- }
+ // For acyclic path limited loops, latency was already checked above.
+ if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
+ && tryLatency(TryCand, Cand, Zone)) {
+ return;
}
// Prefer immediate defs/users of the last scheduled instruction. This is a
diff --git a/lib/CodeGen/ScheduleDAGInstrs.cpp b/lib/CodeGen/ScheduleDAGInstrs.cpp
index 24714089da..0b5eb0ebe8 100644
--- a/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -36,6 +36,8 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <queue>
+
using namespace llvm;
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
@@ -979,6 +981,65 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
PendingLoads.clear();
}
+/// Compute the max cyclic critical path through the DAG. For loops that span
+/// basic blocks, MachineTraceMetrics should be used for this instead.
+unsigned ScheduleDAGInstrs::computeCyclicCriticalPath() {
+ // This only applies to single block loop.
+ if (!BB->isSuccessor(BB))
+ return 0;
+
+ unsigned MaxCyclicLatency = 0;
+ // Visit each live out vreg def to find def/use pairs that cross iterations.
+ for (SUnit::const_pred_iterator
+ PI = ExitSU.Preds.begin(), PE = ExitSU.Preds.end(); PI != PE; ++PI) {
+ MachineInstr *MI = PI->getSUnit()->getInstr();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ break;
+ unsigned Reg = MO.getReg();
+ if (!Reg || TRI->isPhysicalRegister(Reg))
+ continue;
+
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ unsigned LiveOutHeight = PI->getSUnit()->getHeight();
+ unsigned LiveOutDepth = PI->getSUnit()->getDepth() + PI->getLatency();
+ // Visit all local users of the vreg def.
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ if (UI->SU == &ExitSU)
+ continue;
+
+ // Only consider uses of the phi.
+ LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr()));
+ if (!LRQ.valueIn()->isPHIDef())
+ continue;
+
+ // Cheat a bit and assume that a path spanning two iterations is a
+ // cycle, which could overestimate in strange cases. This allows cyclic
+ // latency to be estimated as the minimum height or depth slack.
+ unsigned CyclicLatency = 0;
+ if (LiveOutDepth > UI->SU->getDepth())
+ CyclicLatency = LiveOutDepth - UI->SU->getDepth();
+ unsigned LiveInHeight = UI->SU->getHeight() + PI->getLatency();
+ if (LiveInHeight > LiveOutHeight) {
+ if (LiveInHeight - LiveOutHeight < CyclicLatency)
+ CyclicLatency = LiveInHeight - LiveOutHeight;
+ }
+ else
+ CyclicLatency = 0;
+ DEBUG(dbgs() << "Cyclic Path: SU(" << PI->getSUnit()->NodeNum
+ << ") -> SU(" << UI->SU->NodeNum << ") = "
+ << CyclicLatency << "\n");
+ if (CyclicLatency > MaxCyclicLatency)
+ MaxCyclicLatency = CyclicLatency;
+ }
+ }
+ }
+ DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "\n");
+ return MaxCyclicLatency;
+}
+
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
SU->getInstr()->dump();