summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--autoconf/configure.ac9
-rw-r--r--lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp702
2 files changed, 496 insertions, 215 deletions
diff --git a/autoconf/configure.ac b/autoconf/configure.ac
index 5d551a7069..3a218eaeb9 100644
--- a/autoconf/configure.ac
+++ b/autoconf/configure.ac
@@ -717,11 +717,6 @@ AC_SEARCH_LIBS(dlopen,dl,AC_DEFINE([HAVE_DLOPEN],[1],
[Define if dlopen() is available on this platform.]),
AC_MSG_WARN([dlopen() not found - disabling plugin support]))
-dnl libffi is optional; used to call external functions from the interpreter
-AC_SEARCH_LIBS(ffi_call,ffi,AC_DEFINE([HAVE_LIBFFI],[1],
- [Define to 1 if you have the libffi library (-lffi).]),
- AC_MSG_WARN([libffi not found - disabling external calls from interpreter]))
-
dnl mallinfo is optional; the code can compile (minus features) without it
AC_SEARCH_LIBS(mallinfo,malloc,AC_DEFINE([HAVE_MALLINFO],[1],
[Define if mallinfo() is available on this platform.]))
@@ -784,10 +779,6 @@ else
AC_SUBST(HAVE_PTHREAD, 0)
fi
-dnl Debian vs. the world.
-AC_CHECK_HEADER(ffi/ffi.h, AC_DEFINE(FFI_HEADER, ["ffi/ffi.h"], [Path to ffi.h]))
-AC_CHECK_HEADER(ffi.h, AC_DEFINE(FFI_HEADER, ["ffi.h"], [Path to ffi.h]))
-
dnl===-----------------------------------------------------------------------===
dnl===
dnl=== SECTION 7: Check for types and structures
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
index 9f44a63654..66a26cff3c 100644
--- a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
+++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -10,19 +10,18 @@
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
-// There are currently two mechanisms for handling external functions in the
-// Interpreter. The first is to implement lle_* wrapper functions that are
-// specific to well-known library functions which manually translate the
-// arguments from GenericValues and make the call. If such a wrapper does
-// not exist, and libffi is available, then the Interpreter will attempt to
-// invoke the function using libffi, after finding its address.
+// External functions in the interpreter are implemented by
+// using the system's dynamic loader to look up the address of the function
+// we want to invoke. If a function is found, then one of the
+// many lle_* wrapper functions in this file will translate its arguments from
+// GenericValues to the types the function is actually expecting, before the
+// function is called.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
-#include "llvm/Config/config.h" // Detect libffi
#include "llvm/Support/Streams.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
@@ -33,22 +32,18 @@
#include <cmath>
#include <cstring>
-#ifdef HAVE_LIBFFI
-#include FFI_HEADER
+#ifdef __linux__
+#include <cxxabi.h>
#endif
+using std::vector;
+
using namespace llvm;
-typedef GenericValue (*ExFunc)(const FunctionType *,
- const std::vector<GenericValue> &);
-static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
+typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
+static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
static std::map<std::string, ExFunc> FuncNames;
-#ifdef HAVE_LIBFFI
-typedef void (*RawFunc)(void);
-static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
-#endif // HAVE_LIBFFI
-
static Interpreter *TheInterpreter;
static char getTypeID(const Type *Ty) {
@@ -94,181 +89,34 @@ static ExFunc lookupFunction(const Function *F) {
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
("lle_X_"+F->getName()).c_str());
+ if (FnPtr == 0)
+ FnPtr = (ExFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
if (FnPtr != 0)
- ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
+ Functions->insert(std::make_pair(F, FnPtr)); // Cache for later
return FnPtr;
}
-#ifdef HAVE_LIBFFI
-static ffi_type *ffiTypeFor(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return &ffi_type_void;
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 8: return &ffi_type_sint8;
- case 16: return &ffi_type_sint16;
- case 32: return &ffi_type_sint32;
- case 64: return &ffi_type_sint64;
- }
- case Type::FloatTyID: return &ffi_type_float;
- case Type::DoubleTyID: return &ffi_type_double;
- case Type::PointerTyID: return &ffi_type_pointer;
- default: break;
- }
- // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- cerr << "Type could not be mapped for use with libffi.\n";
- abort();
- return NULL;
-}
-
-static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
- void *ArgDataPtr) {
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- switch (cast<IntegerType>(Ty)->getBitWidth()) {
- case 8: {
- int8_t *I8Ptr = (int8_t *) ArgDataPtr;
- *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 16: {
- int16_t *I16Ptr = (int16_t *) ArgDataPtr;
- *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 32: {
- int32_t *I32Ptr = (int32_t *) ArgDataPtr;
- *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- case 64: {
- int64_t *I64Ptr = (int64_t *) ArgDataPtr;
- *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
- return ArgDataPtr;
- }
- }
- case Type::FloatTyID: {
- float *FloatPtr = (float *) ArgDataPtr;
- *FloatPtr = AV.FloatVal;
- return ArgDataPtr;
- }
- case Type::DoubleTyID: {
- double *DoublePtr = (double *) ArgDataPtr;
- *DoublePtr = AV.DoubleVal;
- return ArgDataPtr;
- }
- case Type::PointerTyID: {
- void **PtrPtr = (void **) ArgDataPtr;
- *PtrPtr = GVTOP(AV);
- return ArgDataPtr;
- }
- default: break;
- }
- // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- cerr << "Type value could not be mapped for use with libffi.\n";
- abort();
- return NULL;
-}
-
-static bool ffiInvoke(RawFunc Fn, Function *F,
- const std::vector<GenericValue> &ArgVals,
- const TargetData *TD, GenericValue &Result) {
- ffi_cif cif;
- const FunctionType *FTy = F->getFunctionType();
- const unsigned NumArgs = F->arg_size();
-
- // TODO: We don't have type information about the remaining arguments, because
- // this information is never passed into ExecutionEngine::runFunction().
- if (ArgVals.size() > NumArgs && F->isVarArg()) {
- cerr << "Calling external var arg function '" << F->getName()
- << "' is not supported by the Interpreter.\n";
- abort();
- }
-
- unsigned ArgBytes = 0;
-
- std::vector<ffi_type*> args(NumArgs);
- for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- const unsigned ArgNo = A->getArgNo();
- const Type *ArgTy = FTy->getParamType(ArgNo);
- args[ArgNo] = ffiTypeFor(ArgTy);
- ArgBytes += TD->getTypeStoreSize(ArgTy);
- }
-
- uint8_t *ArgData = (uint8_t*) alloca(ArgBytes);
- uint8_t *ArgDataPtr = ArgData;
- std::vector<void*> values(NumArgs);
- for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- const unsigned ArgNo = A->getArgNo();
- const Type *ArgTy = FTy->getParamType(ArgNo);
- values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
- ArgDataPtr += TD->getTypeStoreSize(ArgTy);
- }
-
- const Type *RetTy = FTy->getReturnType();
- ffi_type *rtype = ffiTypeFor(RetTy);
-
- if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
- void *ret = NULL;
- if (RetTy->getTypeID() != Type::VoidTyID)
- ret = alloca(TD->getTypeStoreSize(RetTy));
- ffi_call(&cif, Fn, ret, &values[0]);
- switch (RetTy->getTypeID()) {
- case Type::IntegerTyID:
- switch (cast<IntegerType>(RetTy)->getBitWidth()) {
- case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break;
- case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break;
- case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break;
- case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break;
- }
- break;
- case Type::FloatTyID: Result.FloatVal = *(float *) ret; break;
- case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break;
- case Type::PointerTyID: Result.PointerVal = *(void **) ret; break;
- default: break;
- }
- return true;
- }
-
- return false;
-}
-#endif // HAVE_LIBFFI
-
GenericValue Interpreter::callExternalFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
TheInterpreter = this;
// Do a lookup to see if the function is in our cache... this should just be a
// deferred annotation!
- std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
- if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
- : FI->second)
- return Fn(F->getFunctionType(), ArgVals);
-
-#ifdef HAVE_LIBFFI
- std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
- RawFunc RawFn;
- if (RF == RawFunctions->end()) {
- RawFn = (RawFunc)(intptr_t)
- sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
- if (RawFn != 0)
- RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
- } else {
- RawFn = RF->second;
+ std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
+ ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
+ if (Fn == 0) {
+ cerr << "Tried to execute an unknown external function: "
+ << F->getType()->getDescription() << " " << F->getName() << "\n";
+ if (F->getName() == "__main")
+ return GenericValue();
+ abort();
}
- GenericValue Result;
- if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
- return Result;
-#endif // HAVE_LIBFFI
-
- cerr << "Tried to execute an unknown external function: "
- << F->getType()->getDescription() << " " << F->getName() << "\n";
- if (F->getName() != "__main")
- abort();
- return GenericValue();
+ // TODO: FIXME when types are not const!
+ GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
+ ArgVals);
+ return Result;
}
@@ -277,9 +125,24 @@ GenericValue Interpreter::callExternalFunction(Function *F,
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
+// void putchar(ubyte)
+GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
+ cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
+ return Args[0];
+}
+
+// void _IO_putc(int c, FILE* fp)
+GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
+#ifdef __linux__
+ _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
+#else
+ assert(0 && "Can't call _IO_putc on this platform");
+#endif
+ return Args[0];
+}
+
// void atexit(Function*)
-GenericValue lle_X_atexit(const FunctionType *FT,
- const std::vector<GenericValue> &Args) {
+GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
GenericValue GV;
@@ -288,23 +151,163 @@ GenericValue lle_X_atexit(const FunctionType *FT,
}
// void exit(int)
-GenericValue lle_X_exit(const FunctionType *FT,
- const std::vector<GenericValue> &Args) {
+GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void abort(void)
-GenericValue lle_X_abort(const FunctionType *FT,
- const std::vector<GenericValue> &Args) {
+GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
raise (SIGABRT);
return GenericValue();
}
-// int sprintf(char *, const char *, ...) - a very rough implementation to make
+// void *malloc(uint)
+GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1 && "Malloc expects one argument!");
+ assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
+ return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
+}
+
+// void *calloc(uint, uint)
+GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2 && "calloc expects two arguments!");
+ assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
+ return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
+ Args[1].IntVal.getZExtValue()));
+}
+
+// void *calloc(uint, uint)
+GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2 && "calloc expects two arguments!");
+ assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
+ return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
+}
+
+// void free(void *)
+GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ free(GVTOP(Args[0]));
+ return GenericValue();
+}
+
+// int atoi(char *)
+GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
+ return GV;
+}
+
+// double pow(double, double)
+GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
+ return GV;
+}
+
+// double sin(double)
+GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = sin(Args[0].DoubleVal);
+ return GV;
+}
+
+// double cos(double)
+GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = cos(Args[0].DoubleVal);
+ return GV;
+}
+
+// double exp(double)
+GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = exp(Args[0].DoubleVal);
+ return GV;
+}
+
+// double sqrt(double)
+GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = sqrt(Args[0].DoubleVal);
+ return GV;
+}
+
+// double log(double)
+GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = log(Args[0].DoubleVal);
+ return GV;
+}
+
+// double floor(double)
+GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.DoubleVal = floor(Args[0].DoubleVal);
+ return GV;
+}
+
+#ifdef HAVE_RAND48
+
+// double drand48()
+GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.empty());
+ GenericValue GV;
+ GV.DoubleVal = drand48();
+ return GV;
+}
+
+// long lrand48()
+GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.empty());
+ GenericValue GV;
+ GV.IntVal = APInt(32, lrand48());
+ return GV;
+}
+
+// void srand48(long)
+GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ srand48(Args[0].IntVal.getZExtValue());
+ return GenericValue();
+}
+
+#endif
+
+// int rand()
+GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.empty());
+ GenericValue GV;
+ GV.IntVal = APInt(32, rand());
+ return GV;
+}
+
+// void srand(uint)
+GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ srand(Args[0].IntVal.getZExtValue());
+ return GenericValue();
+}
+
+// int puts(const char*)
+GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
+ return GV;
+}
+
+// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
// output useful.
-GenericValue lle_X_sprintf(const FunctionType *FT,
- const std::vector<GenericValue> &Args) {
+GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
char *OutputBuffer = (char *)GVTOP(Args[0]);
const char *FmtStr = (const char *)GVTOP(Args[1]);
unsigned ArgNo = 2;
@@ -381,12 +384,10 @@ GenericValue lle_X_sprintf(const FunctionType *FT,
return GV;
}
-// int printf(const char *, ...) - a very rough implementation to make output
-// useful.
-GenericValue lle_X_printf(const FunctionType *FT,
- const std::vector<GenericValue> &Args) {
+// int printf(sbyte *, ...) - a very rough implementation to make output useful.
+GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
char Buffer[10000];
- std::vector<GenericValue> NewArgs;
+ vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
@@ -471,8 +472,7 @@ static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
}
// int sscanf(const char *format, ...);
-GenericValue lle_X_sscanf(const FunctionType *FT,
- const std::vector<GenericValue> &args) {
+GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
char *Args[10];
@@ -488,8 +488,7 @@ GenericValue lle_X_sscanf(const FunctionType *FT,
}
// int scanf(const char *format, ...);
-GenericValue lle_X_scanf(const FunctionType *FT,
- const std::vector<GenericValue> &args) {
+GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
char *Args[10];
@@ -504,33 +503,324 @@ GenericValue lle_X_scanf(const FunctionType *FT,
return GV;
}
-// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
-// output useful.
-GenericValue lle_X_fprintf(const FunctionType *FT,
- const std::vector<GenericValue> &Args) {
+
+// int clock(void) - Profiling implementation
+GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
+ extern unsigned int clock(void);
+ GenericValue GV;
+ GV.IntVal = APInt(32, clock());
+ return GV;
+}
+
+
+//===----------------------------------------------------------------------===//
+// String Functions...
+//===----------------------------------------------------------------------===//
+
+// int strcmp(const char *S1, const char *S2);
+GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue Ret;
+ Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+ return Ret;
+}
+
+// char *strcat(char *Dest, const char *src);
+GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
+ return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+}
+
+// char *strcpy(char *Dest, const char *src);
+GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
+ return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
+}
+
+static GenericValue size_t_to_GV (size_t n) {
+ GenericValue Ret;
+ if (sizeof (size_t) == sizeof (uint64_t)) {
+ Ret.IntVal = APInt(64, n);
+ } else {
+ assert (sizeof (size_t) == sizeof (unsigned int));
+ Ret.IntVal = APInt(32, n);
+ }
+ return Ret;
+}
+
+static size_t GV_to_size_t (GenericValue GV) {
+ size_t count;
+ if (sizeof (size_t) == sizeof (uint64_t)) {
+ count = (size_t)GV.IntVal.getZExtValue();
+ } else {
+ assert (sizeof (size_t) == sizeof (unsigned int));
+ count = (size_t)GV.IntVal.getZExtValue();
+ }
+ return count;
+}
+
+// size_t strlen(const char *src);
+GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
+ return size_t_to_GV (strlenResult);
+}
+
+// char *strdup(const char *src);
+GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
+ return PTOGV(strdup((char*)GVTOP(Args[0])));
+}
+
+// char *__strdup(const char *src);
+GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
+ return PTOGV(strdup((char*)GVTOP(Args[0])));
+}
+
+// void *memset(void *S, int C, size_t N)
+GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ size_t count = GV_to_size_t (Args[2]);
+ assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
+ return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
+ count));
+}
+
+// void *memcpy(void *Dest, void *src, size_t Size);
+GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
+ size_t count = GV_to_size_t (Args[2]);
+ return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
+}
+
+// void *memcpy(void *Dest, void *src, size_t Size);
+GenericValue lle_X_memmove(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) && "memmove must return pointer");
+ size_t count = GV_to_size_t (Args[2]);
+ return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
+}
+
+//===----------------------------------------------------------------------===//
+// IO Functions...
+//===----------------------------------------------------------------------===//
+
+// getFILE - Turn a pointer in the host address space into a legit pointer in
+// the interpreter address space. This is an identity transformation.
+#define getFILE(ptr) ((FILE*)ptr)
+
+// FILE *fopen(const char *filename, const char *mode);
+GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
+ return PTOGV(fopen((const char *)GVTOP(Args[0]),
+ (const char *)GVTOP(Args[1])));
+}
+
+// int fclose(FILE *F);
+GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int feof(FILE *stream);
+GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+
+ GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
+GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 4);
+ size_t result;
+
+ result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
+ GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
+ return size_t_to_GV (result);
+}
+
+// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
+GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 4);
+ size_t result;
+
+ result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
+ GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
+ return size_t_to_GV (result);
+}
+
+// char *fgets(char *s, int n, FILE *stream);
+GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[2]))));
+}
+
+// FILE *freopen(const char *path, const char *mode, FILE *stream);
+GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 3);
+ assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
+ return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
+ getFILE(GVTOP(Args[2]))));
+}
+
+// int fflush(FILE *stream);
+GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int getc(FILE *stream);
+GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int _IO_getc(FILE *stream);
+GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
+ return lle_X_getc(F, Args);
+}
+
+// int fputc(int C, FILE *stream);
+GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[1]))));
+ return GV;
+}
+
+// int ungetc(int C, FILE *stream);
+GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 2);
+ GenericValue GV;
+ GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
+ getFILE(GVTOP(Args[1]))));
+ return GV;
+}
+
+// int ferror (FILE *stream);
+GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+ GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
+ return GV;
+}
+
+// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
+// useful.
+GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
assert(Args.size() >= 2);
char Buffer[10000];
- std::vector<GenericValue> NewArgs;
+ vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV(Buffer));
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
- fputs(Buffer, (FILE *) GVTOP(Args[0]));
+ fputs(Buffer, getFILE(GVTOP(Args[0])));
return GV;
}
+// int __cxa_guard_acquire (__guard *g);
+GenericValue lle_X___cxa_guard_acquire(FunctionType *FT,
+ const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ GenericValue GV;
+#ifdef __linux__
+ GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
+ (__cxxabiv1::__guard*)GVTOP(Args[0])));
+#else
+ assert(0 && "Can't call __cxa_guard_acquire on this platform");
+#endif
+ return GV;
+}
+
+// void __cxa_guard_release (__guard *g);
+GenericValue lle_X___cxa_guard_release(FunctionType *FT,
+ const vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+#ifdef __linux__
+ __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
+#else
+ assert(0 && "Can't call __cxa_guard_release on this platform");
+#endif
+ return GenericValue();
+}
+
} // End extern "C"
void Interpreter::initializeExternalFunctions() {
- FuncNames["lle_X_atexit"] = lle_X_atexit;
+ FuncNames["lle_X_putchar"] = lle_X_putchar;
+ FuncNames["lle_X__IO_putc"] = lle_X__IO_putc;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
-
+ FuncNames["lle_X_malloc"] = lle_X_malloc;
+ FuncNames["lle_X_calloc"] = lle_X_calloc;
+ FuncNames["lle_X_realloc"] = lle_X_realloc;
+ FuncNames["lle_X_free"] = lle_X_free;
+ FuncNames["lle_X_atoi"] = lle_X_atoi;
+ FuncNames["lle_X_pow"] = lle_X_pow;
+ FuncNames["lle_X_sin"] = lle_X_sin;
+ FuncNames["lle_X_cos"] = lle_X_cos;
+ FuncNames["lle_X_exp"] = lle_X_exp;
+ FuncNames["lle_X_log"] = lle_X_log;
+ FuncNames["lle_X_floor"] = lle_X_floor;
+ FuncNames["lle_X_srand"] = lle_X_srand;
+ FuncNames["lle_X_rand"] = lle_X_rand;
+#ifdef HAVE_RAND48
+ FuncNames["lle_X_drand48"] = lle_X_drand48;
+ FuncNames["lle_X_srand48"] = lle_X_srand48;
+ FuncNames["lle_X_lrand48"] = lle_X_lrand48;
+#endif
+ FuncNames["lle_X_sqrt"] = lle_X_sqrt;
+ FuncNames["lle_X_puts"] = lle_X_puts;
FuncNames["lle_X_printf"] = lle_X_printf;
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_X_scanf"] = lle_X_scanf;
+ FuncNames["lle_i_clock"] = lle_i_clock;
+
+ FuncNames["lle_X_strcmp"] = lle_X_strcmp;
+ FuncNames["lle_X_strcat"] = lle_X_strcat;
+ FuncNames["lle_X_strcpy"] = lle_X_strcpy;
+ FuncNames["lle_X_strlen"] = lle_X_strlen;
+ FuncNames["lle_X___strdup"] = lle_X___strdup;
+ FuncNames["lle_X_memset"] = lle_X_memset;
+ FuncNames["lle_X_memcpy"] = lle_X_memcpy;
+ FuncNames["lle_X_memmove"] = lle_X_memmove;
+
+ FuncNames["lle_X_fopen"] = lle_X_fopen;
+ FuncNames["lle_X_fclose"] = lle_X_fclose;
+ FuncNames["lle_X_feof"] = lle_X_feof;
+ FuncNames["lle_X_fread"] = lle_X_fread;
+ FuncNames["lle_X_fwrite"] = lle_X_fwrite;
+ FuncNames["lle_X_fgets"] = lle_X_fgets;
+ FuncNames["lle_X_fflush"] = lle_X_fflush;
+ FuncNames["lle_X_fgetc"] = lle_X_getc;
+ FuncNames["lle_X_getc"] = lle_X_getc;
+ FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
+ FuncNames["lle_X_fputc"] = lle_X_fputc;
+ FuncNames["lle_X_ungetc"] = lle_X_ungetc;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
+ FuncNames["lle_X_freopen"] = lle_X_freopen;
+
+ FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
+ FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
}