summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--docs/GarbageCollection.html1389
-rw-r--r--docs/GarbageCollection.rst1051
-rw-r--r--docs/subsystems.rst7
3 files changed, 1055 insertions, 1392 deletions
diff --git a/docs/GarbageCollection.html b/docs/GarbageCollection.html
deleted file mode 100644
index 5bc70f1bb0..0000000000
--- a/docs/GarbageCollection.html
+++ /dev/null
@@ -1,1389 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-<html>
-<head>
- <meta http-equiv="Content-Type" Content="text/html; charset=UTF-8" >
- <title>Accurate Garbage Collection with LLVM</title>
- <link rel="stylesheet" href="_static/llvm.css" type="text/css">
- <style type="text/css">
- .rowhead { text-align: left; background: inherit; }
- .indent { padding-left: 1em; }
- .optl { color: #BFBFBF; }
- </style>
-</head>
-<body>
-
-<h1>
- Accurate Garbage Collection with LLVM
-</h1>
-
-<ol>
- <li><a href="#introduction">Introduction</a>
- <ul>
- <li><a href="#feature">Goals and non-goals</a></li>
- </ul>
- </li>
-
- <li><a href="#quickstart">Getting started</a>
- <ul>
- <li><a href="#quickstart-compiler">In your compiler</a></li>
- <li><a href="#quickstart-runtime">In your runtime library</a></li>
- <li><a href="#shadow-stack">About the shadow stack</a></li>
- </ul>
- </li>
-
- <li><a href="#core">Core support</a>
- <ul>
- <li><a href="#gcattr">Specifying GC code generation:
- <tt>gc "..."</tt></a></li>
- <li><a href="#gcroot">Identifying GC roots on the stack:
- <tt>llvm.gcroot</tt></a></li>
- <li><a href="#barriers">Reading and writing references in the heap</a>
- <ul>
- <li><a href="#gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a></li>
- <li><a href="#gcread">Read barrier: <tt>llvm.gcread</tt></a></li>
- </ul>
- </li>
- </ul>
- </li>
-
- <li><a href="#plugin">Compiler plugin interface</a>
- <ul>
- <li><a href="#collector-algos">Overview of available features</a></li>
- <li><a href="#stack-map">Computing stack maps</a></li>
- <li><a href="#init-roots">Initializing roots to null:
- <tt>InitRoots</tt></a></li>
- <li><a href="#custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>,
- <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a></li>
- <li><a href="#safe-points">Generating safe points:
- <tt>NeededSafePoints</tt></a></li>
- <li><a href="#assembly">Emitting assembly code:
- <tt>GCMetadataPrinter</tt></a></li>
- </ul>
- </li>
-
- <li><a href="#runtime-impl">Implementing a collector runtime</a>
- <ul>
- <li><a href="#gcdescriptors">Tracing GC pointers from heap
- objects</a></li>
- </ul>
- </li>
-
- <li><a href="#references">References</a></li>
-
-</ol>
-
-<div class="doc_author">
- <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
- Gordon Henriksen</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="introduction">Introduction</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Garbage collection is a widely used technique that frees the programmer from
-having to know the lifetimes of heap objects, making software easier to produce
-and maintain. Many programming languages rely on garbage collection for
-automatic memory management. There are two primary forms of garbage collection:
-conservative and accurate.</p>
-
-<p>Conservative garbage collection often does not require any special support
-from either the language or the compiler: it can handle non-type-safe
-programming languages (such as C/C++) and does not require any special
-information from the compiler. The
-<a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">Boehm collector</a> is
-an example of a state-of-the-art conservative collector.</p>
-
-<p>Accurate garbage collection requires the ability to identify all pointers in
-the program at run-time (which requires that the source-language be type-safe in
-most cases). Identifying pointers at run-time requires compiler support to
-locate all places that hold live pointer variables at run-time, including the
-<a href="#gcroot">processor stack and registers</a>.</p>
-
-<p>Conservative garbage collection is attractive because it does not require any
-special compiler support, but it does have problems. In particular, because the
-conservative garbage collector cannot <i>know</i> that a particular word in the
-machine is a pointer, it cannot move live objects in the heap (preventing the
-use of compacting and generational GC algorithms) and it can occasionally suffer
-from memory leaks due to integer values that happen to point to objects in the
-program. In addition, some aggressive compiler transformations can break
-conservative garbage collectors (though these seem rare in practice).</p>
-
-<p>Accurate garbage collectors do not suffer from any of these problems, but
-they can suffer from degraded scalar optimization of the program. In particular,
-because the runtime must be able to identify and update all pointers active in
-the program, some optimizations are less effective. In practice, however, the
-locality and performance benefits of using aggressive garbage collection
-techniques dominates any low-level losses.</p>
-
-<p>This document describes the mechanisms and interfaces provided by LLVM to
-support accurate garbage collection.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="feature">Goals and non-goals</a>
-</h3>
-
-<div>
-
-<p>LLVM's intermediate representation provides <a href="#intrinsics">garbage
-collection intrinsics</a> that offer support for a broad class of
-collector models. For instance, the intrinsics permit:</p>
-
-<ul>
- <li>semi-space collectors</li>
- <li>mark-sweep collectors</li>
- <li>generational collectors</li>
- <li>reference counting</li>
- <li>incremental collectors</li>
- <li>concurrent collectors</li>
- <li>cooperative collectors</li>
-</ul>
-
-<p>We hope that the primitive support built into the LLVM IR is sufficient to
-support a broad class of garbage collected languages including Scheme, ML, Java,
-C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p>
-
-<p>However, LLVM does not itself provide a garbage collector&mdash;this should
-be part of your language's runtime library. LLVM provides a framework for
-compile time <a href="#plugin">code generation plugins</a>. The role of these
-plugins is to generate code and data structures which conforms to the <em>binary
-interface</em> specified by the <em>runtime library</em>. This is similar to the
-relationship between LLVM and DWARF debugging info, for example. The
-difference primarily lies in the lack of an established standard in the domain
-of garbage collection&mdash;thus the plugins.</p>
-
-<p>The aspects of the binary interface with which LLVM's GC support is
-concerned are:</p>
-
-<ul>
- <li>Creation of GC-safe points within code where collection is allowed to
- execute safely.</li>
- <li>Computation of the stack map. For each safe point in the code, object
- references within the stack frame must be identified so that the
- collector may traverse and perhaps update them.</li>
- <li>Write barriers when storing object references to the heap. These are
- commonly used to optimize incremental scans in generational
- collectors.</li>
- <li>Emission of read barriers when loading object references. These are
- useful for interoperating with concurrent collectors.</li>
-</ul>
-
-<p>There are additional areas that LLVM does not directly address:</p>
-
-<ul>
- <li>Registration of global roots with the runtime.</li>
- <li>Registration of stack map entries with the runtime.</li>
- <li>The functions used by the program to allocate memory, trigger a
- collection, etc.</li>
- <li>Computation or compilation of type maps, or registration of them with
- the runtime. These are used to crawl the heap for object
- references.</li>
-</ul>
-
-<p>In general, LLVM's support for GC does not include features which can be
-adequately addressed with other features of the IR and does not specify a
-particular binary interface. On the plus side, this means that you should be
-able to integrate LLVM with an existing runtime. On the other hand, it leaves
-a lot of work for the developer of a novel language. However, it's easy to get
-started quickly and scale up to a more sophisticated implementation as your
-compiler matures.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="quickstart">Getting started</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>Using a GC with LLVM implies many things, for example:</p>
-
-<ul>
- <li>Write a runtime library or find an existing one which implements a GC
- heap.<ol>
- <li>Implement a memory allocator.</li>
- <li>Design a binary interface for the stack map, used to identify
- references within a stack frame on the machine stack.*</li>
- <li>Implement a stack crawler to discover functions on the call stack.*</li>
- <li>Implement a registry for global roots.</li>
- <li>Design a binary interface for type maps, used to identify references
- within heap objects.</li>
- <li>Implement a collection routine bringing together all of the above.</li>
- </ol></li>
- <li>Emit compatible code from your compiler.<ul>
- <li>Initialization in the main function.</li>
- <li>Use the <tt>gc "..."</tt> attribute to enable GC code generation
- (or <tt>F.setGC("...")</tt>).</li>
- <li>Use <tt>@llvm.gcroot</tt> to mark stack roots.</li>
- <li>Use <tt>@llvm.gcread</tt> and/or <tt>@llvm.gcwrite</tt> to
- manipulate GC references, if necessary.</li>
- <li>Allocate memory using the GC allocation routine provided by the
- runtime library.</li>
- <li>Generate type maps according to your runtime's binary interface.</li>
- </ul></li>
- <li>Write a compiler plugin to interface LLVM with the runtime library.*<ul>
- <li>Lower <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> to appropriate
- code sequences.*</li>
- <li>Compile LLVM's stack map to the binary form expected by the
- runtime.</li>
- </ul></li>
- <li>Load the plugin into the compiler. Use <tt>llc -load</tt> or link the
- plugin statically with your language's compiler.*</li>
- <li>Link program executables with the runtime.</li>
-</ul>
-
-<p>To help with several of these tasks (those indicated with a *), LLVM
-includes a highly portable, built-in ShadowStack code generator. It is compiled
-into <tt>llc</tt> and works even with the interpreter and C backends.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="quickstart-compiler">In your compiler</a>
-</h3>
-
-<div>
-
-<p>To turn the shadow stack on for your functions, first call:</p>
-
-<div class="doc_code"><pre
->F.setGC("shadow-stack");</pre></div>
-
-<p>for each function your compiler emits. Since the shadow stack is built into
-LLVM, you do not need to load a plugin.</p>
-
-<p>Your compiler must also use <tt>@llvm.gcroot</tt> as documented.
-Don't forget to create a root for each intermediate value that is generated
-when evaluating an expression. In <tt>h(f(), g())</tt>, the result of
-<tt>f()</tt> could easily be collected if evaluating <tt>g()</tt> triggers a
-collection.</p>
-
-<p>There's no need to use <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> over
-plain <tt>load</tt> and <tt>store</tt> for now. You will need them when
-switching to a more advanced GC.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="quickstart-runtime">In your runtime</a>
-</h3>
-
-<div>
-
-<p>The shadow stack doesn't imply a memory allocation algorithm. A semispace
-collector or building atop <tt>malloc</tt> are great places to start, and can
-be implemented with very little code.</p>
-
-<p>When it comes time to collect, however, your runtime needs to traverse the
-stack roots, and for this it needs to integrate with the shadow stack. Luckily,
-doing so is very simple. (This code is heavily commented to help you
-understand the data structure, but there are only 20 lines of meaningful
-code.)</p>
-
-<pre class="doc_code">
-/// @brief The map for a single function's stack frame. One of these is
-/// compiled as constant data into the executable for each function.
-///
-/// Storage of metadata values is elided if the %metadata parameter to
-/// @llvm.gcroot is null.
-struct FrameMap {
- int32_t NumRoots; //&lt; Number of roots in stack frame.
- int32_t NumMeta; //&lt; Number of metadata entries. May be &lt; NumRoots.
- const void *Meta[0]; //&lt; Metadata for each root.
-};
-
-/// @brief A link in the dynamic shadow stack. One of these is embedded in the
-/// stack frame of each function on the call stack.
-struct StackEntry {
- StackEntry *Next; //&lt; Link to next stack entry (the caller's).
- const FrameMap *Map; //&lt; Pointer to constant FrameMap.
- void *Roots[0]; //&lt; Stack roots (in-place array).
-};
-
-/// @brief The head of the singly-linked list of StackEntries. Functions push
-/// and pop onto this in their prologue and epilogue.
-///
-/// Since there is only a global list, this technique is not threadsafe.
-StackEntry *llvm_gc_root_chain;
-
-/// @brief Calls Visitor(root, meta) for each GC root on the stack.
-/// root and meta are exactly the values passed to
-/// <tt>@llvm.gcroot</tt>.
-///
-/// Visitor could be a function to recursively mark live objects. Or it
-/// might copy them to another heap or generation.
-///
-/// @param Visitor A function to invoke for every GC root on the stack.
-void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
- for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
- unsigned i = 0;
-
- // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
- for (unsigned e = R->Map->NumMeta; i != e; ++i)
- Visitor(&amp;R->Roots[i], R->Map->Meta[i]);
-
- // For roots [NumMeta, NumRoots), the metadata pointer is null.
- for (unsigned e = R->Map->NumRoots; i != e; ++i)
- Visitor(&amp;R->Roots[i], NULL);
- }
-}</pre>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="shadow-stack">About the shadow stack</a>
-</h3>
-
-<div>
-
-<p>Unlike many GC algorithms which rely on a cooperative code generator to
-compile stack maps, this algorithm carefully maintains a linked list of stack
-roots [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow stack"
-mirrors the machine stack. Maintaining this data structure is slower than using
-a stack map compiled into the executable as constant data, but has a significant
-portability advantage because it requires no special support from the target
-code generator, and does not require tricky platform-specific code to crawl
-the machine stack.</p>
-
-<p>The tradeoff for this simplicity and portability is:</p>
-
-<ul>
- <li>High overhead per function call.</li>
- <li>Not thread-safe.</li>
-</ul>
-
-<p>Still, it's an easy way to get started. After your compiler and runtime are
-up and running, writing a <a href="#plugin">plugin</a> will allow you to take
-advantage of <a href="#collector-algos">more advanced GC features</a> of LLVM
-in order to improve performance.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="core">IR features</a><a name="intrinsics"></a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>This section describes the garbage collection facilities provided by the
-<a href="LangRef.html">LLVM intermediate representation</a>. The exact behavior
-of these IR features is specified by the binary interface implemented by a
-<a href="#plugin">code generation plugin</a>, not by this document.</p>
-
-<p>These facilities are limited to those strictly necessary; they are not
-intended to be a complete interface to any garbage collector. A program will
-need to interface with the GC library using the facilities provided by that
-program.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="gcattr">Specifying GC code generation: <tt>gc "..."</tt></a>
-</h3>
-
-<div>
-
-<div class="doc_code"><tt>
- define <i>ty</i> @<i>name</i>(...) <span style="text-decoration: underline">gc "<i>name</i>"</span> { ...
-</tt></div>
-
-<p>The <tt>gc</tt> function attribute is used to specify the desired GC style
-to the compiler. Its programmatic equivalent is the <tt>setGC</tt> method of
-<tt>Function</tt>.</p>
-
-<p>Setting <tt>gc "<i>name</i>"</tt> on a function triggers a search for a
-matching code generation plugin "<i>name</i>"; it is that plugin which defines
-the exact nature of the code generated to support GC. If none is found, the
-compiler will raise an error.</p>
-
-<p>Specifying the GC style on a per-function basis allows LLVM to link together
-programs that use different garbage collection algorithms (or none at all).</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="gcroot">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a>
-</h3>
-
-<div>
-
-<div class="doc_code"><tt>
- void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
-</tt></div>
-
-<p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM that a stack
-variable references an object on the heap and is to be tracked for garbage
-collection. The exact impact on generated code is specified by a <a
-href="#plugin">compiler plugin</a>. All calls to <tt>llvm.gcroot</tt> <b>must</b> reside
- inside the first basic block.</p>
-
-<p>A compiler which uses mem2reg to raise imperative code using <tt>alloca</tt>
-into SSA form need only add a call to <tt>@llvm.gcroot</tt> for those variables
-which a pointers into the GC heap.</p>
-
-<p>It is also important to mark intermediate values with <tt>llvm.gcroot</tt>.
-For example, consider <tt>h(f(), g())</tt>. Beware leaking the result of
-<tt>f()</tt> in the case that <tt>g()</tt> triggers a collection. Note, that
-stack variables must be initialized and marked with <tt>llvm.gcroot</tt> in
-function's prologue.</p>
-
-<p>The first argument <b>must</b> be a value referring to an alloca instruction
-or a bitcast of an alloca. The second contains a pointer to metadata that
-should be associated with the pointer, and <b>must</b> be a constant or global
-value address. If your target collector uses tags, use a null pointer for
-metadata.</p>
-
-<p>The <tt>%metadata</tt> argument can be used to avoid requiring heap objects
-to have 'isa' pointers or tag bits. [<a href="#appel89">Appel89</a>, <a
-href="#goldberg91">Goldberg91</a>, <a href="#tolmach94">Tolmach94</a>] If
-specified, its value will be tracked along with the location of the pointer in
-the stack frame.</p>
-
-<p>Consider the following fragment of Java code:</p>
-
-<pre class="doc_code">
- {
- Object X; // A null-initialized reference to an object
- ...
- }
-</pre>
-
-<p>This block (which may be located in the middle of a function or in a loop
-nest), could be compiled to this LLVM code:</p>
-
-<pre class="doc_code">
-Entry:
- ;; In the entry block for the function, allocate the
- ;; stack space for X, which is an LLVM pointer.
- %X = alloca %Object*
-
- ;; Tell LLVM that the stack space is a stack root.
- ;; Java has type-tags on objects, so we pass null as metadata.
- %tmp = bitcast %Object** %X to i8**
- call void @llvm.gcroot(i8** %tmp, i8* null)
- ...
-
- ;; "CodeBlock" is the block corresponding to the start
- ;; of the scope above.
-CodeBlock:
- ;; Java null-initializes pointers.
- store %Object* null, %Object** %X
-
- ...
-
- ;; As the pointer goes out of scope, store a null value into
- ;; it, to indicate that the value is no longer live.
- store %Object* null, %Object** %X
- ...
-</pre>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="barriers">Reading and writing references in the heap</a>
-</h3>
-
-<div>
-
-<p>Some collectors need to be informed when the mutator (the program that needs
-garbage collection) either reads a pointer from or writes a pointer to a field
-of a heap object. The code fragments inserted at these points are called
-<em>read barriers</em> and <em>write barriers</em>, respectively. The amount of
-code that needs to be executed is usually quite small and not on the critical
-path of any computation, so the overall performance impact of the barrier is
-tolerable.</p>
-
-<p>Barriers often require access to the <em>object pointer</em> rather than the
-<em>derived pointer</em> (which is a pointer to the field within the
-object). Accordingly, these intrinsics take both pointers as separate arguments
-for completeness. In this snippet, <tt>%object</tt> is the object pointer, and
-<tt>%derived</tt> is the derived pointer:</p>
-
-<blockquote><pre>
- ;; An array type.
- %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
- ...
-
- ;; Load the object pointer from a gcroot.
- %object = load %class.Array** %object_addr
-
- ;; Compute the derived pointer.
- %derived = getelementptr %object, i32 0, i32 2, i32 %n</pre></blockquote>
-
-<p>LLVM does not enforce this relationship between the object and derived
-pointer (although a <a href="#plugin">plugin</a> might). However, it would be
-an unusual collector that violated it.</p>
-
-<p>The use of these intrinsics is naturally optional if the target GC does
-require the corresponding barrier. Such a GC plugin will replace the intrinsic
-calls with the corresponding <tt>load</tt> or <tt>store</tt> instruction if they
-are used.</p>
-
-<!-- ======================================================================= -->
-<h4>
- <a name="gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a>
-</h4>
-
-<div>
-
-<div class="doc_code"><tt>
-void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
-</tt></div>
-
-<p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic
-function. It has exactly the same semantics as a non-volatile <tt>store</tt> to
-the derived pointer (the third argument). The exact code generated is specified
-by a <a href="#plugin">compiler plugin</a>.</p>
-
-<p>Many important algorithms require write barriers, including generational
-and concurrent collectors. Additionally, write barriers could be used to
-implement reference counting.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h4>
- <a name="gcread">Read barrier: <tt>llvm.gcread</tt></a>
-</h4>
-
-<div>
-
-<div class="doc_code"><tt>
-i8* @llvm.gcread(i8* %object, i8** %derived)<br>
-</tt></div>
-
-<p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function.
-It has exactly the same semantics as a non-volatile <tt>load</tt> from the
-derived pointer (the second argument). The exact code generated is specified by
-a <a href="#plugin">compiler plugin</a>.</p>
-
-<p>Read barriers are needed by fewer algorithms than write barriers, and may
-have a greater performance impact since pointer reads are more frequent than
-writes.</p>
-
-</div>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="plugin">Implementing a collector plugin</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>User code specifies which GC code generation to use with the <tt>gc</tt>
-function attribute or, equivalently, with the <tt>setGC</tt> method of
-<tt>Function</tt>.</p>
-
-<p>To implement a GC plugin, it is necessary to subclass
-<tt>llvm::GCStrategy</tt>, which can be accomplished in a few lines of
-boilerplate code. LLVM's infrastructure provides access to several important
-algorithms. For an uncontroversial collector, all that remains may be to
-compile LLVM's computed stack map to assembly code (using the binary
-representation expected by the runtime library). This can be accomplished in
-about 100 lines of code.</p>
-
-<p>This is not the appropriate place to implement a garbage collected heap or a
-garbage collector itself. That code should exist in the language's runtime
-library. The compiler plugin is responsible for generating code which
-conforms to the binary interface defined by library, most essentially the
-<a href="#stack-map">stack map</a>.</p>
-
-<p>To subclass <tt>llvm::GCStrategy</tt> and register it with the compiler:</p>
-
-<blockquote><pre>// lib/MyGC/MyGC.cpp - Example LLVM GC plugin
-
-#include "llvm/CodeGen/GCStrategy.h"
-#include "llvm/CodeGen/GCMetadata.h"
-#include "llvm/Support/Compiler.h"
-
-using namespace llvm;
-
-namespace {
- class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
- public:
- MyGC() {}
- };
-
- GCRegistry::Add&lt;MyGC&gt;
- X("mygc", "My bespoke garbage collector.");
-}</pre></blockquote>
-
-<p>This boilerplate collector does nothing. More specifically:</p>
-
-<ul>
- <li><tt>llvm.gcread</tt> calls are replaced with the corresponding
- <tt>load</tt> instruction.</li>
- <li><tt>llvm.gcwrite</tt> calls are replaced with the corresponding
- <tt>store</tt> instruction.</li>
- <li>No safe points are added to the code.</li>
- <li>The stack map is not compiled into the executable.</li>
-</ul>
-
-<p>Using the LLVM makefiles (like the <a
-href="http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/">sample
-project</a>), this code can be compiled as a plugin using a simple
-makefile:</p>
-
-<blockquote><pre
-># lib/MyGC/Makefile
-
-LEVEL := ../..
-LIBRARYNAME = <var>MyGC</var>
-LOADABLE_MODULE = 1
-
-include $(LEVEL)/Makefile.common</pre></blockquote>
-
-<p>Once the plugin is compiled, code using it may be compiled using <tt>llc
--load=<var>MyGC.so</var></tt> (though <var>MyGC.so</var> may have some other
-platform-specific extension):</p>
-
-<blockquote><pre
->$ cat sample.ll
-define void @f() gc "mygc" {
-entry:
- ret void
-}
-$ llvm-as &lt; sample.ll | llc -load=MyGC.so</pre></blockquote>
-
-<p>It is also possible to statically link the collector plugin into tools, such
-as a language-specific compiler front-end.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="collector-algos">Overview of available features</a>
-</h3>
-
-<div>
-
-<p><tt>GCStrategy</tt> provides a range of features through which a plugin
-may do useful work. Some of these are callbacks, some are algorithms that can
-be enabled, disabled, or customized. This matrix summarizes the supported (and
-planned) features and correlates them with the collection techniques which
-typically require them.</p>
-
-<table>
- <tr>
- <th>Algorithm</th>
- <th>Done</th>
- <th>shadow stack</th>
- <th>refcount</th>
- <th>mark-sweep</th>
- <th>copying</th>
- <th>incremental</th>
- <th>threaded</th>
- <th>concurrent</th>
- </tr>
- <tr>
- <th class="rowhead"><a href="#stack-map">stack map</a></th>
- <td>&#10004;</td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr>
- <th class="rowhead"><a href="#init-roots">initialize roots</a></th>
- <td>&#10004;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead">derived pointers</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td>&#10008;*</td>
- <td>&#10008;*</td>
- </tr>
- <tr>
- <th class="rowhead"><em><a href="#custom">custom lowering</a></em></th>
- <td>&#10004;</td>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- </tr>
- <tr>
- <th class="rowhead indent">gcroot</th>
- <td>&#10004;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- </tr>
- <tr>
- <th class="rowhead indent">gcwrite</th>
- <td>&#10004;</td>
- <td></td>
- <td>&#10008;</td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td></td>
- <td>&#10008;</td>
- </tr>
- <tr>
- <th class="rowhead indent">gcread</th>
- <td>&#10004;</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- </tr>
- <tr>
- <th class="rowhead"><em><a href="#safe-points">safe points</a></em></th>
- <td></td>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- </tr>
- <tr>
- <th class="rowhead indent">in calls</th>
- <td>&#10004;</td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr>
- <th class="rowhead indent">before calls</th>
- <td>&#10004;</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead indent">for loops</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr>
- <th class="rowhead indent">before escape</th>
- <td>&#10004;</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead">emit code at safe points</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr>
- <th class="rowhead"><em>output</em></th>
- <td></td>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- <th></th>
- </tr>
- <tr>
- <th class="rowhead indent"><a href="#assembly">assembly</a></th>
- <td>&#10004;</td>
- <td></td>
- <td></td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- <td>&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead indent">JIT</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead indent">obj</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead">live analysis</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- </tr>
- <tr class="doc_warning">
- <th class="rowhead">register map</th>
- <td>NO</td>
- <td></td>
- <td></td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- <td class="optl">&#10008;</td>
- </tr>
- <tr>
- <td colspan="10">
- <div><span class="doc_warning">*</span> Derived pointers only pose a
- hazard to copying collectors.</div>
- <div><span class="optl">&#10008;</span> in gray denotes a feature which
- could be utilized if available.</div>
- </td>
- </tr>
-</table>
-
-<p>To be clear, the collection techniques above are defined as:</p>
-
-<dl>
- <dt>Shadow Stack</dt>
- <dd>The mutator carefully maintains a linked list of stack roots.</dd>
- <dt>Reference Counting</dt>
- <dd>The mutator maintains a reference count for each object and frees an
- object when its count falls to zero.</dd>
- <dt>Mark-Sweep</dt>
- <dd>When the heap is exhausted, the collector marks reachable objects starting
- from the roots, then deallocates unreachable objects in a sweep
- phase.</dd>
- <dt>Copying</dt>
- <dd>As reachability analysis proceeds, the collector copies objects from one
- heap area to another, compacting them in the process. Copying collectors
- enable highly efficient "bump pointer" allocation and can improve locality
- of reference.</dd>
- <dt>Incremental</dt>
- <dd>(Including generational collectors.) Incremental collectors generally have
- all the properties of a copying collector (regardless of whether the
- mature heap is compacting), but bring the added complexity of requiring
- write barriers.</dd>
- <dt>Threaded</dt>
- <dd>Denotes a multithreaded mutator; the collector must still stop the mutator
- ("stop the world") before beginning reachability analysis. Stopping a
- multithreaded mutator is a complicated problem. It generally requires
- highly platform specific code in the runtime, and the production of
- carefully designed machine code at safe points.</dd>
- <dt>Concurrent</dt>
- <dd>In this technique, the mutator and the collector run concurrently, with
- the goal of eliminating pause times. In a <em>cooperative</em> collector,
- the mutator further aids with collection should a pause occur, allowing
- collection to take advantage of multiprocessor hosts. The "stop the world"
- problem of threaded collectors is generally still present to a limited
- extent. Sophisticated marking algorithms are necessary. Read barriers may
- be necessary.</dd>
-</dl>
-
-<p>As the matrix indicates, LLVM's garbage collection infrastructure is already
-suitable for a wide variety of collectors, but does not currently extend to
-multithreaded programs. This will be added in the future as there is
-interest.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="stack-map">Computing stack maps</a>
-</h3>
-
-<div>
-
-<p>LLVM automatically computes a stack map. One of the most important features
-of a <tt>GCStrategy</tt> is to compile this information into the executable in
-the binary representation expected by the runtime library.</p>
-
-<p>The stack map consists of the location and identity of each GC root in the
-each function in the module. For each root:</p>
-
-<ul>
- <li><tt>RootNum</tt>: The index of the root.</li>
- <li><tt>StackOffset</tt>: The offset of the object relative to the frame
- pointer.</li>
- <li><tt>RootMetadata</tt>: The value passed as the <tt>%metadata</tt>
- parameter to the <a href="#gcroot"><tt>@llvm.gcroot</tt></a> intrinsic.</li>
-</ul>
-
-<p>Also, for the function as a whole:</p>
-
-<ul>
- <li><tt>getFrameSize()</tt>: The overall size of the function's initial
- stack frame, not accounting for any dynamic allocation.</li>
- <li><tt>roots_size()</tt>: The count of roots in the function.</li>
-</ul>
-
-<p>To access the stack map, use <tt>GCFunctionMetadata::roots_begin()</tt> and
--<tt>end()</tt> from the <tt><a
-href="#assembly">GCMetadataPrinter</a></tt>:</p>
-
-<blockquote><pre
->for (iterator I = begin(), E = end(); I != E; ++I) {
- GCFunctionInfo *FI = *I;
- unsigned FrameSize = FI-&gt;getFrameSize();
- size_t RootCount = FI-&gt;roots_size();
-
- for (GCFunctionInfo::roots_iterator RI = FI-&gt;roots_begin(),
- RE = FI-&gt;roots_end();
- RI != RE; ++RI) {
- int RootNum = RI->Num;
- int RootStackOffset = RI->StackOffset;
- Constant *RootMetadata = RI->Metadata;
- }
-}</pre></blockquote>
-
-<p>If the <tt>llvm.gcroot</tt> intrinsic is eliminated before code generation by
-a custom lowering pass, LLVM will compute an empty stack map. This may be useful
-for collector plugins which implement reference counting or a shadow stack.</p>
-
-</div>
-
-
-<!-- ======================================================================= -->
-<h3>
- <a name="init-roots">Initializing roots to null: <tt>InitRoots</tt></a>
-</h3>
-
-<div>
-
-<blockquote><pre
->MyGC::MyGC() {
- InitRoots = true;
-}</pre></blockquote>
-
-<p>When set, LLVM will automatically initialize each root to <tt>null</tt> upon
-entry to the function. This prevents the GC's sweep phase from visiting
-uninitialized pointers, which will almost certainly cause it to crash. This
-initialization occurs before custom lowering, so the two may be used
-together.</p>
-
-<p>Since LLVM does not yet compute liveness information, there is no means of
-distinguishing an uninitialized stack root from an initialized one. Therefore,
-this feature should be used by all GC plugins. It is enabled by default.</p>
-
-</div>
-
-
-<!-- ======================================================================= -->
-<h3>
- <a name="custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>,
- <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a>
-</h3>
-
-<div>
-
-<p>For GCs which use barriers or unusual treatment of stack roots, these
-flags allow the collector to perform arbitrary transformations of the LLVM
-IR:</p>
-
-<blockquote><pre
->class MyGC : public GCStrategy {
-public:
- MyGC() {
- CustomRoots = true;
- CustomReadBarriers = true;
- CustomWriteBarriers = true;
- }
-
- virtual bool initializeCustomLowering(Module &amp;M);
- virtual bool performCustomLowering(Function &amp;F);
-};</pre></blockquote>
-
-<p>If any of these flags are set, then LLVM suppresses its default lowering for
-the corresponding intrinsics and instead calls
-<tt>performCustomLowering</tt>.</p>
-
-<p>LLVM's default action for each intrinsic is as follows:</p>
-
-<ul>
- <li><tt>llvm.gcroot</tt>: Leave it alone. The code generator must see it
- or the stack map will not be computed.</li>
- <li><tt>llvm.gcread</tt>: Substitute a <tt>load</tt> instruction.</li>
- <li><tt>llvm.gcwrite</tt>: Substitute a <tt>store</tt> instruction.</li>
-</ul>
-
-<p>If <tt>CustomReadBarriers</tt> or <tt>CustomWriteBarriers</tt> are specified,
-then <tt>performCustomLowering</tt> <strong>must</strong> eliminate the
-corresponding barriers.</p>
-
-<p><tt>performCustomLowering</tt> must comply with the same restrictions as <a
-href="WritingAnLLVMPass.html#runOnFunction"><tt
->FunctionPass::runOnFunction</tt></a>.
-Likewise, <tt>initializeCustomLowering</tt> has the same semantics as <a
-href="WritingAnLLVMPass.html#doInitialization_mod"><tt
->Pass::doInitialization(Module&amp;)</tt></a>.</p>
-
-<p>The following can be used as a template:</p>
-
-<blockquote><pre
->#include "llvm/Module.h"
-#include "llvm/IntrinsicInst.h"
-
-bool MyGC::initializeCustomLowering(Module &amp;M) {
- return false;
-}
-
-bool MyGC::performCustomLowering(Function &amp;F) {
- bool MadeChange = false;
-
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator II = BB-&gt;begin(), E = BB-&gt;end(); II != E; )
- if (IntrinsicInst *CI = dyn_cast&lt;IntrinsicInst&gt;(II++))
- if (Function *F = CI-&gt;getCalledFunction())
- switch (F-&gt;getIntrinsicID()) {
- case Intrinsic::gcwrite:
- // Handle llvm.gcwrite.
- CI-&gt;eraseFromParent();
- MadeChange = true;
- break;
- case Intrinsic::gcread:
- // Handle llvm.gcread.
- CI-&gt;eraseFromParent();
- MadeChange = true;
- break;
- case Intrinsic::gcroot:
- // Handle llvm.gcroot.
- CI-&gt;eraseFromParent();
- MadeChange = true;
- break;
- }
-
- return MadeChange;
-}</pre></blockquote>
-
-</div>
-
-
-<!-- ======================================================================= -->
-<h3>
- <a name="safe-points">Generating safe points: <tt>NeededSafePoints</tt></a>
-</h3>
-
-<div>
-
-<p>LLVM can compute four kinds of safe points:</p>
-
-<blockquote><pre
->namespace GC {
- /// PointKind - The type of a collector-safe point.
- ///
- enum PointKind {
- Loop, //&lt; Instr is a loop (backwards branch).
- Return, //&lt; Instr is a return instruction.
- PreCall, //&lt; Instr is a call instruction.
- PostCall //&lt; Instr is the return address of a call.
- };
-}</pre></blockquote>
-
-<p>A collector can request any combination of the four by setting the
-<tt>NeededSafePoints</tt> mask:</p>
-
-<blockquote><pre
->MyGC::MyGC() {
- NeededSafePoints = 1 &lt;&lt; GC::Loop
- | 1 &lt;&lt; GC::Return
- | 1 &lt;&lt; GC::PreCall
- | 1 &lt;&lt; GC::PostCall;
-}</pre></blockquote>
-
-<p>It can then use the following routines to access safe points.</p>
-
-<blockquote><pre
->for (iterator I = begin(), E = end(); I != E; ++I) {
- GCFunctionInfo *MD = *I;
- size_t PointCount = MD-&gt;size();
-
- for (GCFunctionInfo::iterator PI = MD-&gt;begin(),
- PE = MD-&gt;end(); PI != PE; ++PI) {
- GC::PointKind PointKind = PI-&gt;Kind;
- unsigned PointNum = PI-&gt;Num;
- }
-}
-</pre></blockquote>
-
-<p>Almost every collector requires <tt>PostCall</tt> safe points, since these
-correspond to the moments when the function is suspended during a call to a
-subroutine.</p>
-
-<p>Threaded programs generally require <tt>Loop</tt> safe points to guarantee
-that the application will reach a safe point within a bounded amount of time,
-even if it is executing a long-running loop which contains no function
-calls.</p>
-
-<p>Threaded collectors may also require <tt>Return</tt> and <tt>PreCall</tt>
-safe points to implement "stop the world" techniques using self-modifying code,
-where it is important that the program not exit the function without reaching a
-safe point (because only the topmost function has been patched).</p>
-
-</div>
-
-
-<!-- ======================================================================= -->
-<h3>
- <a name="assembly">Emitting assembly code: <tt>GCMetadataPrinter</tt></a>
-</h3>
-
-<div>
-
-<p>LLVM allows a plugin to print arbitrary assembly code before and after the
-rest of a module's assembly code. At the end of the module, the GC can compile
-the LLVM stack map into assembly code. (At the beginning, this information is not
-yet computed.)</p>
-
-<p>Since AsmWriter and CodeGen are separate components of LLVM, a separate
-abstract base class and registry is provided for printing assembly code, the
-<tt>GCMetadaPrinter</tt> and <tt>GCMetadataPrinterRegistry</tt>. The AsmWriter
-will look for such a subclass if the <tt>GCStrategy</tt> sets
-<tt>UsesMetadata</tt>:</p>
-
-<blockquote><pre
->MyGC::MyGC() {
- UsesMetadata = true;
-}</pre></blockquote>
-
-<p>This separation allows JIT-only clients to be smaller.</p>
-
-<p>Note that LLVM does not currently have analogous APIs to support code
-generation in the JIT, nor using the object writers.</p>
-
-<blockquote><pre
->// lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer
-
-#include "llvm/CodeGen/GCMetadataPrinter.h"
-#include "llvm/Support/Compiler.h"
-
-using namespace llvm;
-
-namespace {
- class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
- public:
- virtual void beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
- const TargetAsmInfo &amp;TAI);
-
- virtual void finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
- const TargetAsmInfo &amp;TAI);
- };
-
- GCMetadataPrinterRegistry::Add&lt;MyGCPrinter&gt;
- X("mygc", "My bespoke garbage collector.");
-}</pre></blockquote>
-
-<p>The collector should use <tt>AsmPrinter</tt> and <tt>TargetAsmInfo</tt> to
-print portable assembly code to the <tt>std::ostream</tt>. The collector itself
-contains the stack map for the entire module, and may access the
-<tt>GCFunctionInfo</tt> using its own <tt>begin()</tt> and <tt>end()</tt>
-methods. Here's a realistic example:</p>
-
-<blockquote><pre
->#include "llvm/CodeGen/AsmPrinter.h"
-#include "llvm/Function.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Target/TargetAsmInfo.h"
-
-void MyGCPrinter::beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
- const TargetAsmInfo &amp;TAI) {
- // Nothing to do.
-}
-
-void MyGCPrinter::finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
- const TargetAsmInfo &amp;TAI) {
- // Set up for emitting addresses.
- const char *AddressDirective;
- int AddressAlignLog;
- if (AP.TM.getDataLayout()->getPointerSize() == sizeof(int32_t)) {
- AddressDirective = TAI.getData32bitsDirective();
- AddressAlignLog = 2;
- } else {
- AddressDirective = TAI.getData64bitsDirective();
- AddressAlignLog = 3;
- }
-
- // Put this in the data section.
- AP.SwitchToDataSection(TAI.getDataSection());
-
- // For each function...
- for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
- GCFunctionInfo &amp;MD = **FI;
-
- // Emit this data structure:
- //
- // struct {
- // int32_t PointCount;
- // struct {
- // void *SafePointAddress;
- // int32_t LiveCount;
- // int32_t LiveOffsets[LiveCount];
- // } Points[PointCount];
- // } __gcmap_&lt;FUNCTIONNAME&gt;;
-
- // Align to address width.
- AP.EmitAlignment(AddressAlignLog);
-
- // Emit the symbol by which the stack map entry can be found.
- std::string Symbol;
- Symbol += TAI.getGlobalPrefix();
- Symbol += "__gcmap_";
- Symbol += MD.getFunction().getName();
- if (const char *GlobalDirective = TAI.getGlobalDirective())
- OS &lt;&lt; GlobalDirective &lt;&lt; Symbol &lt;&lt; "\n";
- OS &lt;&lt; TAI.getGlobalPrefix() &lt;&lt; Symbol &lt;&lt; ":\n";
-
- // Emit PointCount.
- AP.EmitInt32(MD.size());
- AP.EOL("safe point count");
-
- // And each safe point...
- for (GCFunctionInfo::iterator PI = MD.begin(),
- PE = MD.end(); PI != PE; ++PI) {
- // Align to address width.
- AP.EmitAlignment(AddressAlignLog);
-
- // Emit the address of the safe point.
- OS &lt;&lt; AddressDirective
- &lt;&lt; TAI.getPrivateGlobalPrefix() &lt;&lt; "label" &lt;&lt; PI-&gt;Num;
- AP.EOL("safe point address");
-
- // Emit the stack frame size.
- AP.EmitInt32(MD.getFrameSize());
- AP.EOL("stack frame size");
-
- // Emit the number of live roots in the function.
- AP.EmitInt32(MD.live_size(PI));
- AP.EOL("live root count");
-
- // And for each live root...
- for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
- LE = MD.live_end(PI);
- LI != LE; ++LI) {
- // Print its offset within the stack frame.
- AP.EmitInt32(LI-&gt;StackOffset);
- AP.EOL("stack offset");
- }
- }
- }
-}
-</pre></blockquote>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="references">References</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p><a name="appel89">[Appel89]</a> Runtime Tags Aren't Necessary. Andrew
-W. Appel. Lisp and Symbolic Computation 19(7):703-705, July 1989.</p>
-
-<p><a name="goldberg91">[Goldberg91]</a> Tag-free garbage collection for
-strongly typed programming languages. Benjamin Goldberg. ACM SIGPLAN
-PLDI'91.</p>
-
-<p><a name="tolmach94">[Tolmach94]</a> Tag-free garbage collection using
-explicit type parameters. Andrew Tolmach. Proceedings of the 1994 ACM
-conference on LISP and functional programming.</p>
-
-<p><a name="henderson02">[Henderson2002]</a> <a
-href="http://citeseer.ist.psu.edu/henderson02accurate.html">
-Accurate Garbage Collection in an Uncooperative Environment</a>.
-Fergus Henderson. International Symposium on Memory Management 2002.</p>
-
-</div>
-
-
-<!-- *********************************************************************** -->
-
-<hr>
-<address>
- <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
- src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
- <a href="http://validator.w3.org/check/referer"><img
- src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
-
- <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
- <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
- Last modified: $Date$
-</address>
-
-</body>
-</html>
diff --git a/docs/GarbageCollection.rst b/docs/GarbageCollection.rst
new file mode 100644
index 0000000000..b0b2718409
--- /dev/null
+++ b/docs/GarbageCollection.rst
@@ -0,0 +1,1051 @@
+=====================================
+Accurate Garbage Collection with LLVM
+=====================================
+
+.. contents::
+ :local:
+
+.. sectionauthor:: Chris Lattner <sabre@nondot.org> and
+ Gordon Henriksen
+
+Introduction
+============
+
+Garbage collection is a widely used technique that frees the programmer from
+having to know the lifetimes of heap objects, making software easier to produce
+and maintain. Many programming languages rely on garbage collection for
+automatic memory management. There are two primary forms of garbage collection:
+conservative and accurate.
+
+Conservative garbage collection often does not require any special support from
+either the language or the compiler: it can handle non-type-safe programming
+languages (such as C/C++) and does not require any special information from the
+compiler. The `Boehm collector
+<http://www.hpl.hp.com/personal/Hans_Boehm/gc/>`__ is an example of a
+state-of-the-art conservative collector.
+
+Accurate garbage collection requires the ability to identify all pointers in the
+program at run-time (which requires that the source-language be type-safe in
+most cases). Identifying pointers at run-time requires compiler support to
+locate all places that hold live pointer variables at run-time, including the
+:ref:`processor stack and registers <gcroot>`.
+
+Conservative garbage collection is attractive because it does not require any
+special compiler support, but it does have problems. In particular, because the
+conservative garbage collector cannot *know* that a particular word in the
+machine is a pointer, it cannot move live objects in the heap (preventing the
+use of compacting and generational GC algorithms) and it can occasionally suffer
+from memory leaks due to integer values that happen to point to objects in the
+program. In addition, some aggressive compiler transformations can break
+conservative garbage collectors (though these seem rare in practice).
+
+Accurate garbage collectors do not suffer from any of these problems, but they
+can suffer from degraded scalar optimization of the program. In particular,
+because the runtime must be able to identify and update all pointers active in
+the program, some optimizations are less effective. In practice, however, the
+locality and performance benefits of using aggressive garbage collection
+techniques dominates any low-level losses.
+
+This document describes the mechanisms and interfaces provided by LLVM to
+support accurate garbage collection.
+
+.. _feature:
+
+Goals and non-goals
+-------------------
+
+LLVM's intermediate representation provides :ref:`garbage collection intrinsics
+<gc_intrinsics>` that offer support for a broad class of collector models. For
+instance, the intrinsics permit:
+
+* semi-space collectors
+
+* mark-sweep collectors
+
+* generational collectors
+
+* reference counting
+
+* incremental collectors
+
+* concurrent collectors
+
+* cooperative collectors
+
+We hope that the primitive support built into the LLVM IR is sufficient to
+support a broad class of garbage collected languages including Scheme, ML, Java,
+C#, Perl, Python, Lua, Ruby, other scripting languages, and more.
+
+However, LLVM does not itself provide a garbage collector --- this should be
+part of your language's runtime library. LLVM provides a framework for compile
+time :ref:`code generation plugins <plugin>`. The role of these plugins is to
+generate code and data structures which conforms to the *binary interface*
+specified by the *runtime library*. This is similar to the relationship between
+LLVM and DWARF debugging info, for example. The difference primarily lies in
+the lack of an established standard in the domain of garbage collection --- thus
+the plugins.
+
+The aspects of the binary interface with which LLVM's GC support is
+concerned are:
+
+* Creation of GC-safe points within code where collection is allowed to execute
+ safely.
+
+* Computation of the stack map. For each safe point in the code, object
+ references within the stack frame must be identified so that the collector may
+ traverse and perhaps update them.
+
+* Write barriers when storing object references to the heap. These are commonly
+ used to optimize incremental scans in generational collectors.
+
+* Emission of read barriers when loading object references. These are useful
+ for interoperating with concurrent collectors.
+
+There are additional areas that LLVM does not directly address:
+
+* Registration of global roots with the runtime.
+
+* Registration of stack map entries with the runtime.
+
+* The functions used by the program to allocate memory, trigger a collection,
+ etc.
+
+* Computation or compilation of type maps, or registration of them with the
+ runtime. These are used to crawl the heap for object references.
+
+In general, LLVM's support for GC does not include features which can be
+adequately addressed with other features of the IR and does not specify a
+particular binary interface. On the plus side, this means that you should be
+able to integrate LLVM with an existing runtime. On the other hand, it leaves a
+lot of work for the developer of a novel language. However, it's easy to get
+started quickly and scale up to a more sophisticated implementation as your
+compiler matures.
+
+.. _quickstart:
+
+Getting started
+===============
+
+Using a GC with LLVM implies many things, for example:
+
+* Write a runtime library or find an existing one which implements a GC heap.
+
+ #. Implement a memory allocator.
+
+ #. Design a binary interface for the stack map, used to identify references
+ within a stack frame on the machine stack.\*
+
+ #. Implement a stack crawler to discover functions on the call stack.\*
+
+ #. Implement a registry for global roots.
+
+ #. Design a binary interface for type maps, used to identify references
+ within heap objects.
+
+ #. Implement a collection routine bringing together all of the above.
+
+* Emit compatible code from your compiler.
+
+ * Initialization in the main function.
+
+ * Use the ``gc "..."`` attribute to enable GC code generation (or
+ ``F.setGC("...")``).
+
+ * Use ``@llvm.gcroot`` to mark stack roots.
+
+ * Use ``@llvm.gcread`` and/or ``@llvm.gcwrite`` to manipulate GC references,
+ if necessary.
+
+ * Allocate memory using the GC allocation routine provided by the runtime
+ library.
+
+ * Generate type maps according to your runtime's binary interface.
+
+* Write a compiler plugin to interface LLVM with the runtime library.\*
+
+ * Lower ``@llvm.gcread`` and ``@llvm.gcwrite`` to appropriate code
+ sequences.\*
+
+ * Compile LLVM's stack map to the binary form expected by the runtime.
+
+* Load the plugin into the compiler. Use ``llc -load`` or link the plugin
+ statically with your language's compiler.\*
+
+* Link program executables with the runtime.
+
+To help with several of these tasks (those indicated with a \*), LLVM includes a
+highly portable, built-in ShadowStack code generator. It is compiled into
+``llc`` and works even with the interpreter and C backends.
+
+.. _quickstart-compiler:
+
+In your compiler
+----------------
+
+To turn the shadow stack on for your functions, first call:
+
+.. code-block:: c++
+
+ F.setGC("shadow-stack");
+
+for each function your compiler emits. Since the shadow stack is built into
+LLVM, you do not need to load a plugin.
+
+Your compiler must also use ``@llvm.gcroot`` as documented. Don't forget to
+create a root for each intermediate value that is generated when evaluating an
+expression. In ``h(f(), g())``, the result of ``f()`` could easily be collected
+if evaluating ``g()`` triggers a collection.
+
+There's no need to use ``@llvm.gcread`` and ``@llvm.gcwrite`` over plain
+``load`` and ``store`` for now. You will need them when switching to a more
+advanced GC.
+
+.. _quickstart-runtime:
+
+In your runtime
+---------------
+
+The shadow stack doesn't imply a memory allocation algorithm. A semispace
+collector or building atop ``malloc`` are great places to start, and can be
+implemented with very little code.
+
+When it comes time to collect, however, your runtime needs to traverse the stack
+roots, and for this it needs to integrate with the shadow stack. Luckily, doing
+so is very simple. (This code is heavily commented to help you understand the
+data structure, but there are only 20 lines of meaningful code.)
+
+.. code-block:: c++
+
+ /// @brief The map for a single function's stack frame. One of these is
+ /// compiled as constant data into the executable for each function.
+ ///
+ /// Storage of metadata values is elided if the %metadata parameter to
+ /// @llvm.gcroot is null.
+ struct FrameMap {
+ int32_t NumRoots; //< Number of roots in stack frame.
+ int32_t NumMeta; //< Number of metadata entries. May be < NumRoots.
+ const void *Meta[0]; //< Metadata for each root.
+ };
+
+ /// @brief A link in the dynamic shadow stack. One of these is embedded in
+ /// the stack frame of each function on the call stack.
+ struct StackEntry {
+ StackEntry *Next; //< Link to next stack entry (the caller's).
+ const FrameMap *Map; //< Pointer to constant FrameMap.
+ void *Roots[0]; //< Stack roots (in-place array).
+ };
+
+ /// @brief The head of the singly-linked list of StackEntries. Functions push
+ /// and pop onto this in their prologue and epilogue.
+ ///
+ /// Since there is only a global list, this technique is not threadsafe.
+ StackEntry *llvm_gc_root_chain;
+
+ /// @brief Calls Visitor(root, meta) for each GC root on the stack.
+ /// root and meta are exactly the values passed to
+ /// @llvm.gcroot.
+ ///
+ /// Visitor could be a function to recursively mark live objects. Or it
+ /// might copy them to another heap or generation.
+ ///
+ /// @param Visitor A function to invoke for every GC root on the stack.
+ void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
+ for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
+ unsigned i = 0;
+
+ // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
+ for (unsigned e = R->Map->NumMeta; i != e; ++i)
+ Visitor(&R->Roots[i], R->Map->Meta[i]);
+
+ // For roots [NumMeta, NumRoots), the metadata pointer is null.
+ for (unsigned e = R->Map->NumRoots; i != e; ++i)
+ Visitor(&R->Roots[i], NULL);
+ }
+ }
+
+.. _shadow-stack:
+
+About the shadow stack
+----------------------
+
+Unlike many GC algorithms which rely on a cooperative code generator to compile
+stack maps, this algorithm carefully maintains a linked list of stack roots
+[:ref:`Henderson2002 <henderson02>`]. This so-called "shadow stack" mirrors the
+machine stack. Maintaining this data structure is slower than using a stack map
+compiled into the executable as constant data, but has a significant portability
+advantage because it requires no special support from the target code generator,
+and does not require tricky platform-specific code to crawl the machine stack.
+
+The tradeoff for this simplicity and portability is:
+
+* High overhead per function call.
+
+* Not thread-safe.
+
+Still, it's an easy way to get started. After your compiler and runtime are up
+and running, writing a plugin_ will allow you to take advantage of :ref:`more
+advanced GC features <collector-algos>` of LLVM in order to improve performance.
+
+.. _gc_intrinsics:
+
+IR features
+===========
+
+This section describes the garbage collection facilities provided by the
+:doc:`LLVM intermediate representation <LangRef>`. The exact behavior of these
+IR features is specified by the binary interface implemented by a :ref:`code
+generation plugin <plugin>`, not by this document.
+
+These facilities are limited to those strictly necessary; they are not intended
+to be a complete interface to any garbage collector. A program will need to
+interface with the GC library using the facilities provided by that program.
+
+.. _gcattr:
+
+Specifying GC code generation: ``gc "..."``
+-------------------------------------------
+
+.. code-block:: llvm
+
+ define ty @name(...) gc "name" { ...
+
+The ``gc`` function attribute is used to specify the desired GC style to the
+compiler. Its programmatic equivalent is the ``setGC`` method of ``Function``.
+
+Setting ``gc "name"`` on a function triggers a search for a matching code
+generation plugin "*name*"; it is that plugin which defines the exact nature of
+the code generated to support GC. If none is found, the compiler will raise an
+error.
+
+Specifying the GC style on a per-function basis allows LLVM to link together
+programs that use different garbage collection algorithms (or none at all).
+
+.. _gcroot:
+
+Identifying GC roots on the stack: ``llvm.gcroot``
+--------------------------------------------------
+
+.. code-block:: llvm
+
+ void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
+
+The ``llvm.gcroot`` intrinsic is used to inform LLVM that a stack variable
+references an object on the heap and is to be tracked for garbage collection.
+The exact impact on generated code is specified by a :ref:`compiler plugin
+<plugin>`. All calls to ``llvm.gcroot`` **must** reside inside the first basic
+block.
+
+A compiler which uses mem2reg to raise imperative code using ``alloca`` into SSA
+form need only add a call to ``@llvm.gcroot`` for those variables which a
+pointers into the GC heap.
+
+It is also important to mark intermediate values with ``llvm.gcroot``. For
+example, consider ``h(f(), g())``. Beware leaking the result of ``f()`` in the
+case that ``g()`` triggers a collection. Note, that stack variables must be
+initialized and marked with ``llvm.gcroot`` in function's prologue.
+
+The first argument **must** be a value referring to an alloca instruction or a
+bitcast of an alloca. The second contains a pointer to metadata that should be
+associated with the pointer, and **must** be a constant or global value
+address. If your target collector uses tags, use a null pointer for metadata.
+
+The ``%metadata`` argument can be used to avoid requiring heap objects to have
+'isa' pointers or tag bits. [Appel89_, Goldberg91_, Tolmach94_] If specified,
+its value will be tracked along with the location of the pointer in the stack
+frame.
+
+Consider the following fragment of Java code:
+
+.. code-block:: java
+
+ {
+ Object X; // A null-initialized reference to an object
+ ...
+ }
+
+This block (which may be located in the middle of a function or in a loop nest),
+could be compiled to this LLVM code:
+
+.. code-block:: llvm
+
+ Entry:
+ ;; In the entry block for the function, allocate the
+ ;; stack space for X, which is an LLVM pointer.
+ %X = alloca %Object*
+
+ ;; Tell LLVM that the stack space is a stack root.
+ ;; Java has type-tags on objects, so we pass null as metadata.
+ %tmp = bitcast %Object** %X to i8**
+ call void @llvm.gcroot(i8** %tmp, i8* null)
+ ...
+
+ ;; "CodeBlock" is the block corresponding to the start
+ ;; of the scope above.
+ CodeBlock:
+ ;; Java null-initializes pointers.
+ store %Object* null, %Object** %X
+
+ ...
+
+ ;; As the pointer goes out of scope, store a null value into
+ ;; it, to indicate that the value is no longer live.
+ store %Object* null, %Object** %X
+ ...
+
+.. _barriers:
+
+Reading and writing references in the heap
+------------------------------------------
+
+Some collectors need to be informed when the mutator (the program that needs
+garbage collection) either reads a pointer from or writes a pointer to a field
+of a heap object. The code fragments inserted at these points are called *read
+barriers* and *write barriers*, respectively. The amount of code that needs to
+be executed is usually quite small and not on the critical path of any
+computation, so the overall performance impact of the barrier is tolerable.
+
+Barriers often require access to the *object pointer* rather than the *derived
+pointer* (which is a pointer to the field within the object). Accordingly,
+these intrinsics take both pointers as separate arguments for completeness. In
+this snippet, ``%object`` is the object pointer, and ``%derived`` is the derived
+pointer:
+
+.. code-block:: llvm
+
+ ;; An array type.
+ %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
+ ...
+
+ ;; Load the object pointer from a gcroot.
+ %object = load %class.Array** %object_addr
+
+ ;; Compute the derived pointer.
+ %derived = getelementptr %object, i32 0, i32 2, i32 %n
+
+LLVM does not enforce this relationship between the object and derived pointer
+(although a plugin_ might). However, it would be an unusual collector that
+violated it.
+
+The use of these intrinsics is naturally optional if the target GC does require
+the corresponding barrier. Such a GC plugin will replace the intrinsic calls
+with the corresponding ``load`` or ``store`` instruction if they are used.
+
+.. _gcwrite:
+
+Write barrier: ``llvm.gcwrite``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
+
+For write barriers, LLVM provides the ``llvm.gcwrite`` intrinsic function. It
+has exactly the same semantics as a non-volatile ``store`` to the derived
+pointer (the third argument). The exact code generated is specified by a
+compiler plugin_.
+
+Many important algorithms require write barriers, including generational and
+concurrent collectors. Additionally, write barriers could be used to implement
+reference counting.
+
+.. _gcread:
+
+Read barrier: ``llvm.gcread``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ i8* @llvm.gcread(i8* %object, i8** %derived)
+
+For read barriers, LLVM provides the ``llvm.gcread`` intrinsic function. It has
+exactly the same semantics as a non-volatile ``load`` from the derived pointer
+(the second argument). The exact code generated is specified by a compiler
+plugin_.
+
+Read barriers are needed by fewer algorithms than write barriers, and may have a
+greater performance impact since pointer reads are more frequent than writes.
+
+.. _plugin:
+
+Implementing a collector plugin
+===============================
+
+User code specifies which GC code generation to use with the ``gc`` function
+attribute or, equivalently, with the ``setGC`` method of ``Function``.
+
+To implement a GC plugin, it is necessary to subclass ``llvm::GCStrategy``,
+which can be accomplished in a few lines of boilerplate code. LLVM's
+infrastructure provides access to several important algorithms. For an
+uncontroversial collector, all that remains may be to compile LLVM's computed
+stack map to assembly code (using the binary representation expected by the
+runtime library). This can be accomplished in about 100 lines of code.
+
+This is not the appropriate place to implement a garbage collected heap or a
+garbage collector itself. That code should exist in the language's runtime
+library. The compiler plugin is responsible for generating code which conforms
+to the binary interface defined by library, most essentially the :ref:`stack map
+<stack-map>`.
+
+To subclass ``llvm::GCStrategy`` and register it with the compiler:
+
+.. code-block:: c++
+
+ // lib/MyGC/MyGC.cpp - Example LLVM GC plugin
+
+ #include "llvm/CodeGen/GCStrategy.h"
+ #include "llvm/CodeGen/GCMetadata.h"
+ #include "llvm/Support/Compiler.h"
+
+ using namespace llvm;
+
+ namespace {
+ class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
+ public:
+ MyGC() {}
+ };
+
+ GCRegistry::Add<MyGC>
+ X("mygc", "My bespoke garbage collector.");
+ }
+
+This boilerplate collector does nothing. More specifically:
+
+* ``llvm.gcread`` calls are replaced with the corresponding ``load``
+ instruction.
+
+* ``llvm.gcwrite`` calls are replaced with the corresponding ``store``
+ instruction.
+
+* No safe points are added to the code.
+
+* The stack map is not compiled into the executable.
+
+Using the LLVM makefiles (like the `sample project
+<http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/>`__), this code
+can be compiled as a plugin using a simple makefile:
+
+.. code-block:: make
+
+ # lib/MyGC/Makefile
+
+ LEVEL := ../..
+ LIBRARYNAME = MyGC
+ LOADABLE_MODULE = 1
+
+ include $(LEVEL)/Makefile.common
+
+Once the plugin is compiled, code using it may be compiled using ``llc
+-load=MyGC.so`` (though MyGC.so may have some other platform-specific
+extension):
+
+::
+
+ $ cat sample.ll
+ define void @f() gc "mygc" {
+ entry:
+ ret void
+ }
+ $ llvm-as < sample.ll | llc -load=MyGC.so
+
+It is also possible to statically link the collector plugin into tools, such as
+a language-specific compiler front-end.
+
+.. _collector-algos:
+
+Overview of available features
+------------------------------
+
+``GCStrategy`` provides a range of features through which a plugin may do useful
+work. Some of these are callbacks, some are algorithms that can be enabled,
+disabled, or customized. This matrix summarizes the supported (and planned)
+features and correlates them with the collection techniques which typically
+require them.
+
+.. |v| unicode:: 0x2714
+ :trim:
+
+.. |x| unicode:: 0x2718
+ :trim:
+
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| Algorithm | Done | Shadow | refcount | mark- | copying | incremental | threaded | concurrent |
+| | | stack | | sweep | | | | |
++============+======+========+==========+=======+=========+=============+==========+============+
+| stack map | |v| | | | |x| | |x| | |x| | |x| | |x| |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| initialize | |v| | |x| | |x| | |x| | |x| | |x| | |x| | |x| |
+| roots | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| derived | NO | | | | | | **N**\* | **N**\* |
+| pointers | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **custom | |v| | | | | | | | |
+| lowering** | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *gcroot* | |v| | |x| | |x| | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *gcwrite* | |v| | | |x| | | | |x| | | |x| |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *gcread* | |v| | | | | | | | |x| |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **safe | | | | | | | | |
+| points** | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *in | |v| | | | |x| | |x| | |x| | |x| | |x| |
+| calls* | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *before | |v| | | | | | | |x| | |x| |
+| calls* | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *for | NO | | | | | | **N** | **N** |
+| loops* | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *before | |v| | | | | | | |x| | |x| |
+| escape* | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| emit code | NO | | | | | | **N** | **N** |
+| at safe | | | | | | | | |
+| points | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **output** | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *assembly* | |v| | | | |x| | |x| | |x| | |x| | |x| |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *JIT* | NO | | | **?** | **?** | **?** | **?** | **?** |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *obj* | NO | | | **?** | **?** | **?** | **?** | **?** |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| live | NO | | | **?** | **?** | **?** | **?** | **?** |
+| analysis | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| register | NO | | | **?** | **?** | **?** | **?** | **?** |
+| map | | | | | | | | |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| \* Derived pointers only pose a hasard to copying collections. |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **?** denotes a feature which could be utilized if available. |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+
+To be clear, the collection techniques above are defined as:
+
+Shadow Stack
+ The mutator carefully maintains a linked list of stack roots.
+
+Reference Counting
+ The mutator maintains a reference count for each object and frees an object
+ when its count falls to zero.
+
+Mark-Sweep
+ When the heap is exhausted, the collector marks reachable objects starting
+ from the roots, then deallocates unreachable objects in a sweep phase.
+
+Copying
+ As reachability analysis proceeds, the collector copies objects from one heap
+ area to another, compacting them in the process. Copying collectors enable
+ highly efficient "bump pointer" allocation and can improve locality of
+ reference.
+
+Incremental
+ (Including generational collectors.) Incremental collectors generally have all
+ the properties of a copying collector (regardless of whether the mature heap
+ is compacting), but bring the added complexity of requiring write barriers.
+
+Threaded
+ Denotes a multithreaded mutator; the collector must still stop the mutator
+ ("stop the world") before beginning reachability analysis. Stopping a
+ multithreaded mutator is a complicated problem. It generally requires highly
+ platform specific code in the runtime, and the production of carefully
+ designed machine code at safe points.
+
+Concurrent
+ In this technique, the mutator and the collector run concurrently, with the
+ goal of eliminating pause times. In a *cooperative* collector, the mutator
+ further aids with collection should a pause occur, allowing collection to take
+ advantage of multiprocessor hosts. The "stop the world" problem of threaded
+ collectors is generally still present to a limited extent. Sophisticated
+ marking algorithms are necessary. Read barriers may be necessary.
+
+As the matrix indicates, LLVM's garbage collection infrastructure is already
+suitable for a wide variety of collectors, but does not currently extend to
+multithreaded programs. This will be added in the future as there is
+interest.
+
+.. _stack-map:
+
+Computing stack maps
+--------------------
+
+LLVM automatically computes a stack map. One of the most important features
+of a ``GCStrategy`` is to compile this information into the executable in
+the binary representation expected by the runtime library.
+
+The stack map consists of the location and identity of each GC root in the
+each function in the module. For each root:
+
+* ``RootNum``: The index of the root.
+
+* ``StackOffset``: The offset of the object relative to the frame pointer.
+
+* ``RootMetadata``: The value passed as the ``%metadata`` parameter to the
+ ``@llvm.gcroot`` intrinsic.
+
+Also, for the function as a whole:
+
+* ``getFrameSize()``: The overall size of the function's initial stack frame,
+ not accounting for any dynamic allocation.
+
+* ``roots_size()``: The count of roots in the function.
+
+To access the stack map, use ``GCFunctionMetadata::roots_begin()`` and
+-``end()`` from the :ref:`GCMetadataPrinter <assembly>`:
+
+.. code-block:: c++
+
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ GCFunctionInfo *FI = *I;
+ unsigned FrameSize = FI->getFrameSize();
+ size_t RootCount = FI->roots_size();
+
+ for (GCFunctionInfo::roots_iterator RI = FI->roots_begin(),
+ RE = FI->roots_end();
+ RI != RE; ++RI) {
+ int RootNum = RI->Num;
+ int RootStackOffset = RI->StackOffset;
+ Constant *RootMetadata = RI->Metadata;
+ }
+ }
+
+If the ``llvm.gcroot`` intrinsic is eliminated before code generation by a
+custom lowering pass, LLVM will compute an empty stack map. This may be useful
+for collector plugins which implement reference counting or a shadow stack.
+
+.. _init-roots:
+
+Initializing roots to null: ``InitRoots``
+-----------------------------------------
+
+.. code-block:: c++
+
+ MyGC::MyGC() {
+ InitRoots = true;
+ }
+
+When set, LLVM will automatically initialize each root to ``null`` upon entry to
+the function. This prevents the GC's sweep phase from visiting uninitialized
+pointers, which will almost certainly cause it to crash. This initialization
+occurs before custom lowering, so the two may be used together.
+
+Since LLVM does not yet compute liveness information, there is no means of
+distinguishing an uninitialized stack root from an initialized one. Therefore,
+this feature should be used by all GC plugins. It is enabled by default.
+
+.. _custom:
+
+Custom lowering of intrinsics: ``CustomRoots``, ``CustomReadBarriers``, and ``CustomWriteBarriers``
+---------------------------------------------------------------------------------------------------
+
+For GCs which use barriers or unusual treatment of stack roots, these flags
+allow the collector to perform arbitrary transformations of the LLVM IR:
+
+.. code-block:: c++
+
+ class MyGC : public GCStrategy {
+ public:
+ MyGC() {
+ CustomRoots = true;
+ CustomReadBarriers = true;
+ CustomWriteBarriers = true;
+ }
+
+ virtual bool initializeCustomLowering(Module &M);
+ virtual bool performCustomLowering(Function &F);
+ };
+
+If any of these flags are set, then LLVM suppresses its default lowering for the
+corresponding intrinsics and instead calls ``performCustomLowering``.
+
+LLVM's default action for each intrinsic is as follows:
+
+* ``llvm.gcroot``: Leave it alone. The code generator must see it or the stack
+ map will not be computed.
+
+* ``llvm.gcread``: Substitute a ``load`` instruction.
+
+* ``llvm.gcwrite``: Substitute a ``store`` instruction.
+
+If ``CustomReadBarriers`` or ``CustomWriteBarriers`` are specified, then
+``performCustomLowering`` **must** eliminate the corresponding barriers.
+
+``performCustomLowering`` must comply with the same restrictions as
+`FunctionPass::runOnFunction <WritingAnLLVMPass.html#runOnFunction>`__
+Likewise, ``initializeCustomLowering`` has the same semantics as
+`Pass::doInitialization(Module&)
+<WritingAnLLVMPass.html#doInitialization_mod>`__
+
+The following can be used as a template:
+
+.. code-block:: c++
+
+ #include "llvm/Module.h"
+ #include "llvm/IntrinsicInst.h"
+
+ bool MyGC::initializeCustomLowering(Module &M) {
+ return false;
+ }
+
+ bool MyGC::performCustomLowering(Function &F) {
+ bool MadeChange = false;
+
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; )
+ if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::gcwrite:
+ // Handle llvm.gcwrite.
+ CI->eraseFromParent();
+ MadeChange = true;
+ break;
+ case Intrinsic::gcread:
+ // Handle llvm.gcread.
+ CI->eraseFromParent();
+ MadeChange = true;
+ break;
+ case Intrinsic::gcroot:
+ // Handle llvm.gcroot.
+ CI->eraseFromParent();
+ MadeChange = true;
+ break;
+ }
+
+ return MadeChange;
+ }
+
+.. _safe-points:
+
+Generating safe points: ``NeededSafePoints``
+--------------------------------------------
+
+LLVM can compute four kinds of safe points:
+
+.. code-block:: c++
+
+ namespace GC {
+ /// PointKind - The type of a collector-safe point.
+ ///
+ enum PointKind {
+ Loop, //< Instr is a loop (backwards branch).
+ Return, //< Instr is a return instruction.
+ PreCall, //< Instr is a call instruction.
+ PostCall //< Instr is the return address of a call.
+ };
+ }
+
+A collector can request any combination of the four by setting the
+``NeededSafePoints`` mask:
+
+.. code-block:: c++
+
+ MyGC::MyGC() {
+ NeededSafePoints = 1 << GC::Loop
+ | 1 << GC::Return
+ | 1 << GC::PreCall
+ | 1 << GC::PostCall;
+ }
+
+It can then use the following routines to access safe points.
+
+.. code-block:: c++
+
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ GCFunctionInfo *MD = *I;
+ size_t PointCount = MD->size();
+
+ for (GCFunctionInfo::iterator PI = MD->begin(),
+ PE = MD->end(); PI != PE; ++PI) {
+ GC::PointKind PointKind = PI->Kind;
+ unsigned PointNum = PI->Num;
+ }
+ }
+
+Almost every collector requires ``PostCall`` safe points, since these correspond
+to the moments when the function is suspended during a call to a subroutine.
+
+Threaded programs generally require ``Loop`` safe points to guarantee that the
+application will reach a safe point within a bounded amount of time, even if it
+is executing a long-running loop which contains no function calls.
+
+Threaded collectors may also require ``Return`` and ``PreCall`` safe points to
+implement "stop the world" techniques using self-modifying code, where it is
+important that the program not exit the function without reaching a safe point
+(because only the topmost function has been patched).
+
+.. _assembly:
+
+Emitting assembly code: ``GCMetadataPrinter``
+---------------------------------------------
+
+LLVM allows a plugin to print arbitrary assembly code before and after the rest
+of a module's assembly code. At the end of the module, the GC can compile the
+LLVM stack map into assembly code. (At the beginning, this information is not
+yet computed.)
+
+Since AsmWriter and CodeGen are separate components of LLVM, a separate abstract
+base class and registry is provided for printing assembly code, the
+``GCMetadaPrinter`` and ``GCMetadataPrinterRegistry``. The AsmWriter will look
+for such a subclass if the ``GCStrategy`` sets ``UsesMetadata``:
+
+.. code-block:: c++
+
+ MyGC::MyGC() {
+ UsesMetadata = true;
+ }
+
+This separation allows JIT-only clients to be smaller.
+
+Note that LLVM does not currently have analogous APIs to support code generation
+in the JIT, nor using the object writers.
+
+.. code-block:: c++
+
+ // lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer
+
+ #include "llvm/CodeGen/GCMetadataPrinter.h"
+ #include "llvm/Support/Compiler.h"
+
+ using namespace llvm;
+
+ namespace {
+ class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
+ public:
+ virtual void beginAssembly(std::ostream &OS, AsmPrinter &AP,
+ const TargetAsmInfo &TAI);
+
+ virtual void finishAssembly(std::ostream &OS, AsmPrinter &AP,
+ const TargetAsmInfo &TAI);
+ };
+
+ GCMetadataPrinterRegistry::Add<MyGCPrinter>
+ X("mygc", "My bespoke garbage collector.");
+ }
+
+The collector should use ``AsmPrinter`` and ``TargetAsmInfo`` to print portable
+assembly code to the ``std::ostream``. The collector itself contains the stack
+map for the entire module, and may access the ``GCFunctionInfo`` using its own
+``begin()`` and ``end()`` methods. Here's a realistic example:
+
+.. code-block:: c++
+
+ #include "llvm/CodeGen/AsmPrinter.h"
+ #include "llvm/Function.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/DataLayout.h"
+ #include "llvm/Target/TargetAsmInfo.h"
+
+ void MyGCPrinter::beginAssembly(std::ostream &OS, AsmPrinter &AP,
+ const TargetAsmInfo &TAI) {
+ // Nothing to do.
+ }
+
+ void MyGCPrinter::finishAssembly(std::ostream &OS, AsmPrinter &AP,
+ const TargetAsmInfo &TAI) {
+ // Set up for emitting addresses.
+ const char *AddressDirective;
+ int AddressAlignLog;
+ if (AP.TM.getDataLayout()->getPointerSize() == sizeof(int32_t)) {
+ AddressDirective = TAI.getData32bitsDirective();
+ AddressAlignLog = 2;
+ } else {
+ AddressDirective = TAI.getData64bitsDirective();
+ AddressAlignLog = 3;
+ }
+
+ // Put this in the data section.
+ AP.SwitchToDataSection(TAI.getDataSection());
+
+ // For each function...
+ for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
+ GCFunctionInfo &MD = **FI;
+
+ // Emit this data structure:
+ //
+ // struct {
+ // int32_t PointCount;
+ // struct {
+ // void *SafePointAddress;
+ // int32_t LiveCount;
+ // int32_t LiveOffsets[LiveCount];
+ // } Points[PointCount];
+ // } __gcmap_<FUNCTIONNAME>;
+
+ // Align to address width.
+ AP.EmitAlignment(AddressAlignLog);
+
+ // Emit the symbol by which the stack map entry can be found.
+ std::string Symbol;
+ Symbol += TAI.getGlobalPrefix();
+ Symbol += "__gcmap_";
+ Symbol += MD.getFunction().getName();
+ if (const char *GlobalDirective = TAI.getGlobalDirective())
+ OS << GlobalDirective << Symbol << "\n";
+ OS << TAI.getGlobalPrefix() << Symbol << ":\n";
+
+ // Emit PointCount.
+ AP.EmitInt32(MD.size());
+ AP.EOL("safe point count");
+
+ // And each safe point...
+ for (GCFunctionInfo::iterator PI = MD.begin(),
+ PE = MD.end(); PI != PE; ++PI) {
+ // Align to address width.
+ AP.EmitAlignment(AddressAlignLog);
+
+ // Emit the address of the safe point.
+ OS << AddressDirective
+ << TAI.getPrivateGlobalPrefix() << "label" << PI->Num;
+ AP.EOL("safe point address");
+
+ // Emit the stack frame size.
+ AP.EmitInt32(MD.getFrameSize());
+ AP.EOL("stack frame size");
+
+ // Emit the number of live roots in the function.
+ AP.EmitInt32(MD.live_size(PI));
+ AP.EOL("live root count");
+
+ // And for each live root...
+ for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
+ LE = MD.live_end(PI);
+ LI != LE; ++LI) {
+ // Print its offset within the stack frame.
+ AP.EmitInt32(LI->StackOffset);
+ AP.EOL("stack offset");
+ }
+ }
+ }
+ }
+
+References
+==========
+
+.. _appel89:
+
+[Appel89] Runtime Tags Aren't Necessary. Andrew W. Appel. Lisp and Symbolic
+Computation 19(7):703-705, July 1989.
+
+.. _goldberg91:
+
+[Goldberg91] Tag-free garbage collection for strongly typed programming
+languages. Benjamin Goldberg. ACM SIGPLAN PLDI'91.
+
+.. _tolmach94:
+
+[Tolmach94] Tag-free garbage collection using explicit type parameters. Andrew
+Tolmach. Proceedings of the 1994 ACM conference on LISP and functional
+programming.
+
+.. _henderson02:
+
+[Henderson2002] `Accurate Garbage Collection in an Uncooperative Environment
+<http://citeseer.ist.psu.edu/henderson02accurate.html>`__
+
diff --git a/docs/subsystems.rst b/docs/subsystems.rst
index f863d1fc6d..275955be6e 100644
--- a/docs/subsystems.rst
+++ b/docs/subsystems.rst
@@ -22,6 +22,7 @@ Subsystem Documentation
SystemLibrary
SourceLevelDebugging
WritingAnLLVMBackend
+ GarbageCollection
.. FIXME: once LangRef is Sphinxified, HowToUseInstrMappings should be put
under LangRef's toctree instead of this page's toctree.
@@ -49,9 +50,9 @@ Subsystem Documentation
Information on how to write a new alias analysis implementation or how to
use existing analyses.
-
-* `Accurate Garbage Collection with LLVM <GarbageCollection.html>`_
-
+
+* :doc:`GarbageCollection`
+
The interfaces source-language compilers should use for compiling GC'd
programs.