summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Target/TargetTransformImpl.h2
-rw-r--r--include/llvm/TargetTransformInfo.h17
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp11
-rw-r--r--lib/Target/X86/X86ISelLowering.h8
-rw-r--r--lib/Target/X86/X86TargetMachine.h2
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp532
-rw-r--r--test/Transforms/LoopIdiom/X86/lit.local.cfg6
-rw-r--r--test/Transforms/LoopIdiom/X86/popcnt.ll76
8 files changed, 21 insertions, 633 deletions
diff --git a/include/llvm/Target/TargetTransformImpl.h b/include/llvm/Target/TargetTransformImpl.h
index f4ec97ae93..093feb0b45 100644
--- a/include/llvm/Target/TargetTransformImpl.h
+++ b/include/llvm/Target/TargetTransformImpl.h
@@ -26,7 +26,7 @@ class TargetLowering;
/// ScalarTargetTransformInfo interface. Different targets can implement
/// this interface differently.
class ScalarTargetTransformImpl : public ScalarTargetTransformInfo {
-protected:
+private:
const TargetLowering *TLI;
public:
diff --git a/include/llvm/TargetTransformInfo.h b/include/llvm/TargetTransformInfo.h
index a18cef6d01..db9cc66cd6 100644
--- a/include/llvm/TargetTransformInfo.h
+++ b/include/llvm/TargetTransformInfo.h
@@ -75,18 +75,6 @@ public:
/// LSR, and LowerInvoke use this interface.
class ScalarTargetTransformInfo {
public:
- /// PopcntHwSupport - Hardware support for population count. Compared to the
- /// SW implementation, HW support is supposed to significantly boost the
- /// performance when the population is dense, and it may or not may degrade
- /// performance if the population is sparse. A HW support is considered as
- /// "Fast" if it can outperform, or is on a par with, SW implementaion when
- /// the population is sparse; otherwise, it is considered as "Slow".
- enum PopcntHwSupport {
- None,
- Fast,
- Slow
- };
-
virtual ~ScalarTargetTransformInfo() {}
/// isLegalAddImmediate - Return true if the specified immediate is legal
@@ -134,11 +122,6 @@ public:
virtual bool shouldBuildLookupTables() const {
return true;
}
-
- /// getPopcntHwSupport - Return hardware support for population count.
- virtual PopcntHwSupport getPopcntHwSupport(unsigned IntTyWidthInBit) const {
- return None;
- }
};
/// VectorTargetTransformInfo - This interface is used by the vectorizers
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 84e5677d6c..af772ed7a3 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -17679,17 +17679,6 @@ FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
return -1;
}
-ScalarTargetTransformInfo::PopcntHwSupport
-X86ScalarTargetTransformImpl::getPopcntHwSupport(unsigned TyWidth) const {
- assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
- const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>();
-
- // TODO: Currently the __builtin_popcount() implementation using SSE3
- // instructions is inefficient. Once the problem is fixed, we should
- // call ST.hasSSE3() instead of ST.hasSSE4().
- return ST.hasSSE41() ? Fast : None;
-}
-
unsigned
X86VectorTargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
Type *Ty) const {
diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h
index 1042fe13ec..1fdac34032 100644
--- a/lib/Target/X86/X86ISelLowering.h
+++ b/lib/Target/X86/X86ISelLowering.h
@@ -932,14 +932,6 @@ namespace llvm {
const TargetLibraryInfo *libInfo);
}
- class X86ScalarTargetTransformImpl : public ScalarTargetTransformImpl {
- public:
- explicit X86ScalarTargetTransformImpl(const TargetLowering *TL) :
- ScalarTargetTransformImpl(TL) {};
-
- virtual PopcntHwSupport getPopcntHwSupport(unsigned TyWidth) const;
- };
-
class X86VectorTargetTransformInfo : public VectorTargetTransformImpl {
public:
explicit X86VectorTargetTransformInfo(const TargetLowering *TL) :
diff --git a/lib/Target/X86/X86TargetMachine.h b/lib/Target/X86/X86TargetMachine.h
index 792f721e76..a3de042c9b 100644
--- a/lib/Target/X86/X86TargetMachine.h
+++ b/lib/Target/X86/X86TargetMachine.h
@@ -118,7 +118,7 @@ class X86_64TargetMachine : public X86TargetMachine {
X86SelectionDAGInfo TSInfo;
X86TargetLowering TLInfo;
X86JITInfo JITInfo;
- X86ScalarTargetTransformImpl STTI;
+ ScalarTargetTransformImpl STTI;
X86VectorTargetTransformInfo VTTI;
public:
X86_64TargetMachine(const Target &T, StringRef TT,
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index 8f929941d5..eb43a459e3 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -56,7 +56,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -64,83 +63,16 @@ STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
namespace {
-
- class LoopIdiomRecognize;
-
- /// This class defines some utility functions for loop idiom recognization.
- class LIRUtil {
- public:
- /// Return true iff the block contains nothing but an uncondition branch
- /// (aka goto instruction).
- static bool isAlmostEmpty(BasicBlock *);
-
- static BranchInst *getBranch(BasicBlock *BB) {
- return dyn_cast<BranchInst>(BB->getTerminator());
- }
-
- /// Return the condition of the branch terminating the given basic block.
- static Value *getBrCondtion(BasicBlock *);
-
- /// Derive the precondition block (i.e the block that guards the loop
- /// preheader) from the given preheader.
- static BasicBlock *getPrecondBb(BasicBlock *PreHead);
- };
-
- /// This class is to recoginize idioms of population-count conducted in
- /// a noncountable loop. Currently it only recognizes this pattern:
- /// \code
- /// while(x) {cnt++; ...; x &= x - 1; ...}
- /// \endcode
- class NclPopcountRecognize {
- LoopIdiomRecognize &LIR;
- Loop *CurLoop;
- BasicBlock *PreCondBB;
-
- typedef IRBuilder<> IRBuilderTy;
-
- public:
- explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
- bool recognize();
-
- private:
- /// Take a glimpse of the loop to see if we need to go ahead recoginizing
- /// the idiom.
- bool preliminaryScreen();
-
- /// Check if the given conditional branch is based on the comparison
- /// beween a variable and zero, and if the variable is non-zero, the
- /// control yeilds to the loop entry. If the branch matches the behavior,
- /// the variable involved in the comparion is returned. This function will
- /// be called to see if the precondition and postcondition of the loop
- /// are in desirable form.
- Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
-
- /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
- /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
- /// is set to the corresponding phi node. 3) \p Var is set to the value
- /// whose population bits are being counted.
- bool detectIdiom
- (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
-
- /// Insert ctpop intrinsic function and some obviously dead instructions.
- void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
-
- /// Create llvm.ctpop.* intrinsic function.
- CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
- };
-
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
const DataLayout *TD;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
- const ScalarTargetTransformInfo *STTI;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
- TD = 0; DT = 0; SE = 0; TLI = 0; STTI = 0;
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -178,36 +110,6 @@ namespace {
AU.addRequired<DominatorTree>();
AU.addRequired<TargetLibraryInfo>();
}
-
- const DataLayout *getDataLayout() {
- return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
- }
-
- DominatorTree *getDominatorTree() {
- return DT ? DT : (DT=&getAnalysis<DominatorTree>());
- }
-
- ScalarEvolution *getScalarEvolution() {
- return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
- }
-
- TargetLibraryInfo *getTargetLibraryInfo() {
- return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
- }
-
- const ScalarTargetTransformInfo *getScalarTargetTransformInfo() {
- if (!STTI) {
- TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>();
- if (TTI) STTI = TTI->getScalarTargetTransformInfo();
- }
- return STTI;
- }
-
- Loop *getLoop() const { return CurLoop; }
-
- private:
- bool runOnNoncountableLoop();
- bool runOnCountableLoop();
};
}
@@ -270,390 +172,24 @@ static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
deleteDeadInstruction(I, SE, TLI);
}
-//===----------------------------------------------------------------------===//
-//
-// Implementation of LIRUtil
-//
-//===----------------------------------------------------------------------===//
-
-// This fucntion will return true iff the given block contains nothing but goto.
-// A typical usage of this function is to check if the preheader fucntion is
-// "almost" empty such that generated intrinsic function can be moved across
-// preheader and to be placed at the end of the preconditiona block without
-// concerning of breaking data dependence.
-bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
- if (BranchInst *Br = getBranch(BB)) {
- return Br->isUnconditional() && BB->size() == 1;
- }
- return false;
-}
-
-Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
- BranchInst *Br = getBranch(BB);
- return Br ? Br->getCondition() : 0;
-}
-
-BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
- if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
- BranchInst *Br = getBranch(BB);
- return Br && Br->isConditional() ? BB : 0;
- }
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-//
-// Implementation of NclPopcountRecognize
-//
-//===----------------------------------------------------------------------===//
-
-NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
- LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
-}
-
-bool NclPopcountRecognize::preliminaryScreen() {
- const ScalarTargetTransformInfo *STTI = LIR.getScalarTargetTransformInfo();
- if (STTI->getPopcntHwSupport(32) != ScalarTargetTransformInfo::Fast)
- return false;
-
- // Counting population are usually conducted by few arithmetic instrutions.
- // Such instructions can be easilly "absorbed" by vacant slots in a
- // non-compact loop. Therefore, recognizing popcount idiom only makes sense
- // in a compact loop.
-
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
-
- BasicBlock *LoopBody = *(CurLoop->block_begin());
- if (LoopBody->size() >= 20) {
- // The loop is too big, bail out.
- return false;
- }
-
- // It should have a preheader containing nothing but a goto instruction.
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
- return false;
-
- // It should have a precondition block where the generated popcount instrinsic
- // function will be inserted.
- PreCondBB = LIRUtil::getPrecondBb(PreHead);
- if (!PreCondBB)
- return false;
-
- return true;
-}
-
-Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
- BasicBlock *LoopEntry) const {
- if (!Br || !Br->isConditional())
- return 0;
-
- ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
- if (!Cond)
- return 0;
-
- ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
- if (!CmpZero || !CmpZero->isZero())
- return 0;
-
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
- (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
- return Cond->getOperand(0);
-
- return 0;
-}
-
-bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
- PHINode *&CntPhi,
- Value *&Var) const {
- // Following code tries to detect this idiom:
- //
- // if (x0 != 0)
- // goto loop-exit // the precondition of the loop
- // cnt0 = init-val;
- // do {
- // x1 = phi (x0, x2);
- // cnt1 = phi(cnt0, cnt2);
- //
- // cnt2 = cnt1 + 1;
- // ...
- // x2 = x1 & (x1 - 1);
- // ...
- // } while(x != 0);
- //
- // loop-exit:
- //
-
- // step 1: Check to see if the look-back branch match this pattern:
- // "if (a!=0) goto loop-entry".
- BasicBlock *LoopEntry;
- Instruction *DefX2, *CountInst;
- Value *VarX1, *VarX0;
- PHINode *PhiX, *CountPhi;
-
- DefX2 = CountInst = 0;
- VarX1 = VarX0 = 0;
- PhiX = CountPhi = 0;
- LoopEntry = *(CurLoop->block_begin());
-
- // step 1: Check if the loop-back branch is in desirable form.
- {
- if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
- DefX2 = dyn_cast<Instruction>(T);
- else
- return false;
- }
-
- // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
- {
- if (DefX2->getOpcode() != Instruction::And)
- return false;
-
- BinaryOperator *SubOneOp;
-
- if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
- VarX1 = DefX2->getOperand(1);
- else {
- VarX1 = DefX2->getOperand(0);
- SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
- }
- if (!SubOneOp)
- return false;
-
- Instruction *SubInst = cast<Instruction>(SubOneOp);
- ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
- if (!Dec ||
- !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
- (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
- return false;
- }
- }
-
- // step 3: Check the recurrence of variable X
- {
- PhiX = dyn_cast<PHINode>(VarX1);
- if (!PhiX ||
- (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
- return false;
- }
- }
-
- // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
- {
- CountInst = NULL;
- for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
- IterE = LoopEntry->end(); Iter != IterE; Iter++) {
- Instruction *Inst = Iter;
- if (Inst->getOpcode() != Instruction::Add)
- continue;
-
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
- if (!Inc || !Inc->isOne())
- continue;
-
- PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
- if (!Phi || Phi->getParent() != LoopEntry)
- continue;
-
- // Check if the result of the instruction is live of the loop.
- bool LiveOutLoop = false;
- for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
- I != E; I++) {
- if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
- LiveOutLoop = true; break;
- }
- }
-
- if (LiveOutLoop) {
- CountInst = Inst;
- CountPhi = Phi;
- break;
- }
- }
-
- if (!CountInst)
- return false;
- }
-
- // step 5: check if the precondition is in this form:
- // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
- {
- BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
- Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
- if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
- return false;
-
- CntInst = CountInst;
- CntPhi = CountPhi;
- Var = T;
- }
-
- return true;
-}
-
-void NclPopcountRecognize::transform(Instruction *CntInst,
- PHINode *CntPhi, Value *Var) {
-
- ScalarEvolution *SE = LIR.getScalarEvolution();
- TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
- const DebugLoc DL = CntInst->getDebugLoc();
-
- // Assuming before transformation, the loop is following:
- // if (x) // the precondition
- // do { cnt++; x &= x - 1; } while(x);
-
- // Step 1: Insert the ctpop instruction at the end of the precondition block
- IRBuilderTy Builder(PreCondBr);
- Value *PopCnt, *PopCntZext, *NewCount;
- {
- PopCnt = createPopcntIntrinsic(Builder, Var, DL);
- NewCount = PopCntZext =
- Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
-
- if (NewCount != PopCnt)
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
-
- // If the popoulation counter's initial value is not zero, insert Add Inst.
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero()) {
- NewCount = Builder.CreateAdd(PopCnt, InitConst);
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- }
- }
-
- // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
- // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
- // function would be partial dead code, and downstream passes will drag
- // it back from the precondition block to the preheader.
- {
- ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
-
- Value *Opnd0 = PopCntZext;
- Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
- if (PreCond->getOperand(0) != Var)
- std::swap(Opnd0, Opnd1);
-
- ICmpInst *NewPreCond =
- cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
- PreCond->replaceAllUsesWith(NewPreCond);
-
- deleteDeadInstruction(PreCond, *SE, TLI);
- }
-
- // Step 3: Note that the population count is exactly the trip count of the
- // loop in question, which enble us to to convert the loop from noncountable
- // loop into a countable one. The benefit is twofold:
- //
- // - If the loop only counts population, the entire loop become dead after
- // the transformation. It is lots easier to prove a countable loop dead
- // than to prove a noncountable one. (In some C dialects, a infite loop
- // isn't dead even if it computes nothing useful. In general, DCE needs
- // to prove a noncountable loop finite before safely delete it.)
- //
- // - If the loop also performs something else, it remains alive.
- // Since it is transformed to countable form, it can be aggressively
- // optimized by some optimizations which are in general not applicable
- // to a noncountable loop.
- //
- // After this step, this loop (conceptually) would look like following:
- // newcnt = __builtin_ctpop(x);
- // t = newcnt;
- // if (x)
- // do { cnt++; x &= x-1; t--) } while (t > 0);
- BasicBlock *Body = *(CurLoop->block_begin());
- {
- BranchInst *LbBr = LIRUtil::getBranch(Body);
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- Type *Ty = NewCount->getType();
-
- PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
-
- Builder.SetInsertPoint(LbCond);
- Value *Opnd1 = cast<Value>(TcPhi);
- Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
- Instruction *TcDec =
- cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
-
- TcPhi->addIncoming(NewCount, PreHead);
- TcPhi->addIncoming(TcDec, Body);
-
- CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
- CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
- }
-
- // Step 4: All the references to the original population counter outside
- // the loop are replaced with the NewCount -- the value returned from
- // __builtin_ctpop().
- {
- SmallVector<Value *, 4> CntUses;
- for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
- I != E; I++) {
- if (cast<Instruction>(*I)->getParent() != Body)
- CntUses.push_back(*I);
- }
- for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
- (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
- }
- }
-
- // step 5: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
-}
-
-CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
- Value *Val, DebugLoc DL) {
- Value *Ops[] = { Val };
- Type *Tys[] = { Val->getType() };
-
- Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
- Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
-
- return CI;
-}
-
-/// recognize - detect population count idiom in a non-countable loop. If
-/// detected, transform the relevant code to popcount intrinsic function
-/// call, and return true; otherwise, return false.
-bool NclPopcountRecognize::recognize() {
+bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
+ CurLoop = L;
- if (!LIR.getScalarTargetTransformInfo())
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (!L->getLoopPreheader())
return false;
- LIR.getScalarEvolution();
-
- if (!preliminaryScreen())
+ // Disable loop idiom recognition if the function's name is a common idiom.
+ StringRef Name = L->getHeader()->getParent()->getName();
+ if (Name == "memset" || Name == "memcpy")
return false;
- Instruction *CntInst;
- PHINode *CntPhi;
- Value *Val;
- if (!detectIdiom(CntInst, CntPhi, Val))
+ // The trip count of the loop must be analyzable.
+ SE = &getAnalysis<ScalarEvolution>();
+ if (!SE->hasLoopInvariantBackedgeTakenCount(L))
return false;
-
- transform(CntInst, CntPhi, Val);
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-//
-// Implementation of LoopIdiomRecognize
-//
-//===----------------------------------------------------------------------===//
-
-bool LoopIdiomRecognize::runOnCountableLoop() {
- const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
+ const SCEV *BECount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// If this loop executes exactly one time, then it should be peeled, not
@@ -663,27 +199,24 @@ bool LoopIdiomRecognize::runOnCountableLoop() {
return false;
// We require target data for now.
- if (!getDataLayout())
- return false;
-
- getDominatorTree();
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (TD == 0) return false;
+ DT = &getAnalysis<DominatorTree>();
LoopInfo &LI = getAnalysis<LoopInfo>();
TLI = &getAnalysis<TargetLibraryInfo>();
- getTargetLibraryInfo();
-
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
- << CurLoop->getHeader()->getParent()->getName()
- << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
+ << L->getHeader()->getParent()->getName()
+ << "] Loop %" << L->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
- for (Loop::block_iterator BI = CurLoop->block_begin(),
- E = CurLoop->block_end(); BI != E; ++BI) {
+ for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
+ ++BI) {
// Ignore blocks in subloops.
if (LI.getLoopFor(*BI) != CurLoop)
continue;
@@ -693,33 +226,6 @@ bool LoopIdiomRecognize::runOnCountableLoop() {
return MadeChange;
}
-bool LoopIdiomRecognize::runOnNoncountableLoop() {
- NclPopcountRecognize Popcount(*this);
- if (Popcount.recognize())
- return true;
-
- return false;
-}
-
-bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
- CurLoop = L;
-
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!L->getLoopPreheader())
- return false;
-
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
- return false;
-
- SE = &getAnalysis<ScalarEvolution>();
- if (SE->hasLoopInvariantBackedgeTakenCount(L))
- return runOnCountableLoop();
- return runOnNoncountableLoop();
-}
-
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count. This block is known to be in the current
/// loop and not in any subloops.
diff --git a/test/Transforms/LoopIdiom/X86/lit.local.cfg b/test/Transforms/LoopIdiom/X86/lit.local.cfg
deleted file mode 100644
index a8ad0f1a28..0000000000
--- a/test/Transforms/LoopIdiom/X86/lit.local.cfg
+++ /dev/null
@@ -1,6 +0,0 @@
-config.suffixes = ['.ll', '.c', '.cpp']
-
-targets = set(config.root.targets_to_build.split())
-if not 'X86' in targets:
- config.unsupported = True
-
diff --git a/test/Transforms/LoopIdiom/X86/popcnt.ll b/test/Transforms/LoopIdiom/X86/popcnt.ll
deleted file mode 100644
index 039af8024d..0000000000
--- a/test/Transforms/LoopIdiom/X86/popcnt.ll
+++ /dev/null
@@ -1,76 +0,0 @@
-; RUN: opt -loop-idiom < %s -mtriple=x86_64-apple-darwin -mcpu=corei7 -S | FileCheck %s
-
-;To recognize this pattern:
-;int popcount(unsigned long long a) {
-; int c = 0;
-; while (a) {
-; c++;
-; a &= a - 1;
-; }
-; return c;
-;}
-;
-; CHECK: entry
-; CHECK: llvm.ctpop.i64
-; CHECK: ret
-define i32 @popcount(i64 %a) nounwind uwtable readnone ssp {
-entry:
- %tobool3 = icmp eq i64 %a, 0
- br i1 %tobool3, label %while.end, label %while.body
-
-while.body: ; preds = %entry, %while.body
- %c.05 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
- %a.addr.04 = phi i64 [ %and, %while.body ], [ %a, %entry ]
- %inc = add nsw i32 %c.05, 1
- %sub = add i64 %a.addr.04, -1
- %and = and i64 %sub, %a.addr.04
- %tobool = icmp eq i64 %and, 0
- br i1 %tobool, label %while.end, label %while.body
-
-while.end: ; preds = %while.body, %entry
- %c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
- ret i32 %c.0.lcssa
-}
-
-; To recognize this pattern:
-;int popcount(unsigned long long a, int mydata1, int mydata2) {
-; int c = 0;
-; while (a) {
-; c++;
-; a &= a - 1;
-; mydata1 *= c;
-; mydata2 *= (int)a;
-; }
-; return c + mydata1 + mydata2;
-;}
-; CHECK: entry
-; CHECK: llvm.ctpop.i64
-; CHECK: ret
-define i32 @popcount2(i64 %a, i32 %mydata1, i32 %mydata2) nounwind uwtable readnone ssp {
-entry:
- %tobool9 = icmp eq i64 %a, 0
- br i1 %tobool9, label %while.end, label %while.body
-
-while.body: ; preds = %entry, %while.body
- %c.013 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
- %mydata2.addr.012 = phi i32 [ %mul1, %while.body ], [ %mydata2, %entry ]
- %mydata1.addr.011 = phi i32 [ %mul, %while.body ], [ %mydata1, %entry ]
- %a.addr.010 = phi i64 [ %and, %while.body ], [ %a, %entry ]
- %inc = add nsw i32 %c.013, 1
- %sub = add i64 %a.addr.010, -1
- %and = and i64 %sub, %a.addr.010
- %mul = mul nsw i32 %inc, %mydata1.addr.011
- %conv = trunc i64 %and to i32
- %mul1 = mul nsw i32 %conv, %mydata2.addr.012
- %tobool = icmp eq i64 %and, 0
- br i1 %tobool, label %while.end, label %while.body
-
-while.end: ; preds = %while.body, %entry
- %c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
- %mydata2.addr.0.lcssa = phi i32 [ %mydata2, %entry ], [ %mul1, %while.body ]
- %mydata1.addr.0.lcssa = phi i32 [ %mydata1, %entry ], [ %mul, %while.body ]
- %add = add i32 %mydata2.addr.0.lcssa, %mydata1.addr.0.lcssa
- %add2 = add i32 %add, %c.0.lcssa
- ret i32 %add2
-}
-