summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--docs/YamlIO.rst862
-rw-r--r--docs/userguides.rst5
-rw-r--r--include/llvm/Support/YAMLTraits.h1114
-rw-r--r--lib/Support/CMakeLists.txt1
-rw-r--r--lib/Support/YAMLTraits.cpp881
-rw-r--r--unittests/Support/CMakeLists.txt1
-rw-r--r--unittests/Support/YAMLIOTest.cpp1288
7 files changed, 4152 insertions, 0 deletions
diff --git a/docs/YamlIO.rst b/docs/YamlIO.rst
new file mode 100644
index 0000000000..b009b67ef4
--- /dev/null
+++ b/docs/YamlIO.rst
@@ -0,0 +1,862 @@
+.. _yamlio:
+
+=====================
+YAML I/O
+=====================
+
+.. contents::
+ :local:
+
+Introduction to YAML
+====================
+
+YAML is a human readable data serialization language. The full YAML language
+spec can be read at `yaml.org
+<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of
+yaml is just "scalars", "mappings", and "sequences". A scalar is any number
+or string. The pound/hash symbol (#) begins a comment line. A mapping is
+a set of key-value pairs where the key ends with a colon. For example:
+
+.. code-block:: yaml
+
+ # a mapping
+ name: Tom
+ hat-size: 7
+
+A sequence is a list of items where each item starts with a leading dash ('-').
+For example:
+
+.. code-block:: yaml
+
+ # a sequence
+ - x86
+ - x86_64
+ - PowerPC
+
+You can combine mappings and sequences by indenting. For example a sequence
+of mappings in which one of the mapping values is itself a sequence:
+
+.. code-block:: yaml
+
+ # a sequence of mappings with one key's value being a sequence
+ - name: Tom
+ cpus:
+ - x86
+ - x86_64
+ - name: Bob
+ cpus:
+ - x86
+ - name: Dan
+ cpus:
+ - PowerPC
+ - x86
+
+Sometime sequences are known to be short and the one entry per line is too
+verbose, so YAML offers an alternate syntax for sequences called a "Flow
+Sequence" in which you put comma separated sequence elements into square
+brackets. The above example could then be simplified to :
+
+
+.. code-block:: yaml
+
+ # a sequence of mappings with one key's value being a flow sequence
+ - name: Tom
+ cpus: [ x86, x86_64 ]
+ - name: Bob
+ cpus: [ x86 ]
+ - name: Dan
+ cpus: [ PowerPC, x86 ]
+
+
+Introduction to YAML I/O
+========================
+
+The use of indenting makes the YAML easy for a human to read and understand,
+but having a program read and write YAML involves a lot of tedious details.
+The YAML I/O library structures and simplifies reading and writing YAML
+documents.
+
+YAML I/O assumes you have some "native" data structures which you want to be
+able to dump as YAML and recreate from YAML. The first step is to try
+writing example YAML for your data structures. You may find after looking at
+possible YAML representations that a direct mapping of your data structures
+to YAML is not very readable. Often the fields are not in the order that
+a human would find readable. Or the same information is replicated in multiple
+locations, making it hard for a human to write such YAML correctly.
+
+In relational database theory there is a design step called normalization in
+which you reorganize fields and tables. The same considerations need to
+go into the design of your YAML encoding. But, you may not want to change
+your exisiting native data structures. Therefore, when writing out YAML
+there may be a normalization step, and when reading YAML there would be a
+corresponding denormalization step.
+
+YAML I/O uses a non-invasive, traits based design. YAML I/O defines some
+abstract base templates. You specialize those templates on your data types.
+For instance, if you have an eumerated type FooBar you could specialize
+ScalarEnumerationTraits on that type and define the enumeration() method:
+
+.. code-block:: c++
+
+ using llvm::yaml::ScalarEnumerationTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct ScalarEnumerationTraits<FooBar> {
+ static void enumeration(IO &io, FooBar &value) {
+ ...
+ }
+ };
+
+
+As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
+both reading and writing YAML. That is, the mapping between in-memory enum
+values and the YAML string representation is only in place.
+This assures that the code for writing and parsing of YAML stays in sync.
+
+To specify a YAML mappings, you define a specialization on
+llvm::yaml::MapppingTraits.
+If your native data structure happens to be a struct that is already normalized,
+then the specialization is simple. For example:
+
+.. code-block:: c++
+
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct MapppingTraits<Person> {
+ static void mapping(IO &io, Person &info) {
+ io.mapRequired("name", info.name);
+ io.mapOptional("hat-size", info.hatSize);
+ }
+ };
+
+
+A YAML sequence is automatically infered if you data type has begin()/end()
+iterators and a push_back() method. Therefore any of the STL containers
+(such as std::vector<>) will automatically translate to YAML sequences.
+
+Once you have defined specializations for your data types, you can
+programmatically use YAML I/O to write a YAML document:
+
+.. code-block:: c++
+
+ using llvm::yaml::Output;
+
+ Person tom;
+ tom.name = "Tom";
+ tom.hatSize = 8;
+ Person dan;
+ dan.name = "Dan";
+ dan.hatSize = 7;
+ std::vector<Person> persons;
+ persons.push_back(tom);
+ persons.push_back(dan);
+
+ Output yout(llvm::outs());
+ yout << persons;
+
+This would write the following:
+
+.. code-block:: yaml
+
+ - name: Tom
+ hat-size: 8
+ - name: Dan
+ hat-size: 7
+
+And you can also read such YAML documents with the following code:
+
+.. code-block:: c++
+
+ using llvm::yaml::Input;
+
+ typedef std::vector<Person> PersonList;
+ std::vector<PersonList> docs;
+
+ Input yin(document.getBuffer());
+ yin >> docs;
+
+ if ( yin.error() )
+ return;
+
+ // Process read document
+ for ( PersonList &pl : docs ) {
+ for ( Person &person : pl ) {
+ cout << "name=" << person.name;
+ }
+ }
+
+One other feature of YAML is the ability to define multiple documents in a
+single file. That is why reading YAML produces a vector of your document type.
+
+
+
+Error Handling
+==============
+
+When parsing a YAML document, if the input does not match your schema (as
+expressed in your XxxTraits<> specializations). YAML I/O
+will print out an error message and your Input object's error() method will
+return true. For instance the following document:
+
+.. code-block:: yaml
+
+ - name: Tom
+ shoe-size: 12
+ - name: Dan
+ hat-size: 7
+
+Has a key (shoe-size) that is not defined in the schema. YAML I/O will
+automatically generate this error:
+
+.. code-block:: yaml
+
+ YAML:2:2: error: unknown key 'shoe-size'
+ shoe-size: 12
+ ^~~~~~~~~
+
+Similar errors are produced for other input not conforming to the schema.
+
+
+Scalars
+=======
+
+YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O
+library provides support for translating between YAML scalars and specific
+C++ types.
+
+
+Built-in types
+--------------
+The following types have built-in support in YAML I/O:
+
+* bool
+* float
+* double
+* StringRef
+* int64_t
+* int32_t
+* int16_t
+* int8_t
+* uint64_t
+* uint32_t
+* uint16_t
+* uint8_t
+
+That is, you can use those types in fields of MapppingTraits or as element type
+in sequence. When reading, YAML I/O will validate that the string found
+is convertible to that type and error out if not.
+
+
+Unique types
+------------
+Given that YAML I/O is trait based, the selection of how to convert your data
+to YAML is based on the type of your data. But in C++ type matching, typedefs
+do not generate unique type names. That means if you have two typedefs of
+unsigned int, to YAML I/O both types look exactly like unsigned int. To
+facilitate make unique type names, YAML I/O provides a macro which is used
+like a typedef on built-in types, but expands to create a class with conversion
+operators to and from the base type. For example:
+
+.. code-block:: c++
+
+ LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
+ LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
+
+This generates two classes MyFooFlags and MyBarFlags which you can use in your
+native data structures instead of uint32_t. They are implicitly
+converted to and from uint32_t. The point of creating these unique types
+is that you can now specify traits on them to get different YAML conversions.
+
+Hex types
+---------
+An example use of a unique type is that YAML I/O provides fixed sized unsigned
+integers that are written with YAML I/O as hexadecimal instead of the decimal
+format used by the built-in integer types:
+
+* Hex64
+* Hex32
+* Hex16
+* Hex8
+
+You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
+be that when YAML I/O writes out that type it will be formatted in hexadecimal.
+
+
+ScalarEnumerationTraits
+-----------------------
+YAML I/O supports translating between in-memory enumerations and a set of string
+values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
+on your enumeration type and define a enumeration() method.
+For instance, suppose you had an enumeration of CPUs and a struct with it as
+a field:
+
+.. code-block:: c++
+
+ enum CPUs {
+ cpu_x86_64 = 5,
+ cpu_x86 = 7,
+ cpu_PowerPC = 8
+ };
+
+ struct Info {
+ CPUs cpu;
+ uint32_t flags;
+ };
+
+To support reading and writing of this enumeration, you can define a
+ScalarEnumerationTraits specialization on CPUs, which can then be used
+as a field type:
+
+.. code-block:: c++
+
+ using llvm::yaml::ScalarEnumerationTraits;
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct ScalarEnumerationTraits<CPUs> {
+ static void enumeration(IO &io, CPUs &value) {
+ io.enumCase(value, "x86_64", cpu_x86_64);
+ io.enumCase(value, "x86", cpu_x86);
+ io.enumCase(value, "PowerPC", cpu_PowerPC);
+ }
+ };
+
+ template <>
+ struct MapppingTraits<Info> {
+ static void mapping(IO &io, Info &info) {
+ io.mapRequired("cpu", info.cpu);
+ io.mapOptional("flags", info.flags, 0);
+ }
+ };
+
+When reading YAML, if the string found does not match any of the the strings
+specified by enumCase() methods, an error is automatically generated.
+When writing YAML, if the value being written does not match any of the values
+specified by the enumCase() methods, a runtime assertion is triggered.
+
+
+BitValue
+--------
+Another common data structure in C++ is a field where each bit has a unique
+meaning. This is often used in a "flags" field. YAML I/O has support for
+converting such fields to a flow sequence. For instance suppose you
+had the following bit flags defined:
+
+.. code-block:: c++
+
+ enum {
+ flagsPointy = 1
+ flagsHollow = 2
+ flagsFlat = 4
+ flagsRound = 8
+ };
+
+ LLVM_YAML_UNIQUE_TYPE(MyFlags, uint32_t)
+
+To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
+on MyFlags and provide the bit values and their names.
+
+.. code-block:: c++
+
+ using llvm::yaml::ScalarBitSetTraits;
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct ScalarBitSetTraits<MyFlags> {
+ static void bitset(IO &io, MyFlags &value) {
+ io.bitSetCase(value, "hollow", flagHollow);
+ io.bitSetCase(value, "flat", flagFlat);
+ io.bitSetCase(value, "round", flagRound);
+ io.bitSetCase(value, "pointy", flagPointy);
+ }
+ };
+
+ struct Info {
+ StringRef name;
+ MyFlags flags;
+ };
+
+ template <>
+ struct MapppingTraits<Info> {
+ static void mapping(IO &io, Info& info) {
+ io.mapRequired("name", info.name);
+ io.mapRequired("flags", info.flags);
+ }
+ };
+
+With the above, YAML I/O (when writing) will test mask each value in the
+bitset trait against the flags field, and each that matches will
+cause the corresponding string to be added to the flow sequence. The opposite
+is done when reading and any unknown string values will result in a error. With
+the above schema, a same valid YAML document is:
+
+.. code-block:: yaml
+
+ name: Tom
+ flags: [ pointy, flat ]
+
+
+Custom Scalar
+-------------
+Sometimes for readability a scalar needs to be formatted in a custom way. For
+instance your internal data structure may use a integer for time (seconds since
+some epoch), but in YAML it would be much nicer to express that integer in
+some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support
+custom formatting and parsing of scalar types by specializing ScalarTraits<> on
+your data type. When writing, YAML I/O will provide the native type and
+your specialization must create a temporary llvm::StringRef. When reading,
+YAML I/O will provide a llvm::StringRef of scalar and your specialization
+must convert that to your native data type. An outline of a custom scalar type
+looks like:
+
+.. code-block:: c++
+
+ using llvm::yaml::ScalarTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct ScalarTraits<MyCustomType> {
+ static void output(const T &value, llvm::raw_ostream &out) {
+ out << value; // do custom formatting here
+ }
+ static StringRef input(StringRef scalar, T &value) {
+ // do custom parsing here. Return the empty string on success,
+ // or an error message on failure.
+ return StringRef();
+ }
+ };
+
+
+Mappings
+========
+
+To be translated to or from a YAML mapping for your type T you must specialize
+llvm::yaml::MapppingTraits on T and implement the "void mapping(IO &io, T&)"
+method. If your native data structures use pointers to a class everywhere,
+you can specialize on the class pointer. Examples:
+
+.. code-block:: c++
+
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ // Example of struct Foo which is used by value
+ template <>
+ struct MapppingTraits<Foo> {
+ static void mapping(IO &io, Foo &foo) {
+ io.mapOptional("size", foo.size);
+ ...
+ }
+ };
+
+ // Example of struct Bar which is natively always a pointer
+ template <>
+ struct MapppingTraits<Bar*> {
+ static void mapping(IO &io, Bar *&bar) {
+ io.mapOptional("size", bar->size);
+ ...
+ }
+ };
+
+
+No Normalization
+----------------
+
+The mapping() method is responsible, if needed, for normalizing and
+denormalizing. In a simple case where the native data structure requires no
+normalization, the mapping method just uses mapOptional() or mapRequired() to
+bind the struct's fields to YAML key names. For example:
+
+.. code-block:: c++
+
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct MapppingTraits<Person> {
+ static void mapping(IO &io, Person &info) {
+ io.mapRequired("name", info.name);
+ io.mapOptional("hat-size", info.hatSize);
+ }
+ };
+
+
+Normalization
+----------------
+
+When [de]normalization is required, the mapping() method needs a way to access
+normalized values as fields. To help with this, there is
+a template MappingNormalization<> which you can then use to automatically
+do the normalization and denormalization. The template is used to create
+a local variable in your mapping() method which contains the normalized keys.
+
+Suppose you have native data type
+Polar which specifies a position in polar coordinates (distance, angle):
+
+.. code-block:: c++
+
+ struct Polar {
+ float distance;
+ float angle;
+ };
+
+but you've decided the normalized YAML for should be in x,y coordinates. That
+is, you want the yaml to look like:
+
+.. code-block:: yaml
+
+ x: 10.3
+ y: -4.7
+
+You can support this by defining a MapppingTraits that normalizes the polar
+coordinates to x,y coordinates when writing YAML and denormalizes x,y
+coordindates into polar when reading YAML.
+
+.. code-block:: c++
+
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ template <>
+ struct MapppingTraits<Polar> {
+
+ class NormalizedPolar {
+ public:
+ NormalizedPolar(IO &io)
+ : x(0.0), y(0.0) {
+ }
+ NormalizedPolar(IO &, Polar &polar)
+ : x(polar.distance * cos(polar.angle)),
+ y(polar.distance * sin(polar.angle)) {
+ }
+ Polar denormalize(IO &) {
+ return Polar(sqrt(x*x+y*y, arctan(x,y));
+ }
+
+ float x;
+ float y;
+ };
+
+ static void mapping(IO &io, Polar &polar) {
+ MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
+
+ io.mapRequired("x", keys->x);
+ io.mapRequired("y", keys->y);
+ }
+ };
+
+When writing YAML, the local variable "keys" will be a stack allocated
+instance of NormalizedPolar, constructed from the suppled polar object which
+initializes it x and y fields. The mapRequired() methods then write out the x
+and y values as key/value pairs.
+
+When reading YAML, the local variable "keys" will be a stack allocated instance
+of NormalizedPolar, constructed by the empty constructor. The mapRequired
+methods will find the matching key in the YAML document and fill in the x and y
+fields of the NormalizedPolar object keys. At the end of the mapping() method
+when the local keys variable goes out of scope, the denormalize() method will
+automatically be called to convert the read values back to polar coordinates,
+and then assigned back to the second parameter to mapping().
+
+In some cases, the normalized class may be a subclass of the native type and
+could be returned by the denormalize() method, except that the temporary
+normalized instance is stack allocated. In these cases, the utility template
+MappingNormalizationHeap<> can be used instead. It just like
+MappingNormalization<> except that it heap allocates the normalized object
+when reading YAML. It never destroyes the normalized object. The denormalize()
+method can this return "this".
+
+
+Default values
+--------------
+Within a mapping() method, calls to io.mapRequired() mean that that key is
+required to exist when parsing YAML documents, otherwise YAML I/O will issue an
+error.
+
+On the other hand, keys registered with io.mapOptional() are allowed to not
+exist in the YAML document being read. So what value is put in the field
+for those optional keys?
+There are two steps to how those optional fields are filled in. First, the
+second parameter to the mapping() method is a reference to a native class. That
+native class must have a default constructor. Whatever value the default
+constructor initially sets for an optional field will be that field's value.
+Second, the mapOptional() method has an optional third parameter. If provided
+it is the value that mapOptional() should set that field to if the YAML document
+does not have that key.
+
+There is one important difference between those two ways (default constructor
+and third parameter to mapOptional). When YAML I/O generates a YAML document,
+if the mapOptional() third parameter is used, if the actual value being written
+is the same as (using ==) the default value, then that key/value is not written.
+
+
+Order of Keys
+--------------
+
+When writing out a YAML document, the keys are written in the order that the
+calls to mapRequired()/mapOptional() are made in the mapping() method. This
+gives you a chance to write the fields in an order that a human reader of
+the YAML document would find natural. This may be different that the order
+of the fields in the native class.
+
+When reading in a YAML document, the keys in the document can be in any order,
+but they are processed in the order that the calls to mapRequired()/mapOptional()
+are made in the mapping() method. That enables some interesting
+functionality. For instance, if the first field bound is the cpu and the second
+field bound is flags, and the flags are cpu specific, you can programmatically
+switch how the flags are converted to and from YAML based on the cpu.
+This works for both reading and writing. For example:
+
+.. code-block:: c++
+
+ using llvm::yaml::MapppingTraits;
+ using llvm::yaml::IO;
+
+ struct Info {
+ CPUs cpu;
+ uint32_t flags;
+ };
+
+ template <>
+ struct MapppingTraits<Info> {
+ static void mapping(IO &io, Info &info) {
+ io.mapRequired("cpu", info.cpu);
+ // flags must come after cpu for this to work when reading yaml
+ if ( info.cpu == cpu_x86_64 )
+ io.mapRequired("flags", *(My86_64Flags*)info.flags);
+ else
+ io.mapRequired("flags", *(My86Flags*)info.flags);
+ }
+ };
+
+
+Sequence
+========
+
+To be translated to or from a YAML sequence for your type T you must specialize
+llvm::yaml::SequenceTraits on T and implement two methods:
+“size_t size(IO &io, T&)” and “T::value_type& element(IO &io, T&, size_t indx)”.
+For example:
+
+.. code-block:: c++
+
+ template <>
+ struct SequenceTraits<MySeq> {
+ static size_t size(IO &io, MySeq &list) { ... }
+ static MySeqEl element(IO &io, MySeq &list, size_t index) { ... }
+ };
+
+The size() method returns how many elements are currently in your sequence.
+The element() method returns a reference to the i'th element in the sequence.
+When parsing YAML, the element() method may be called with an index one bigger
+than the current size. Your element() method should allocate space for one
+more element (using default constructor if element is a C++ object) and returns
+a reference to that new allocated space.
+
+
+Flow Sequence
+-------------
+A YAML "flow sequence" is a sequence that when written to YAML it uses the
+inline notation (e.g [ foo, bar ] ). To specify that a sequence type should
+be written in YAML as a flow sequence, your SequenceTraits specialization should
+add "static const bool flow = true;". For instance:
+
+.. code-block:: c++
+
+ template <>
+ struct SequenceTraits<MyList> {
+ static size_t size(IO &io, MyList &list) { ... }
+ static MyListEl element(IO &io, MyList &list, size_t index) { ... }
+
+ // The existence of this member causes YAML I/O to use a flow sequence
+ static const bool flow = true;
+ };
+
+With the above, if you used MyList as the data type in your native data
+strucutures, then then when converted to YAML, a flow sequence of integers
+will be used (e.g. [ 10, -3, 4 ]).
+
+
+Utility Macros
+--------------
+Since a common source of sequences is std::vector<>, YAML I/O provids macros:
+LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
+can be used to easily specify SequenceTraits<> on a std::vector type. YAML
+I/O does not partial specialize SequenceTraits on std::vector<> because that
+would force all vectors to be sequences. An example use of the macros:
+
+.. code-block:: c++
+
+ std::vector<MyType1>;
+ std::vector<MyType2>;
+ LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
+ LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
+
+
+
+Document List
+=============
+
+YAML allows you to define multiple "documents" in a single YAML file. Each
+new document starts with a left aligned "---" token. The end of all documents
+is denoted with a left aligned "..." token. Many users of YAML will never
+have need for multiple documents. The top level node in their YAML schema
+will be a mapping or sequence. For those cases, the following is not needed.
+But for cases where you do want multiple documents, you can specify a
+trait for you document list type. The trait has the same methods as
+SequenceTraits but is named DocumentListTraits. For example:
+
+.. code-block:: c++
+
+ template <>
+ struct DocumentListTraits<MyDocList> {
+ static size_t size(IO &io, MyDocList &list) { ... }
+ static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
+ };
+
+
+User Context Data
+=================
+When an llvm::yaml::Input or llvm::yaml::Output object is created their
+constructors take an optional "context" parameter. This is a pointer to
+whatever state information you might need.
+
+For instance, in a previous example we showed how the conversion type for a
+flags field could be determined at runtime based on the value of another field
+in the mapping. But what if an inner mapping needs to know some field value
+of an outer mapping? That is where the "context" parameter comes in. You
+can set values in the context in the outer map's mapping() method and
+retrieve those values in the inner map's mapping() method.
+
+The context value is just a void*. All your traits which use the context
+and operate on your native data types, need to agree what the context value
+actually is. It could be a pointer to an object or struct which your various
+traits use to shared context sensitive information.
+
+
+Output
+======
+
+The llvm::yaml::Output class is used to generate a YAML document from your
+in-memory data structures, using traits defined on your data types.
+To instantiate an Output object you need an llvm::raw_ostream, and optionally
+a context pointer:
+
+.. code-block:: c++
+
+ class Output : public IO {
+ public:
+ Output(llvm::raw_ostream &, void *context=NULL);
+
+Once you have an Output object, you can use the C++ stream operator on it
+to write your native data as YAML. One thing to recall is that a YAML file
+can contain multiple "documents". If the top level data structure you are
+streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
+are generating one document and wraps the mapping output
+with "``---``" and trailing "``...``".
+
+.. code-block:: c++
+
+ using llvm::yaml::Output;
+
+ void dumpMyMapDoc(const MyMapType &info) {
+ Output yout(llvm::outs());
+ yout << info;
+ }
+
+The above could produce output like:
+
+.. code-block:: yaml
+
+ ---
+ name: Tom
+ hat-size: 7
+ ...
+
+On the other hand, if the top level data structure you are streaming as YAML
+has a DocumentListTraits specialization, then Output walks through each element
+of your DocumentList and generates a "---" before the start of each element
+and ends with a "...".
+
+.. code-block:: c++
+
+ using llvm::yaml::Output;
+
+ void dumpMyMapDoc(const MyDocListType &docList) {
+ Output yout(llvm::outs());
+ yout << docList;
+ }
+
+The above could produce output like:
+
+.. code-block:: yaml
+
+ ---
+ name: Tom
+ hat-size: 7
+ ---
+ name: Tom
+ shoe-size: 11
+ ...
+
+Input
+=====
+
+The llvm::yaml::Input class is used to parse YAML document(s) into your native
+data structures. To instantiate an Input
+object you need a StringRef to the entire YAML file, and optionally a context
+pointer:
+
+.. code-block:: c++
+
+ class Input : public IO {
+ public:
+ Input(StringRef inputContent, void *context=NULL);
+
+Once you have an Input object, you can use the C++ stream operator to read
+the document(s). If you expect there might be multiple YAML documents in
+one file, you'll need to specialize DocumentListTraits on a list of your
+document type and stream in that document list type. Otherwise you can
+just stream in the document type. Also, you can check if there was
+any syntax errors in the YAML be calling the error() method on the Input
+object. For example:
+
+.. code-block:: c++
+
+ // Reading a single document
+ using llvm::yaml::Input;
+
+ Input yin(mb.getBuffer());
+
+ // Parse the YAML file
+ MyDocType theDoc;
+ yin >> theDoc;
+
+ // Check for error
+ if ( yin.error() )
+ return;
+
+
+.. code-block:: c++
+
+ // Reading multiple documents in one file
+ using llvm::yaml::Input;
+
+ LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
+
+ Input yin(mb.getBuffer());
+
+ // Parse the YAML file
+ std::vector<MyDocType> theDocList;
+ yin >> theDocList;
+
+ // Check for error
+ if ( yin.error() )
+ return;
+
+
diff --git a/docs/userguides.rst b/docs/userguides.rst
index 56eaf0886c..7e4e3b7bc0 100644
--- a/docs/userguides.rst
+++ b/docs/userguides.rst
@@ -24,6 +24,7 @@ User Guides
tutorial/index
ReleaseNotes
Passes
+ YamlIO
* :ref:`getting_started`
@@ -100,6 +101,10 @@ User Guides
Instructions for adding new builder to LLVM buildbot master.
+* :ref:`yamlio`
+
+ A reference guide for using LLVM's YAML I/O library.
+
* **IRC** -- You can probably find help on the unofficial LLVM IRC.
We often are on irc.oftc.net in the #llvm channel. If you are using the
diff --git a/include/llvm/Support/YAMLTraits.h b/include/llvm/Support/YAMLTraits.h
new file mode 100644
index 0000000000..4376165e53
--- /dev/null
+++ b/include/llvm/Support/YAMLTraits.h
@@ -0,0 +1,1114 @@
+//===- llvm/Supporrt/YAMLTraits.h -------------------------------*- C++ -*-===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_YAML_TRAITS_H_
+#define LLVM_YAML_TRAITS_H_
+
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/system_error.h"
+#include "llvm/Support/type_traits.h"
+#include "llvm/Support/YAMLParser.h"
+#include "llvm/Support/raw_ostream.h"
+
+
+namespace llvm {
+namespace yaml {
+
+
+/// This class should be specialized by any type that needs to be converted
+/// to/from a YAML mapping. For example:
+///
+/// struct ScalarBitSetTraits<MyStruct> {
+/// static void mapping(IO &io, MyStruct &s) {
+/// io.mapRequired("name", s.name);
+/// io.mapRequired("size", s.size);
+/// io.mapOptional("age", s.age);
+/// }
+/// };
+template<class T>
+struct MappingTraits {
+ // Must provide:
+ // static void mapping(IO &io, T &fields);
+};
+
+
+/// This class should be specialized by any integral type that converts
+/// to/from a YAML scalar where there is a one-to-one mapping between
+/// in-memory values and a string in YAML. For example:
+///
+/// struct ScalarEnumerationTraits<Colors> {
+/// static void enumeration(IO &io, Colors &value) {
+/// io.enumCase(value, "red", cRed);
+/// io.enumCase(value, "blue", cBlue);
+/// io.enumCase(value, "green", cGreen);
+/// }
+/// };
+template<typename T>
+struct ScalarEnumerationTraits {
+ // Must provide:
+ // static void enumeration(IO &io, T &value);
+};
+
+
+/// This class should be specialized by any integer type that is a union
+/// of bit values and the YAML representation is a flow sequence of
+/// strings. For example:
+///
+/// struct ScalarBitSetTraits<MyFlags> {
+/// static void bitset(IO &io, MyFlags &value) {
+/// io.bitSetCase(value, "big", flagBig);
+/// io.bitSetCase(value, "flat", flagFlat);
+/// io.bitSetCase(value, "round", flagRound);
+/// }
+/// };
+template<typename T>
+struct ScalarBitSetTraits {
+ // Must provide:
+ // static void bitset(IO &io, T &value);
+};
+
+
+/// This class should be specialized by type that requires custom conversion
+/// to/from a yaml scalar. For example:
+///
+/// template<>
+/// struct ScalarTraits<MyType> {
+/// static void output(const MyType &val, void*, llvm::raw_ostream &out) {
+/// // stream out custom formatting
+/// out << llvm::format("%x", val);
+/// }
+/// static StringRef input(StringRef scalar, void*, MyType &value) {
+/// // parse scalar and set `value`
+/// // return empty string on success, or error string
+/// return StringRef();
+/// }
+/// };
+template<typename T>
+struct ScalarTraits {
+ // Must provide:
+ //
+ // Function to write the value as a string:
+ //static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
+ //
+ // Function to convert a string to a value. Returns the empty
+ // StringRef on success or an error string if string is malformed:
+ //static StringRef input(StringRef scalar, void *ctxt, T &value);
+};
+
+
+/// This class should be specialized by any type that needs to be converted
+/// to/from a YAML sequence. For example:
+///
+/// template<>
+/// struct SequenceTraits< std::vector<MyType> > {
+/// static size_t size(IO &io, std::vector<MyType> &seq) {
+/// return seq.size();
+/// }
+/// static MyType& element(IO &, std::vector<MyType> &seq, size_t index) {
+/// if ( index >= seq.size() )
+/// seq.resize(index+1);
+/// return seq[index];
+/// }
+/// };
+template<typename T>
+struct SequenceTraits {
+ // Must provide:
+ // static size_t size(IO &io, T &seq);
+ // static T::value_type& element(IO &io, T &seq, size_t index);
+ //
+ // The following is option and will cause generated YAML to use
+ // a flow sequence (e.g. [a,b,c]).
+ // static const bool flow = true;
+};
+
+
+/// This class should be specialized by any type that needs to be converted
+/// to/from a list of YAML documents.
+template<typename T>
+struct DocumentListTraits {
+ // Must provide:
+ // static size_t size(IO &io, T &seq);
+ // static T::value_type& element(IO &io, T &seq, size_t index);
+};
+
+
+// Only used by compiler if both template types are the same
+template <typename T, T>
+struct SameType;
+
+// Only used for better diagnostics of missing traits
+template <typename T>
+struct MissingTrait;
+
+
+
+// Test if ScalarEnumerationTraits<T> is defined on type T.
+template <class T>
+struct has_ScalarEnumerationTraits
+{
+ typedef void (*Signature_enumeration)(class IO&, T&);
+
+ template <typename U>
+ static char test(SameType<Signature_enumeration, &U::enumeration>*);
+
+ template <typename U>
+ static double test(...);
+
+public:
+ static bool const value = (sizeof(test<ScalarEnumerationTraits<T> >(0)) == 1);
+};
+
+
+// Test if ScalarBitSetTraits<T> is defined on type T.
+template <class T>
+struct has_ScalarBitSetTraits
+{
+ typedef void (*Signature_bitset)(class IO&, T&);
+
+ template <typename U>
+ static char test(SameType<Signature_bitset, &U::bitset>*);
+
+ template <typename U>
+ static double test(...);
+
+public:
+ static bool const value = (sizeof(test<ScalarBitSetTraits<T> >(0)) == 1);
+};
+
+
+// Test if ScalarTraits<T> is defined on type T.
+template <class T>
+struct has_ScalarTraits
+{
+ typedef llvm::StringRef (*Signature_input)(llvm::StringRef, void*, T&);
+ typedef void (*Signature_output)(const T&, void*, llvm::raw_ostream&);
+
+ template <typename U>
+ static char test(SameType<Signature_input, &U::input>*,
+ SameType<Signature_output, &U::output>*);
+
+ template <typename U>
+ static double test(...);
+
+public:
+ static bool const value = (sizeof(test<ScalarTraits<T> >(0,0)) == 1);
+};
+
+
+// Test if MappingTraits<T> is defined on type T.
+template <class T>
+struct has_MappingTraits
+{
+ typedef void (*Signature_mapping)(class IO&, T&);
+
+ template <typename U>
+ static char test(SameType<Signature_mapping, &U::mapping>*);
+
+ template <typename U>
+ static double test(...);
+
+public:
+ static bool const value = (sizeof(test<MappingTraits<T> >(0)) == 1);
+};
+
+
+// Test if SequenceTraits<T> is defined on type T
+// and SequenceTraits<T>::flow is *not* defined.
+template <class T>
+struct has_SequenceTraits
+{
+ typedef size_t (*Signature_size)(class IO&, T&);
+
+ template <typename U>
+ static char test(SameType<Signature_size, &U::size>*);
+
+ template <typename U>
+ static double test(...);
+
+ template <typename U> static
+ char flowtest( char[sizeof(&U::flow)] ) ;
+
+ template <typename U>
+ static double flowtest(...);
+
+public:
+ static bool const value = (sizeof(test<SequenceTraits<T> >(0)) == 1)
+ && (sizeof(flowtest<T>(0)) != 1);
+};
+
+
+// Test if SequenceTraits<T> is defined on type T
+// and SequenceTraits<T>::flow is defined.
+template <class T>
+struct has_FlowSequenceTraits
+{
+ typedef size_t (*Signature_size)(class IO&, T&);
+
+ template <typename U>
+ static char test(SameType<Signature_size, &U::size>*);
+
+ template <typename U>
+ static double test(...);
+
+ template <typename U> static
+ char flowtest( char[sizeof(&U::flow)] ) ;
+
+ template <typename U>
+ static double flowtest(...);
+
+public:
+ static bool const value = (sizeof(test<SequenceTraits<T> >(0)) == 1)
+ && (sizeof(flowtest<T>(0)) == 1);
+};
+
+
+// Test if DocumentListTraits<T> is defined on type T
+template <class T>
+struct has_DocumentListTraits
+{
+ typedef size_t (*Signature_size)(class IO&, T&);
+
+ template <typename U>
+ static char test(SameType<Signature_size, &U::size>*);
+
+ template <typename U>
+ static double test(...);
+
+public:
+ static bool const value = (sizeof(test<DocumentListTraits<T> >(0)) == 1);
+};
+
+
+
+
+template<typename T>
+struct missingTraits : public llvm::integral_constant<bool,
+ !has_ScalarEnumerationTraits<T>::value
+ && !has_ScalarBitSetTraits<T>::value
+ && !has_ScalarTraits<T>::value
+ && !has_MappingTraits<T>::value
+ && !has_SequenceTraits<T>::value
+ && !has_FlowSequenceTraits<T>::value
+ && !has_DocumentListTraits<T>::value > {};
+
+
+// Base class for Input and Output.
+class IO {
+public:
+
+ IO(void *Ctxt=NULL);
+ virtual ~IO();
+
+ virtual bool outputting() = 0;
+
+ virtual unsigned beginSequence() = 0;
+ virtual bool preflightElement(unsigned, void *&) = 0;
+ virtual void postflightElement(void*) = 0;
+ virtual void endSequence() = 0;
+
+ virtual unsigned beginFlowSequence() = 0;
+ virtual bool preflightFlowElement(unsigned, void *&) = 0;
+ virtual void postflightFlowElement(void*) = 0;
+ virtual void endFlowSequence() = 0;
+
+ virtual void beginMapping() = 0;
+ virtual void endMapping() = 0;
+ virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0;
+ virtual void postflightKey(void*) = 0;
+
+ virtual void beginEnumScalar() = 0;
+ virtual bool matchEnumScalar(const char*, bool) = 0;
+ virtual void endEnumScalar() = 0;
+
+ virtual bool beginBitSetScalar(bool &) = 0;
+ virtual bool bitSetMatch(const char*, bool) = 0;
+ virtual void endBitSetScalar() = 0;
+
+ virtual void scalarString(StringRef &) = 0;
+
+ virtual void setError(const Twine &) = 0;
+
+ template <typename T>
+ void enumCase(T &Val, const char* Str, const T ConstVal) {
+ if ( matchEnumScalar(Str, (Val == ConstVal)) ) {
+ Val = ConstVal;
+ }
+ }
+
+ // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
+ template <typename T>
+ void enumCase(T &Val, const char* Str, const uint32_t ConstVal) {
+ if ( matchEnumScalar(Str, (Val == static_cast<T>(ConstVal))) ) {
+ Val = ConstVal;
+ }
+ }
+
+ template <typename T>
+ void bitSetCase(T &Val, const char* Str, const T ConstVal) {
+ if ( bitSetMatch(Str, ((Val & ConstVal) == ConstVal)) ) {
+ Val = Val | ConstVal;
+ }
+ }
+
+ // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
+ template <typename T>
+ void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) {
+ if ( bitSetMatch(Str, ((Val & ConstVal) == ConstVal)) ) {
+ Val = Val | ConstVal;
+ }
+ }
+
+ void *getContext();
+ void setContext(void *);
+
+ template <typename T>
+ void mapRequired(const char* Key, T& Val) {
+ this->processKey(Key, Val, true);
+ }
+
+ template <typename T>
+ typename llvm::enable_if_c<has_SequenceTraits<T>::value,void>::type
+ mapOptional(const char* Key, T& Val) {
+ // omit key/value instead of outputting empty sequence
+ if ( this->outputting() && !(Val.begin() != Val.end()) )
+ return;
+ this->processKey(Key, Val, false);
+ }
+
+ template <typename T>
+ typename llvm::enable_if_c<!has_SequenceTraits<T>::value,void>::type
+ mapOptional(const char* Key, T& Val) {
+ this->processKey(Key, Val, false);
+ }
+
+ template <typename T>
+ void mapOptional(const char* Key, T& Val, const T& Default) {
+ this->processKeyWithDefault(Key, Val, Default, false);
+ }
+
+
+private:
+ template <typename T>
+ void processKeyWithDefault(const char *Key, T &Val, const T& DefaultValue,
+ bool Required) {
+ void *SaveInfo;
+ bool UseDefault;
+ const bool sameAsDefault = (Val == DefaultValue);
+ if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault,
+ SaveInfo) ) {
+ yamlize(*this, Val, Required);
+ this->postflightKey(SaveInfo);
+ }
+ else {
+ if ( UseDefault )
+ Val = DefaultValue;
+ }
+ }
+
+ template <typename T>
+ void processKey(const char *Key, T &Val, bool Required) {
+ void *SaveInfo;
+ bool UseDefault;
+ if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) {
+ yamlize(*this, Val, Required);
+ this->postflightKey(SaveInfo);
+ }
+ }
+
+private:
+ void *Ctxt;
+};
+
+
+
+template<typename T>
+typename llvm::enable_if_c<has_ScalarEnumerationTraits<T>::value,void>::type
+yamlize(IO &io, T &Val, bool) {
+ io.beginEnumScalar();
+ ScalarEnumerationTraits<T>::enumeration(io, Val);
+ io.endEnumScalar();
+}
+
+template<typename T>
+typename llvm::enable_if_c<has_ScalarBitSetTraits<T>::value,void>::type
+yamlize(IO &io, T &Val, bool) {
+ bool DoClear;
+ if ( io.beginBitSetScalar(DoClear) ) {
+ if ( DoClear )
+ Val = static_cast<T>(0);
+ ScalarBitSetTraits<T>::bitset(io, Val);
+ io.endBitSetScalar();
+ }
+}
+
+
+template<typename T>
+typename llvm::enable_if_c<has_ScalarTraits<T>::value,void>::type
+yamlize(IO &io, T &Val, bool) {
+ if ( io.outputting() ) {
+ std::string Storage;
+ llvm::raw_string_ostream Buffer(Storage);
+ ScalarTraits<T>::output(Val, io.getContext(), Buffer);
+ StringRef Str = Buffer.str();
+ io.scalarString(Str);
+ }
+ else {
+ StringRef Str;
+ io.scalarString(Str);
+ StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val);
+ if ( !Result.empty() ) {
+ io.setError(llvm::Twine(Result));
+ }
+ }
+}
+
+
+template<typename T>
+typename llvm::enable_if_c<has_MappingTraits<T>::value, void>::type
+yamlize(IO &io, T &Val, bool) {
+ io.beginMapping();
+ MappingTraits<T>::mapping(io, Val);
+ io.endMapping();
+}
+
+#ifndef BUILDING_YAMLIO
+template<typename T>
+typename llvm::enable_if_c<missingTraits<T>::value, void>::type
+yamlize(IO &io, T &Val, bool) {
+ char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
+}
+#endif
+
+template<typename T>
+typename llvm::enable_if_c<has_SequenceTraits<T>::value,void>::type
+yamlize(IO &io, T &Seq, bool) {
+ unsigned incount = io.beginSequence();
+ unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incount;
+ for(unsigned i=0; i < count; ++i) {
+ void *SaveInfo;
+ if ( io.preflightElement(i, SaveInfo) ) {
+ yamlize(io, SequenceTraits<T>::element(io, Seq, i), true);
+ io.postflightElement(SaveInfo);
+ }
+ }
+ io.endSequence();
+}
+
+template<typename T>
+typename llvm::enable_if_c<has_FlowSequenceTraits<T>::value,void>::type
+yamlize(IO &io, T &Seq, bool) {
+ unsigned incount = io.beginFlowSequence();
+ unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incount;
+ for(unsigned i=0; i < count; ++i) {
+ void *SaveInfo;
+ if ( io.preflightFlowElement(i, SaveInfo) ) {
+ yamlize(io, SequenceTraits<T>::element(io, Seq, i), true);
+ io.postflightFlowElement(SaveInfo);
+ }
+ }
+ io.endFlowSequence();
+}
+
+
+
+// Clients of YAML I/O only see declaration of the traits for built-in
+// types. The implementation is in the LLVM Support library. Without
+// this #ifdef, every client would get a copy of the implementation of
+// these traits.
+#ifndef BUILDING_YAMLIO
+template<>
+struct ScalarTraits<bool> {
+ static void output(const bool &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, bool &);
+};
+
+template<>
+struct ScalarTraits<StringRef> {
+ static void output(const StringRef &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, StringRef &);
+};
+
+template<>
+struct ScalarTraits<uint8_t> {
+ static void output(const uint8_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, uint8_t &);
+};
+
+template<>
+struct ScalarTraits<uint16_t> {
+ static void output(const uint16_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, uint16_t &);
+};
+
+template<>
+struct ScalarTraits<uint32_t> {
+ static void output(const uint32_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, uint32_t &);
+};
+
+template<>
+struct ScalarTraits<uint64_t> {
+ static void output(const uint64_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, uint64_t &);
+};
+
+template<>
+struct ScalarTraits<int8_t> {
+ static void output(const int8_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, int8_t &);
+};
+
+template<>
+struct ScalarTraits<int16_t> {
+ static void output(const int16_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, int16_t &);
+};
+
+template<>
+struct ScalarTraits<int32_t> {
+ static void output(const int32_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, int32_t &);
+};
+
+template<>
+struct ScalarTraits<int64_t> {
+ static void output(const int64_t &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, int64_t &);
+};
+
+template<>
+struct ScalarTraits<float> {
+ static void output(const float &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, float &);
+};
+
+template<>
+struct ScalarTraits<double> {
+ static void output(const double &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, double &);
+};
+#endif
+
+
+
+// Utility for use within MappingTraits<>::mapping() method
+// to [de]normalize an object for use with YAML conversion.
+template <typename TNorm, typename TFinal>
+struct MappingNormalization {
+ MappingNormalization(IO &i_o, TFinal &Obj)
+ : io(i_o), BufPtr(NULL), Result(Obj) {
+ if ( io.outputting() ) {
+ BufPtr = new (&Buffer) TNorm(io, Obj);
+ }
+ else {
+ BufPtr = new (&Buffer) TNorm(io);
+ }
+ }
+
+ ~MappingNormalization() {
+ if ( ! io.outputting() ) {
+ Result = BufPtr->denormalize(io);
+ }
+ BufPtr->~TNorm();
+ }
+
+ TNorm* operator->() { return BufPtr; }
+
+private:
+ typedef typename llvm::AlignedCharArrayUnion<TNorm> Storage;
+
+ Storage Buffer;
+ IO &io;
+ TNorm *BufPtr;
+ TFinal &Result;
+};
+
+
+
+// Utility for use within MappingTraits<>::mapping() method
+// to [de]normalize an object for use with YAML conversion.
+template <typename TNorm, typename TFinal>
+struct MappingNormalizationHeap {
+ MappingNormalizationHeap(IO &i_o, TFinal &Obj)
+ : io(i_o), BufPtr(NULL), Result(Obj) {
+ if ( io.outputting() ) {
+ BufPtr = new (&Buffer) TNorm(io, Obj);
+ }
+ else {
+ BufPtr = new TNorm(io);
+ }
+ }
+
+ ~MappingNormalizationHeap() {
+ if ( io.outputting() ) {
+ BufPtr->~TNorm();
+ }
+ else {
+ Result = BufPtr->denormalize(io);
+ }
+ }
+
+ TNorm* operator->() { return BufPtr; }
+
+private:
+ typedef typename llvm::AlignedCharArrayUnion<TNorm> Storage;
+
+ Storage Buffer;
+ IO &io;
+ TNorm *BufPtr;
+ TFinal &Result;
+};
+
+
+
+///
+/// The Input class is used to parse a yaml document into in-memory structs
+/// and vectors.
+///
+/// It works by using YAMLParser to do a syntax parse of the entire yaml
+/// document, then the Input class builds a graph of HNodes which wraps
+/// each yaml Node. The extra layer is buffering. The low level yaml
+/// parser only lets you look at each node once. The buffering layer lets
+/// you search and interate multiple times. This is necessary because
+/// the mapRequired() method calls may not be in the same order
+/// as the keys in the document.
+///
+class Input : public IO {
+public:
+ // Construct a yaml Input object from a StringRef and optional user-data.
+ Input(StringRef InputContent, void *Ctxt=NULL);
+
+ // Check if there was an syntax or semantic error during parsing.
+ llvm::error_code error();
+
+ // To set alternate error reporting.
+ void setDiagHandler(llvm::SourceMgr::DiagHandlerTy Handler, void *Ctxt = 0);
+
+private:
+ virtual bool outputting();
+ virtual void beginMapping();
+ virtual void endMapping();
+ virtual bool preflightKey(const char *, bool, bool, bool &, void *&);
+ virtual void postflightKey(void *);
+ virtual unsigned beginSequence();
+ virtual void endSequence();
+ virtual bool preflightElement(unsigned index, void *&);
+ virtual void postflightElement(void *);
+ virtual unsigned beginFlowSequence();
+ virtual bool preflightFlowElement(unsigned , void *&);
+ virtual void postflightFlowElement(void *);
+ virtual void endFlowSequence();
+ virtual void beginEnumScalar();
+ virtual bool matchEnumScalar(const char*, bool);
+ virtual void endEnumScalar();
+ virtual bool beginBitSetScalar(bool &);
+ virtual bool bitSetMatch(const char *, bool );
+ virtual void endBitSetScalar();
+ virtual void scalarString(StringRef &);
+ virtual void setError(const Twine &message);
+
+ class HNode {
+ public:
+ HNode(Node *n) : _node(n) { }
+ static inline bool classof(const HNode *) { return true; }
+
+ Node *_node;
+ };
+
+ class EmptyHNode : public HNode {
+ public:
+ EmptyHNode(Node *n) : HNode(n) { }
+ static inline bool classof(const HNode *n) {
+ return NullNode::classof(n->_node);
+ }
+ static inline bool classof(const EmptyHNode *) { return true; }
+ };
+
+ class ScalarHNode : public HNode {
+ public:
+ ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { }
+
+ StringRef value() const { return _value; }
+
+ static inline bool classof(const HNode *n) {
+ return ScalarNode::classof(n->_node);
+ }
+ static inline bool classof(const ScalarHNode *) { return true; }
+ protected:
+ StringRef _value;
+ };
+
+ class MapHNode : public HNode {
+ public:
+ MapHNode(Node *n) : HNode(n) { }
+
+ static inline bool classof(const HNode *n) {
+ return MappingNode::classof(n->_node);
+ }
+ static inline bool classof(const MapHNode *) { return true; }
+
+ struct StrMappingInfo {
+ static StringRef getEmptyKey() { return StringRef(); }
+ static StringRef getTombstoneKey() { return StringRef(" ", 0); }
+ static unsigned getHashValue(StringRef const val) {
+ return llvm::HashString(val); }
+ static bool isEqual(StringRef const lhs,
+ StringRef const rhs) { return lhs.equals(rhs); }
+ };
+ typedef llvm::DenseMap<StringRef, HNode*, StrMappingInfo> NameToNode;
+
+ bool isValidKey(StringRef key);
+
+ NameToNode Mapping;
+ llvm::SmallVector<const char*, 6> ValidKeys;
+ };
+
+ class SequenceHNode : public HNode {
+ public:
+ SequenceHNode(Node *n) : HNode(n) { }
+
+ static inline bool classof(const HNode *n) {
+ return SequenceNode::classof(n->_node);
+ }
+ static inline bool classof(const SequenceHNode *) { return true; }
+
+ std::vector<HNode*> Entries;
+ };
+
+ Input::HNode *createHNodes(Node *node);
+ void setError(HNode *hnode, const Twine &message);
+ void setError(Node *node, const Twine &message);
+
+
+public:
+ // These are only used by operator>>. They could be private
+ // if those templated things could be made friends.
+ bool setCurrentDocument();
+ void nextDocument();
+
+private:
+ llvm::yaml::Stream *Strm;
+ llvm::SourceMgr SrcMgr;
+ llvm::error_code EC;
+ llvm::BumpPtrAllocator Allocator;
+ llvm::yaml::document_iterator DocIterator;
+ std::vector<bool> BitValuesUsed;
+ HNode *CurrentNode;
+ bool ScalarMatchFound;
+};
+
+
+
+
+///
+/// The Output class is used to generate a yaml document from in-memory structs
+/// and vectors.
+///
+class Output : public IO {
+public:
+ Output(llvm::raw_ostream &, void *Ctxt=NULL);
+ virtual ~Output();
+
+ virtual bool outputting();
+ virtual void beginMapping();
+ virtual void endMapping();
+ virtual bool preflightKey(const char *key, bool, bool, bool &, void *&);
+ virtual void postflightKey(void *);
+ virtual unsigned beginSequence();
+ virtual void endSequence();
+ virtual bool preflightElement(unsigned, void *&);
+ virtual void postflightElement(void *);
+ virtual unsigned beginFlowSequence();
+ virtual bool preflightFlowElement(unsigned, void *&);
+ virtual void postflightFlowElement(void *);
+ virtual void endFlowSequence();
+ virtual void beginEnumScalar();
+ virtual bool matchEnumScalar(const char*, bool);
+ virtual void endEnumScalar();
+ virtual bool beginBitSetScalar(bool &);
+ virtual bool bitSetMatch(const char *, bool );
+ virtual void endBitSetScalar();
+ virtual void scalarString(StringRef &);
+ virtual void setError(const Twine &message);
+
+public:
+ // These are only used by operator<<. They could be private
+ // if that templated operator could be made a friend.
+ void beginDocuments();
+ bool preflightDocument(unsigned);
+ void postflightDocument();
+ void endDocuments();
+
+private:
+ void output(StringRef s);
+ void outputUpToEndOfLine(StringRef s);
+ void newLineCheck();
+ void outputNewLine();
+ void paddedKey(StringRef key);
+
+ enum InState { inSeq, inFlowSeq, inMapFirstKey, inMapOtherKey };
+
+ llvm::raw_ostream &Out;
+ SmallVector<InState, 8> StateStack;
+ int Column;
+ int ColumnAtFlowStart;
+ bool NeedBitValueComma;
+ bool NeedFlowSequenceComma;
+ bool EnumerationMatchFound;
+ bool NeedsNewLine;
+};
+
+
+
+
+/// YAML I/O does conversion based on types. But often native data types
+/// are just a typedef of built in intergral types (e.g. int). But the C++
+/// type matching system sees through the typedef and all the typedefed types
+/// look like a built in type. This will cause the generic YAML I/O conversion
+/// to be used. To provide better control over the YAML conversion, you can
+/// use this macro instead of typedef. It will create a class with one field
+/// and automatic conversion operators to and from the base type.
+/// Based on BOOST_STRONG_TYPEDEF
+#define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \
+ struct _type { \
+ _type() { } \
+ _type(const _base v) : value(v) { } \
+ _type(const _type &v) : value(v.value) {} \
+ _type &operator=(const _type &rhs) { value = rhs.value; return *this; }\
+ _type &operator=(const _base &rhs) { value = rhs; return *this; } \
+ operator const _base & () const { return value; } \
+ bool operator==(const _type &rhs) const { return value == rhs.value; } \
+ bool operator==(const _base &rhs) const { return value == rhs; } \
+ bool operator<(const _type &rhs) const { return value < rhs.value; } \
+ _base value; \
+ };
+
+
+
+///
+/// Use these types instead of uintXX_t in any mapping to have
+/// its yaml output formatted as hexadecimal.
+///
+LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8)
+LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16)
+LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32)
+LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64)
+
+
+// Clients of YAML I/O only see declaration of the traits for Hex*
+// types. The implementation is in the LLVM Support library. Without
+// this #ifdef, every client would get a copy of the implementation of
+// these traits.
+#ifndef BUILDING_YAMLIO
+template<>
+struct ScalarTraits<Hex8> {
+ static void output(const Hex8 &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, Hex8 &);
+};
+
+template<>
+struct ScalarTraits<Hex16> {
+ static void output(const Hex16 &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, Hex16 &);
+};
+
+template<>
+struct ScalarTraits<Hex32> {
+ static void output(const Hex32 &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, Hex32 &);
+};
+
+template<>
+struct ScalarTraits<Hex64> {
+ static void output(const Hex64 &, void*, llvm::raw_ostream &);
+ static llvm::StringRef input(llvm::StringRef , void*, Hex64 &);
+};
+#endif
+
+
+// Define non-member operator>> so that Input can stream in a document list.
+template <typename T>
+inline
+typename llvm::enable_if_c<has_DocumentListTraits<T>::value,Input &>::type
+operator>>(Input &yin, T &docList) {
+ int i = 0;
+ while ( yin.setCurrentDocument() ) {
+ yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true);
+ if ( yin.error() )
+ return yin;
+ yin.nextDocument();
+ ++i;
+ }
+ return yin;
+}
+
+// Define non-member operator>> so that Input can stream in a map as a document.
+template <typename T>
+inline
+typename llvm::enable_if_c<has_MappingTraits<T>::value,Input &>::type
+operator>>(Input &yin, T &docMap) {
+ yin.setCurrentDocument();
+ yamlize(yin, docMap, true);
+ return yin;
+}
+
+// Define non-member operator>> so that Input can stream in a sequence as
+// a document.
+template <typename T>
+inline
+typename llvm::enable_if_c<has_SequenceTraits<T>::value,Input &>::type
+operator>>(Input &yin, T &docSeq) {
+ yin.setCurrentDocument();
+ yamlize(yin, docSeq, true);
+ return yin;
+}
+
+#ifndef BUILDING_YAMLIO
+// Provide better error message about types missing a trait specialization
+template <typename T>
+inline
+typename llvm::enable_if_c<missingTraits<T>::value,Input &>::type
+operator>>(Input &yin, T &docSeq) {
+ char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
+ return yin;
+}
+#endif
+
+
+// Define non-member operator<< so that Output can stream out document list.
+template <typename T>
+inline
+typename llvm::enable_if_c<has_DocumentListTraits<T>::value,Output &>::type
+operator<<(Output &yout, T &docList) {
+ yout.beginDocuments();
+ const size_t count = DocumentListTraits<T>::size(yout, docList);
+ for(size_t i=0; i < count; ++i) {
+ if ( yout.preflightDocument(i) ) {
+ yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true);
+ yout.postflightDocument();
+ }
+ }
+ yout.endDocuments();
+ return yout;
+}
+
+// Define non-member operator<< so that Output can stream out a map.
+template <typename T>
+inline
+typename llvm::enable_if_c<has_MappingTraits<T>::value,Output &>::type
+operator<<(Output &yout, T &map) {
+ yout.beginDocuments();
+ if ( yout.preflightDocument(0) ) {
+ yamlize(yout, map, true);
+ yout.postflightDocument();
+ }
+ yout.endDocuments();
+ return yout;
+}
+
+// Define non-member operator<< so that Output can stream out a sequence.
+template <typename T>
+inline
+typename llvm::enable_if_c<has_SequenceTraits<T>::value,Output &>::type
+operator<<(Output &yout, T &seq) {
+ yout.beginDocuments();
+ if ( yout.preflightDocument(0) ) {
+ yamlize(yout, seq, true);
+ yout.postflightDocument();
+ }
+ yout.endDocuments();
+ return yout;
+}
+
+#ifndef BUILDING_YAMLIO
+// Provide better error message about types missing a trait specialization
+template <typename T>
+inline
+typename llvm::enable_if_c<missingTraits<T>::value,Output &>::type
+operator<<(Output &yout, T &seq) {
+ char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
+ return yout;
+}
+#endif
+
+
+} // namespace yaml
+} // namespace llvm
+
+
+/// Utility for declaring that a std::vector of a particular type
+/// should be considered a YAML sequence.
+#define LLVM_YAML_IS_SEQUENCE_VECTOR(_type) \
+ namespace llvm { \
+ namespace yaml { \
+ template<> \
+ struct SequenceTraits< std::vector<_type> > { \
+ static size_t size(IO &io, std::vector<_type> &seq) { \
+ return seq.size(); \
+ } \
+ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\
+ if ( index >= seq.size() ) \
+ seq.resize(index+1); \
+ return seq[index]; \
+ } \
+ }; \
+ } \
+ }
+
+/// Utility for declaring that a std::vector of a particular type
+/// should be considered a YAML flow sequence.
+#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(_type) \
+ namespace llvm { \
+ namespace yaml { \
+ template<> \
+ struct SequenceTraits< std::vector<_type> > { \
+ static size_t size(IO &io, std::vector<_type> &seq) { \
+ return seq.size(); \
+ } \
+ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\
+ if ( index >= seq.size() ) \
+ seq.resize(index+1); \
+ return seq[index]; \
+ } \
+ static const bool flow = true; \
+ }; \
+ } \
+ }
+
+/// Utility for declaring that a std::vector of a particular type
+/// should be considered a YAML document list.
+#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \
+ namespace llvm { \
+ namespace yaml { \
+ template<> \
+ struct DocumentListTraits< std::vector<_type> > { \
+ static size_t size(IO &io, std::vector<_type> &seq) { \
+ return seq.size(); \
+ } \
+ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\
+ if ( index >= seq.size() ) \
+ seq.resize(index+1); \
+ return seq[index]; \
+ } \
+ }; \
+ } \
+ }
+
+
+
+#endif // LLVM_YAML_TRAITS_H_
diff --git a/lib/Support/CMakeLists.txt b/lib/Support/CMakeLists.txt
index 6af0f4a6c9..f294a175e7 100644
--- a/lib/Support/CMakeLists.txt
+++ b/lib/Support/CMakeLists.txt
@@ -50,6 +50,7 @@ add_llvm_library(LLVMSupport
Triple.cpp
Twine.cpp
YAMLParser.cpp
+ YAMLTraits.cpp
raw_os_ostream.cpp
raw_ostream.cpp
regcomp.c
diff --git a/lib/Support/YAMLTraits.cpp b/lib/Support/YAMLTraits.cpp
new file mode 100644
index 0000000000..e2be15be50
--- /dev/null
+++ b/lib/Support/YAMLTraits.cpp
@@ -0,0 +1,881 @@
+//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define BUILDING_YAMLIO
+#include "llvm/Support/YAMLTraits.h"
+
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/YAMLParser.h"
+
+#include <cstring>
+
+namespace llvm {
+namespace yaml {
+
+
+
+//===----------------------------------------------------------------------===//
+// IO
+//===----------------------------------------------------------------------===//
+
+IO::IO(void *Context) : Ctxt(Context) {
+}
+
+IO::~IO() {
+}
+
+void *IO::getContext() {
+ return Ctxt;
+}
+
+void IO::setContext(void *Context) {
+ Ctxt = Context;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Input
+//===----------------------------------------------------------------------===//
+
+Input::Input(StringRef InputContent, void *Ctxt)
+ : IO(Ctxt), CurrentNode(NULL) {
+ Strm = new Stream(InputContent, SrcMgr);
+ DocIterator = Strm->begin();
+}
+
+
+llvm::error_code Input::error() {
+ return EC;
+}
+
+void Input::setDiagHandler(llvm::SourceMgr::DiagHandlerTy Handler, void *Ctxt) {
+ SrcMgr.setDiagHandler(Handler, Ctxt);
+}
+
+bool Input::outputting() {
+ return false;
+}
+
+bool Input::setCurrentDocument() {
+ if ( DocIterator != Strm->end() ) {
+ Node *N = DocIterator->getRoot();
+ if (llvm::isa<NullNode>(N)) {
+ // Empty files are allowed and ignored
+ ++DocIterator;
+ return setCurrentDocument();
+ }
+ CurrentNode = this->createHNodes(N);
+ return true;
+ }
+ return false;
+}
+
+void Input::nextDocument() {
+ ++DocIterator;
+}
+
+void Input::beginMapping() {
+ if ( EC )
+ return;
+ MapHNode *MN = llvm::dyn_cast<MapHNode>(CurrentNode);
+ if ( MN ) {
+ MN->ValidKeys.clear();
+ }
+}
+
+bool Input::preflightKey(const char *Key, bool Required, bool,
+ bool &UseDefault, void *&SaveInfo) {
+ UseDefault = false;
+ if ( EC )
+ return false;
+ MapHNode *MN = llvm::dyn_cast<MapHNode>(CurrentNode);
+ if ( !MN ) {
+ setError(CurrentNode, "not a mapping");
+ return false;
+ }
+ MN->ValidKeys.push_back(Key);
+ HNode *Value = MN->Mapping[Key];
+ if ( !Value ) {
+ if ( Required )
+ setError(CurrentNode, Twine("missing required key '") + Key + "'");
+ else
+ UseDefault = true;
+ return false;
+ }
+ SaveInfo = CurrentNode;
+ CurrentNode = Value;
+ return true;
+}
+
+void Input::postflightKey(void *saveInfo) {
+ CurrentNode = reinterpret_cast<HNode*>(saveInfo);
+}
+
+void Input::endMapping() {
+ if ( EC )
+ return;
+ MapHNode *MN = llvm::dyn_cast<MapHNode>(CurrentNode);
+ if ( !MN )
+ return;
+ for (MapHNode::NameToNode::iterator i=MN->Mapping.begin(),
+ End=MN->Mapping.end(); i != End; ++i) {
+ if ( ! MN->isValidKey(i->first) ) {
+ setError(i->second, Twine("unknown key '") + i->first + "'" );
+ break;
+ }
+ }
+}
+
+
+unsigned Input::beginSequence() {
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ return SQ->Entries.size();
+ }
+ return 0;
+}
+void Input::endSequence() {
+}
+bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
+ if ( EC )
+ return false;
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ SaveInfo = CurrentNode;
+ CurrentNode = SQ->Entries[Index];
+ return true;
+ }
+ return false;
+}
+void Input::postflightElement(void *SaveInfo) {
+ CurrentNode = reinterpret_cast<HNode*>(SaveInfo);
+}
+
+unsigned Input::beginFlowSequence() {
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ return SQ->Entries.size();
+ }
+ return 0;
+}
+bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
+ if ( EC )
+ return false;
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ SaveInfo = CurrentNode;
+ CurrentNode = SQ->Entries[index];
+ return true;
+ }
+ return false;
+}
+void Input::postflightFlowElement(void *SaveInfo) {
+ CurrentNode = reinterpret_cast<HNode*>(SaveInfo);
+}
+void Input::endFlowSequence() {
+}
+
+
+void Input::beginEnumScalar() {
+ ScalarMatchFound = false;
+}
+
+bool Input::matchEnumScalar(const char *Str, bool) {
+ if ( ScalarMatchFound )
+ return false;
+ if ( ScalarHNode *SN = llvm::dyn_cast<ScalarHNode>(CurrentNode) ) {
+ if ( SN->value().equals(Str) ) {
+ ScalarMatchFound = true;
+ return true;
+ }
+ }
+ return false;
+}
+
+void Input::endEnumScalar() {
+ if ( !ScalarMatchFound ) {
+ setError(CurrentNode, "unknown enumerated scalar");
+ }
+}
+
+
+
+bool Input::beginBitSetScalar(bool &DoClear) {
+ BitValuesUsed.clear();
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
+ }
+ else {
+ setError(CurrentNode, "expected sequence of bit values");
+ }
+ DoClear = true;
+ return true;
+}
+
+bool Input::bitSetMatch(const char *Str, bool) {
+ if ( EC )
+ return false;
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ unsigned Index = 0;
+ for (std::vector<HNode*>::iterator i=SQ->Entries.begin(),
+ End=SQ->Entries.end(); i != End; ++i) {
+ if ( ScalarHNode *SN = llvm::dyn_cast<ScalarHNode>(*i) ) {
+ if ( SN->value().equals(Str) ) {
+ BitValuesUsed[Index] = true;
+ return true;
+ }
+ }
+ else {
+ setError(CurrentNode, "unexpected scalar in sequence of bit values");
+ }
+ ++Index;
+ }
+ }
+ else {
+ setError(CurrentNode, "expected sequence of bit values");
+ }
+ return false;
+}
+
+void Input::endBitSetScalar() {
+ if ( EC )
+ return;
+ if ( SequenceHNode *SQ = llvm::dyn_cast<SequenceHNode>(CurrentNode) ) {
+ assert(BitValuesUsed.size() == SQ->Entries.size());
+ for ( unsigned i=0; i < SQ->Entries.size(); ++i ) {
+ if ( !BitValuesUsed[i] ) {
+ setError(SQ->Entries[i], "unknown bit value");
+ return;
+ }
+ }
+ }
+}
+
+
+void Input::scalarString(StringRef &S) {
+ if ( ScalarHNode *SN = llvm::dyn_cast<ScalarHNode>(CurrentNode) ) {
+ S = SN->value();
+ }
+ else {
+ setError(CurrentNode, "unexpected scalar");
+ }
+}
+
+void Input::setError(HNode *hnode, const Twine &message) {
+ this->setError(hnode->_node, message);
+}
+
+void Input::setError(Node *node, const Twine &message) {
+ Strm->printError(node, message);
+ EC = make_error_code(errc::invalid_argument);
+}
+
+Input::HNode *Input::createHNodes(Node *N) {
+ llvm::SmallString<128> StringStorage;
+ if ( ScalarNode *SN = llvm::dyn_cast<ScalarNode>(N) ) {
+ StringRef KeyStr = SN->getValue(StringStorage);
+ if ( !StringStorage.empty() ) {
+ // Copy string to permanent storage
+ unsigned Len = StringStorage.size();
+ char* Buf = Allocator.Allocate<char>(Len);
+ memcpy(Buf, &StringStorage[0], Len);
+ KeyStr = StringRef(Buf, Len);
+ }
+ return new (Allocator) ScalarHNode(N, KeyStr);
+ }
+ else if ( SequenceNode *SQ = llvm::dyn_cast<SequenceNode>(N) ) {
+ SequenceHNode *SQHNode = new (Allocator) SequenceHNode(N);
+ for (SequenceNode::iterator i=SQ->begin(),End=SQ->end(); i != End; ++i ) {
+ HNode *Entry = this->createHNodes(i);
+ if ( EC )
+ break;
+ SQHNode->Entries.push_back(Entry);
+ }
+ return SQHNode;
+ }
+ else if ( MappingNode *Map = llvm::dyn_cast<MappingNode>(N) ) {
+ MapHNode *mapHNode = new (Allocator) MapHNode(N);
+ for (MappingNode::iterator i=Map->begin(), End=Map->end(); i != End; ++i ) {
+ ScalarNode *KeyScalar = llvm::dyn_cast<ScalarNode>(i->getKey());
+ StringStorage.clear();
+ llvm::StringRef KeyStr = KeyScalar->getValue(StringStorage);
+ if ( !StringStorage.empty() ) {
+ // Copy string to permanent storage
+ unsigned Len = StringStorage.size();
+ char* Buf = Allocator.Allocate<char>(Len);
+ memcpy(Buf, &StringStorage[0], Len);
+ KeyStr = StringRef(Buf, Len);
+ }
+ HNode *ValueHNode = this->createHNodes(i->getValue());
+ if ( EC )
+ break;
+ mapHNode->Mapping[KeyStr] = ValueHNode;
+ }
+ return mapHNode;
+ }
+ else if ( llvm::isa<NullNode>(N) ) {
+ return new (Allocator) EmptyHNode(N);
+ }
+ else {
+ setError(N, "unknown node kind");
+ return NULL;
+ }
+}
+
+
+bool Input::MapHNode::isValidKey(StringRef Key) {
+ for (SmallVector<const char*, 6>::iterator i=ValidKeys.begin(),
+ End=ValidKeys.end(); i != End; ++i) {
+ if ( Key.equals(*i) )
+ return true;
+ }
+ return false;
+}
+
+void Input::setError(const Twine &Message) {
+ this->setError(CurrentNode, Message);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Output
+//===----------------------------------------------------------------------===//
+
+Output::Output(llvm::raw_ostream &yout, void *context)
+ : IO(context), Out(yout), Column(0), ColumnAtFlowStart(0),
+ NeedBitValueComma(false), NeedFlowSequenceComma(false),
+ EnumerationMatchFound(false), NeedsNewLine(false) {
+}
+
+Output::~Output() {
+}
+
+bool Output::outputting() {
+ return true;
+}
+
+void Output::beginMapping() {
+ StateStack.push_back(inMapFirstKey);
+ NeedsNewLine = true;
+}
+
+void Output::endMapping() {
+ StateStack.pop_back();
+}
+
+
+bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
+ bool &UseDefault, void *&) {
+ UseDefault = false;
+ if ( Required || !SameAsDefault ) {
+ this->newLineCheck();
+ this->paddedKey(Key);
+ return true;
+ }
+ return false;
+}
+
+void Output::postflightKey(void*) {
+ if ( StateStack.back() == inMapFirstKey ) {
+ StateStack.pop_back();
+ StateStack.push_back(inMapOtherKey);
+ }
+}
+
+void Output::beginDocuments() {
+ this->outputUpToEndOfLine("---");
+}
+
+bool Output::preflightDocument(unsigned index) {
+ if ( index > 0 )
+ this->outputUpToEndOfLine("\n---");
+ return true;
+}
+
+void Output::postflightDocument() {
+}
+
+void Output::endDocuments() {
+ output("\n...\n");
+}
+
+unsigned Output::beginSequence() {
+ StateStack.push_back(inSeq);
+ NeedsNewLine = true;
+ return 0;
+}
+void Output::endSequence() {
+ StateStack.pop_back();
+}
+bool Output::preflightElement(unsigned , void *&) {
+ return true;
+}
+void Output::postflightElement(void*) {
+}
+
+unsigned Output::beginFlowSequence() {
+ this->newLineCheck();
+ StateStack.push_back(inFlowSeq);
+ ColumnAtFlowStart = Column;
+ output("[ ");
+ NeedFlowSequenceComma = false;
+ return 0;
+}
+void Output::endFlowSequence() {
+ StateStack.pop_back();
+ this->outputUpToEndOfLine(" ]");
+}
+bool Output::preflightFlowElement(unsigned , void *&) {
+ if ( NeedFlowSequenceComma )
+ output(", ");
+ if ( Column > 70 ) {
+ output("\n");
+ for(int i=0; i < ColumnAtFlowStart; ++i)
+ output(" ");
+ Column = ColumnAtFlowStart;
+ output(" ");
+ }
+ return true;
+}
+void Output::postflightFlowElement(void*) {
+ NeedFlowSequenceComma = true;
+}
+
+
+
+void Output::beginEnumScalar() {
+ EnumerationMatchFound = false;
+}
+
+bool Output::matchEnumScalar(const char *Str, bool Match) {
+ if ( Match && !EnumerationMatchFound ) {
+ this->newLineCheck();
+ this->outputUpToEndOfLine(Str);
+ EnumerationMatchFound = true;
+ }
+ return false;
+}
+
+void Output::endEnumScalar() {
+ if ( !EnumerationMatchFound )
+ llvm_unreachable("bad runtime enum value");
+}
+
+
+
+bool Output::beginBitSetScalar(bool &DoClear) {
+ this->newLineCheck();
+ output("[ ");
+ NeedBitValueComma = false;
+ DoClear = false;
+ return true;
+}
+
+bool Output::bitSetMatch(const char *Str, bool Matches) {
+ if ( Matches ) {
+ if ( NeedBitValueComma )
+ output(", ");
+ this->output(Str);
+ NeedBitValueComma = true;
+ }
+ return false;
+}
+
+void Output::endBitSetScalar() {
+ this->outputUpToEndOfLine(" ]");
+}
+
+void Output::scalarString(StringRef &S) {
+ this->newLineCheck();
+ if (S.find('\n') == StringRef::npos) {
+ // No embedded new-line chars, just print string.
+ this->outputUpToEndOfLine(S);
+ return;
+ }
+ unsigned i = 0;
+ unsigned j = 0;
+ unsigned End = S.size();
+ output("'"); // Starting single quote.
+ const char *Base = S.data();
+ while (j < End) {
+ // Escape a single quote by doubling it.
+ if (S[j] == '\'') {
+ output(StringRef(&Base[i], j - i + 1));
+ output("'");
+ i = j + 1;
+ }
+ ++j;
+ }
+ output(StringRef(&Base[i], j - i));
+ this->outputUpToEndOfLine("'"); // Ending single quote.
+}
+
+void Output::setError(const Twine &message) {
+}
+
+
+void Output::output(StringRef s) {
+ Column += s.size();
+ Out << s;
+}
+
+void Output::outputUpToEndOfLine(StringRef s) {
+ this->output(s);
+ if ( StateStack.back() != inFlowSeq )
+ NeedsNewLine = true;
+}
+
+void Output::outputNewLine() {
+ Out << "\n";
+ Column = 0;
+}
+
+// if seq at top, indent as if map, then add "- "
+// if seq in middle, use "- " if firstKey, else use " "
+//
+
+void Output::newLineCheck() {
+ if ( ! NeedsNewLine )
+ return;
+ NeedsNewLine = false;
+
+ this->outputNewLine();
+
+ assert(StateStack.size() > 0);
+ unsigned Indent = StateStack.size() - 1;
+ bool OutputDash = false;
+
+ if ( StateStack.back() == inSeq ) {
+ OutputDash = true;
+ }
+ else if ( (StateStack.size() > 1)
+ && (StateStack.back() == inMapFirstKey)
+ && (StateStack[StateStack.size()-2] == inSeq) ) {
+ --Indent;
+ OutputDash = true;
+ }
+
+ for (unsigned i=0; i < Indent; ++i) {
+ output(" ");
+ }
+ if ( OutputDash ) {
+ output("- ");
+ }
+
+}
+
+void Output::paddedKey(StringRef key) {
+ output(key);
+ output(":");
+ const char *spaces = " ";
+ if ( key.size() < strlen(spaces) )
+ output(&spaces[key.size()]);
+ else
+ output(" ");
+}
+
+//===----------------------------------------------------------------------===//
+// traits for built-in types
+//===----------------------------------------------------------------------===//
+
+template<>
+struct ScalarTraits<bool> {
+ static void output(const bool &Val, void*, llvm::raw_ostream &Out) {
+ Out << ( Val ? "true" : "false");
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, bool &Val) {
+ if ( Scalar.equals("true") ) {
+ Val = true;
+ return StringRef();
+ }
+ else if ( Scalar.equals("false") ) {
+ Val = false;
+ return StringRef();
+ }
+ return "invalid boolean";
+ }
+};
+
+
+template<>
+struct ScalarTraits<StringRef> {
+ static void output(const StringRef &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, StringRef &Val){
+ Val = Scalar;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<uint8_t> {
+ static void output(const uint8_t &Val, void*, llvm::raw_ostream &Out) {
+ // use temp uin32_t because ostream thinks uint8_t is a character
+ uint32_t Num = Val;
+ Out << Num;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, uint8_t &Val) {
+ uint64_t n;
+ if ( getAsUnsignedInteger(Scalar, 0, n) )
+ return "invalid number";
+ if ( n > 0xFF )
+ return "out of range number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<uint16_t> {
+ static void output(const uint16_t &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, uint16_t &Val) {
+ uint64_t n;
+ if ( getAsUnsignedInteger(Scalar, 0, n) )
+ return "invalid number";
+ if ( n > 0xFFFF )
+ return "out of range number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+template<>
+struct ScalarTraits<uint32_t> {
+ static void output(const uint32_t &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, uint32_t &Val) {
+ uint64_t n;
+ if ( getAsUnsignedInteger(Scalar, 0, n) )
+ return "invalid number";
+ if ( n > 0xFFFFFFFFUL )
+ return "out of range number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<uint64_t> {
+ static void output(const uint64_t &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, uint64_t &Val) {
+ if ( getAsUnsignedInteger(Scalar, 0, Val) )
+ return "invalid number";
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<int8_t> {
+ static void output(const int8_t &Val, void*, llvm::raw_ostream &Out) {
+ // use temp in32_t because ostream thinks int8_t is a character
+ int32_t Num = Val;
+ Out << Num;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, int8_t &Val) {
+ int64_t n;
+ if ( getAsSignedInteger(Scalar, 0, n) )
+ return "invalid number";
+ if ( (n > 127) || (n < -128) )
+ return "out of range number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<int16_t> {
+ static void output(const int16_t &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, int16_t &Val) {
+ int64_t n;
+ if ( getAsSignedInteger(Scalar, 0, n) )
+ return "invalid number";
+ if ( (n > INT16_MAX) || (n < INT16_MIN) )
+ return "out of range number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<int32_t> {
+ static void output(const int32_t &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, int32_t &Val) {
+ int64_t n;
+ if ( getAsSignedInteger(Scalar, 0, n) )
+ return "invalid number";
+ if ( (n > INT32_MAX) || (n < INT32_MIN) )
+ return "out of range number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+template<>
+struct ScalarTraits<int64_t> {
+ static void output(const int64_t &Val, void*, llvm::raw_ostream &Out) {
+ Out << Val;
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, int64_t &Val) {
+ if ( getAsSignedInteger(Scalar, 0, Val) )
+ return "invalid number";
+ return StringRef();
+ }
+};
+
+template<>
+struct ScalarTraits<double> {
+ static void output(const double &Val, void*, llvm::raw_ostream &Out) {
+ Out << format("%g", Val);
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, double &Val) {
+ SmallString<32> buff(Scalar.begin(), Scalar.end());
+ char *end;
+ Val = strtod(buff.c_str(), &end);
+ if ( *end != '\0' )
+ return "invalid floating point number";
+ return StringRef();
+ }
+};
+
+template<>
+struct ScalarTraits<float> {
+ static void output(const float &Val, void*, llvm::raw_ostream &Out) {
+ Out << format("%g", Val);
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, float &Val) {
+ SmallString<32> buff(Scalar.begin(), Scalar.end());
+ char *end;
+ Val = strtod(buff.c_str(), &end);
+ if ( *end != '\0' )
+ return "invalid floating point number";
+ return StringRef();
+ }
+};
+
+
+
+template<>
+struct ScalarTraits<Hex8> {
+ static void output(const Hex8 &Val, void*, llvm::raw_ostream &Out) {
+ uint8_t Num = Val;
+ Out << format("0x%02X", Num);
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex8 &Val) {
+ uint64_t n;
+ if ( getAsUnsignedInteger(Scalar, 0, n) )
+ return "invalid hex8 number";
+ if ( n > 0xFF )
+ return "out of range hex8 number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<Hex16> {
+ static void output(const Hex16 &Val, void*, llvm::raw_ostream &Out) {
+ uint16_t Num = Val;
+ Out << format("0x%04X", Num);
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex16 &Val) {
+ uint64_t n;
+ if ( getAsUnsignedInteger(Scalar, 0, n) )
+ return "invalid hex16 number";
+ if ( n > 0xFFFF )
+ return "out of range hex16 number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+template<>
+struct ScalarTraits<Hex32> {
+ static void output(const Hex32 &Val, void*, llvm::raw_ostream &Out) {
+ uint32_t Num = Val;
+ Out << format("0x%08X", Num);
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex32 &Val) {
+ uint64_t n;
+ if ( getAsUnsignedInteger(Scalar, 0, n) )
+ return "invalid hex32 number";
+ if ( n > 0xFFFFFFFFUL )
+ return "out of range hex32 number";
+ Val = n;
+ return StringRef();
+ }
+};
+
+
+template<>
+struct ScalarTraits<Hex64> {
+ static void output(const Hex64 &Val, void*, llvm::raw_ostream &Out) {
+ uint64_t Num = Val;
+ Out << format("0x%016llX", Num);
+ }
+ static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex64 &Val) {
+ uint64_t Num;
+ if ( getAsUnsignedInteger(Scalar, 0, Num) )
+ return "invalid hex64 number";
+ Val = Num;
+ return StringRef();
+ }
+};
+
+
+
+
+// We want all the ScalarTrait specialized on built-in types
+// to be instantiated here.
+template <typename T>
+struct ForceUse {
+ ForceUse() : oproc(ScalarTraits<T>::output), iproc(ScalarTraits<T>::input) {}
+ void (*oproc)(const T &, void*, llvm::raw_ostream &);
+ llvm::StringRef (*iproc)(llvm::StringRef, void*, T &);
+};
+
+static ForceUse<bool> Dummy1;
+static ForceUse<llvm::StringRef> Dummy2;
+static ForceUse<uint8_t> Dummy3;
+static ForceUse<uint16_t> Dummy4;
+static ForceUse<uint32_t> Dummy5;
+static ForceUse<uint64_t> Dummy6;
+static ForceUse<int8_t> Dummy7;
+static ForceUse<int16_t> Dummy8;
+static ForceUse<int32_t> Dummy9;
+static ForceUse<int64_t> Dummy10;
+static ForceUse<float> Dummy11;
+static ForceUse<double> Dummy12;
+static ForceUse<Hex8> Dummy13;
+static ForceUse<Hex16> Dummy14;
+static ForceUse<Hex32> Dummy15;
+static ForceUse<Hex64> Dummy16;
+
+
+
+} // namespace yaml
+} // namespace llvm
+
+
diff --git a/unittests/Support/CMakeLists.txt b/unittests/Support/CMakeLists.txt
index 09a0ea50d7..f6a5949cdb 100644
--- a/unittests/Support/CMakeLists.txt
+++ b/unittests/Support/CMakeLists.txt
@@ -24,6 +24,7 @@ add_llvm_unittest(SupportTests
SwapByteOrderTest.cpp
TimeValue.cpp
ValueHandleTest.cpp
+ YAMLIOTest.cpp
YAMLParserTest.cpp
formatted_raw_ostream_test.cpp
raw_ostream_test.cpp
diff --git a/unittests/Support/YAMLIOTest.cpp b/unittests/Support/YAMLIOTest.cpp
new file mode 100644
index 0000000000..c24114a695
--- /dev/null
+++ b/unittests/Support/YAMLIOTest.cpp
@@ -0,0 +1,1288 @@
+//===- unittest/Support/YAMLIOTest.cpp ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/YAMLTraits.h"
+#include "gtest/gtest.h"
+
+
+using llvm::yaml::Input;
+using llvm::yaml::Output;
+using llvm::yaml::IO;
+using llvm::yaml::MappingTraits;
+using llvm::yaml::MappingNormalization;
+using llvm::yaml::ScalarTraits;
+using llvm::yaml::Hex8;
+using llvm::yaml::Hex16;
+using llvm::yaml::Hex32;
+using llvm::yaml::Hex64;
+
+
+//===----------------------------------------------------------------------===//
+// Test MappingTraits
+//===----------------------------------------------------------------------===//
+
+struct FooBar {
+ int foo;
+ int bar;
+};
+typedef std::vector<FooBar> FooBarSequence;
+
+LLVM_YAML_IS_SEQUENCE_VECTOR(FooBar)
+
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct MappingTraits<FooBar> {
+ static void mapping(IO &io, FooBar& fb) {
+ io.mapRequired("foo", fb.foo);
+ io.mapRequired("bar", fb.bar);
+ }
+ };
+}
+}
+
+
+//
+// Test the reading of a yaml mapping
+//
+TEST(YAMLIO, TestMapRead) {
+ FooBar doc;
+ Input yin("---\nfoo: 3\nbar: 5\n...\n");
+ yin >> doc;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(doc.foo, 3);
+ EXPECT_EQ(doc.bar,5);
+}
+
+
+//
+// Test the reading of a yaml sequence of mappings
+//
+TEST(YAMLIO, TestSequenceMapRead) {
+ FooBarSequence seq;
+ Input yin("---\n - foo: 3\n bar: 5\n - foo: 7\n bar: 9\n...\n");
+ yin >> seq;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(seq.size(), 2UL);
+ FooBar& map1 = seq[0];
+ FooBar& map2 = seq[1];
+ EXPECT_EQ(map1.foo, 3);
+ EXPECT_EQ(map1.bar, 5);
+ EXPECT_EQ(map2.foo, 7);
+ EXPECT_EQ(map2.bar, 9);
+}
+
+
+//
+// Test writing then reading back a sequence of mappings
+//
+TEST(YAMLIO, TestSequenceMapWriteAndRead) {
+ std::string intermediate;
+ {
+ FooBar entry1;
+ entry1.foo = 10;
+ entry1.bar = -3;
+ FooBar entry2;
+ entry2.foo = 257;
+ entry2.bar = 0;
+ FooBarSequence seq;
+ seq.push_back(entry1);
+ seq.push_back(entry2);
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << seq;
+ }
+
+ {
+ Input yin(intermediate);
+ FooBarSequence seq2;
+ yin >> seq2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(seq2.size(), 2UL);
+ FooBar& map1 = seq2[0];
+ FooBar& map2 = seq2[1];
+ EXPECT_EQ(map1.foo, 10);
+ EXPECT_EQ(map1.bar, -3);
+ EXPECT_EQ(map2.foo, 257);
+ EXPECT_EQ(map2.bar, 0);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Test built-in types
+//===----------------------------------------------------------------------===//
+
+struct BuiltInTypes {
+ llvm::StringRef str;
+ uint64_t u64;
+ uint32_t u32;
+ uint16_t u16;
+ uint8_t u8;
+ bool b;
+ int64_t s64;
+ int32_t s32;
+ int16_t s16;
+ int8_t s8;
+ float f;
+ double d;
+ Hex8 h8;
+ Hex16 h16;
+ Hex32 h32;
+ Hex64 h64;
+};
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct MappingTraits<BuiltInTypes> {
+ static void mapping(IO &io, BuiltInTypes& bt) {
+ io.mapRequired("str", bt.str);
+ io.mapRequired("u64", bt.u64);
+ io.mapRequired("u32", bt.u32);
+ io.mapRequired("u16", bt.u16);
+ io.mapRequired("u8", bt.u8);
+ io.mapRequired("b", bt.b);
+ io.mapRequired("s64", bt.s64);
+ io.mapRequired("s32", bt.s32);
+ io.mapRequired("s16", bt.s16);
+ io.mapRequired("s8", bt.s8);
+ io.mapRequired("f", bt.f);
+ io.mapRequired("d", bt.d);
+ io.mapRequired("h8", bt.h8);
+ io.mapRequired("h16", bt.h16);
+ io.mapRequired("h32", bt.h32);
+ io.mapRequired("h64", bt.h64);
+ }
+ };
+}
+}
+
+
+//
+// Test the reading of all built-in scalar conversions
+//
+TEST(YAMLIO, TestReadBuiltInTypes) {
+ BuiltInTypes map;
+ Input yin("---\n"
+ "str: hello there\n"
+ "u64: 5000000000\n"
+ "u32: 4000000000\n"
+ "u16: 65000\n"
+ "u8: 255\n"
+ "b: false\n"
+ "s64: -5000000000\n"
+ "s32: -2000000000\n"
+ "s16: -32000\n"
+ "s8: -127\n"
+ "f: 137.125\n"
+ "d: -2.8625\n"
+ "h8: 0xFF\n"
+ "h16: 0x8765\n"
+ "h32: 0xFEDCBA98\n"
+ "h64: 0xFEDCBA9876543210\n"
+ "...\n");
+ yin >> map;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_TRUE(map.str.equals("hello there"));
+ EXPECT_EQ(map.u64, 5000000000ULL);
+ EXPECT_EQ(map.u32, 4000000000);
+ EXPECT_EQ(map.u16, 65000);
+ EXPECT_EQ(map.u8, 255);
+ EXPECT_EQ(map.b, false);
+ EXPECT_EQ(map.s64, -5000000000LL);
+ EXPECT_EQ(map.s32, -2000000000L);
+ EXPECT_EQ(map.s16, -32000);
+ EXPECT_EQ(map.s8, -127);
+ EXPECT_EQ(map.f, 137.125);
+ EXPECT_EQ(map.d, -2.8625);
+ EXPECT_EQ(map.h8, Hex8(255));
+ EXPECT_EQ(map.h16, Hex16(0x8765));
+ EXPECT_EQ(map.h32, Hex32(0xFEDCBA98));
+ EXPECT_EQ(map.h64, Hex64(0xFEDCBA9876543210LL));
+}
+
+
+//
+// Test writing then reading back all built-in scalar types
+//
+TEST(YAMLIO, TestReadWriteBuiltInTypes) {
+ std::string intermediate;
+ {
+ BuiltInTypes map;
+ map.str = "one two";
+ map.u64 = 6000000000;
+ map.u32 = 3000000000;
+ map.u16 = 50000;
+ map.u8 = 254;
+ map.b = true;
+ map.s64 = -6000000000;
+ map.s32 = -2000000000;
+ map.s16 = -32000;
+ map.s8 = -128;
+ map.f = 3.25;
+ map.d = -2.8625;
+ map.h8 = 254;
+ map.h16 = 50000;
+ map.h32 = 3000000000;
+ map.h64 = 6000000000LL;
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << map;
+ }
+
+ {
+ Input yin(intermediate);
+ BuiltInTypes map;
+ yin >> map;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_TRUE(map.str.equals("one two"));
+ EXPECT_EQ(map.u64, 6000000000ULL);
+ EXPECT_EQ(map.u32, 3000000000UL);
+ EXPECT_EQ(map.u16, 50000);
+ EXPECT_EQ(map.u8, 254);
+ EXPECT_EQ(map.b, true);
+ EXPECT_EQ(map.s64, -6000000000LL);
+ EXPECT_EQ(map.s32, -2000000000L);
+ EXPECT_EQ(map.s16, -32000);
+ EXPECT_EQ(map.s8, -128);
+ EXPECT_EQ(map.f, 3.25);
+ EXPECT_EQ(map.d, -2.8625);
+ EXPECT_EQ(map.h8, Hex8(254));
+ EXPECT_EQ(map.h16, Hex16(50000));
+ EXPECT_EQ(map.h32, Hex32(3000000000));
+ EXPECT_EQ(map.h64, Hex64(6000000000LL));
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Test ScalarEnumerationTraits
+//===----------------------------------------------------------------------===//
+
+enum Colors {
+ cRed,
+ cBlue,
+ cGreen,
+ cYellow
+};
+
+struct ColorMap {
+ Colors c1;
+ Colors c2;
+ Colors c3;
+ Colors c4;
+ Colors c5;
+ Colors c6;
+};
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct ScalarEnumerationTraits<Colors> {
+ static void enumeration(IO &io, Colors &value) {
+ io.enumCase(value, "red", cRed);
+ io.enumCase(value, "blue", cBlue);
+ io.enumCase(value, "green", cGreen);
+ io.enumCase(value, "yellow",cYellow);
+ }
+ };
+ template <>
+ struct MappingTraits<ColorMap> {
+ static void mapping(IO &io, ColorMap& c) {
+ io.mapRequired("c1", c.c1);
+ io.mapRequired("c2", c.c2);
+ io.mapRequired("c3", c.c3);
+ io.mapOptional("c4", c.c4, cBlue); // supplies default
+ io.mapOptional("c5", c.c5, cYellow); // supplies default
+ io.mapOptional("c6", c.c6, cRed); // supplies default
+ }
+ };
+}
+}
+
+
+//
+// Test reading enumerated scalars
+//
+TEST(YAMLIO, TestEnumRead) {
+ ColorMap map;
+ Input yin("---\n"
+ "c1: blue\n"
+ "c2: red\n"
+ "c3: green\n"
+ "c5: yellow\n"
+ "...\n");
+ yin >> map;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(cBlue, map.c1);
+ EXPECT_EQ(cRed, map.c2);
+ EXPECT_EQ(cGreen, map.c3);
+ EXPECT_EQ(cBlue, map.c4); // tests default
+ EXPECT_EQ(cYellow,map.c5); // tests overridden
+ EXPECT_EQ(cRed, map.c6); // tests default
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Test ScalarBitSetTraits
+//===----------------------------------------------------------------------===//
+
+enum MyFlags {
+ flagNone = 0,
+ flagBig = 1 << 0,
+ flagFlat = 1 << 1,
+ flagRound = 1 << 2,
+ flagPointy = 1 << 3
+};
+inline MyFlags operator|(MyFlags a, MyFlags b) {
+ return static_cast<MyFlags>(
+ static_cast<uint32_t>(a) | static_cast<uint32_t>(b));
+}
+
+struct FlagsMap {
+ MyFlags f1;
+ MyFlags f2;
+ MyFlags f3;
+ MyFlags f4;
+};
+
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct ScalarBitSetTraits<MyFlags> {
+ static void bitset(IO &io, MyFlags &value) {
+ io.bitSetCase(value, "big", flagBig);
+ io.bitSetCase(value, "flat", flagFlat);
+ io.bitSetCase(value, "round", flagRound);
+ io.bitSetCase(value, "pointy",flagPointy);
+ }
+ };
+ template <>
+ struct MappingTraits<FlagsMap> {
+ static void mapping(IO &io, FlagsMap& c) {
+ io.mapRequired("f1", c.f1);
+ io.mapRequired("f2", c.f2);
+ io.mapRequired("f3", c.f3);
+ io.mapOptional("f4", c.f4, MyFlags(flagRound));
+ }
+ };
+}
+}
+
+
+//
+// Test reading flow sequence representing bit-mask values
+//
+TEST(YAMLIO, TestFlagsRead) {
+ FlagsMap map;
+ Input yin("---\n"
+ "f1: [ big ]\n"
+ "f2: [ round, flat ]\n"
+ "f3: []\n"
+ "...\n");
+ yin >> map;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(flagBig, map.f1);
+ EXPECT_EQ(flagRound|flagFlat, map.f2);
+ EXPECT_EQ(flagNone, map.f3); // check empty set
+ EXPECT_EQ(flagRound, map.f4); // check optional key
+}
+
+
+//
+// Test writing then reading back bit-mask values
+//
+TEST(YAMLIO, TestReadWriteFlags) {
+ std::string intermediate;
+ {
+ FlagsMap map;
+ map.f1 = flagBig;
+ map.f2 = flagRound | flagFlat;
+ map.f3 = flagNone;
+ map.f4 = flagNone;
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << map;
+ }
+
+ {
+ Input yin(intermediate);
+ FlagsMap map2;
+ yin >> map2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(flagBig, map2.f1);
+ EXPECT_EQ(flagRound|flagFlat, map2.f2);
+ EXPECT_EQ(flagNone, map2.f3);
+ //EXPECT_EQ(flagRound, map2.f4); // check optional key
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Test ScalarTraits
+//===----------------------------------------------------------------------===//
+
+struct MyCustomType {
+ int length;
+ int width;
+};
+
+struct MyCustomTypeMap {
+ MyCustomType f1;
+ MyCustomType f2;
+ int f3;
+};
+
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct MappingTraits<MyCustomTypeMap> {
+ static void mapping(IO &io, MyCustomTypeMap& s) {
+ io.mapRequired("f1", s.f1);
+ io.mapRequired("f2", s.f2);
+ io.mapRequired("f3", s.f3);
+ }
+ };
+ // MyCustomType is formatted as a yaml scalar. A value of
+ // {length=3, width=4} would be represented in yaml as "3 by 4".
+ template<>
+ struct ScalarTraits<MyCustomType> {
+ static void output(const MyCustomType &value, void* ctxt, llvm::raw_ostream &out) {
+ out << llvm::format("%d by %d", value.length, value.width);
+ }
+ static StringRef input(StringRef scalar, void* ctxt, MyCustomType &value) {
+ size_t byStart = scalar.find("by");
+ if ( byStart != StringRef::npos ) {
+ StringRef lenStr = scalar.slice(0, byStart);
+ lenStr = lenStr.rtrim();
+ if ( lenStr.getAsInteger(0, value.length) ) {
+ return "malformed length";
+ }
+ StringRef widthStr = scalar.drop_front(byStart+2);
+ widthStr = widthStr.ltrim();
+ if ( widthStr.getAsInteger(0, value.width) ) {
+ return "malformed width";
+ }
+ return StringRef();
+ }
+ else {
+ return "malformed by";
+ }
+ }
+ };
+}
+}
+
+
+//
+// Test writing then reading back custom values
+//
+TEST(YAMLIO, TestReadWriteMyCustomType) {
+ std::string intermediate;
+ {
+ MyCustomTypeMap map;
+ map.f1.length = 1;
+ map.f1.width = 4;
+ map.f2.length = 100;
+ map.f2.width = 400;
+ map.f3 = 10;
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << map;
+ }
+
+ {
+ Input yin(intermediate);
+ MyCustomTypeMap map2;
+ yin >> map2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(1, map2.f1.length);
+ EXPECT_EQ(4, map2.f1.width);
+ EXPECT_EQ(100, map2.f2.length);
+ EXPECT_EQ(400, map2.f2.width);
+ EXPECT_EQ(10, map2.f3);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Test flow sequences
+//===----------------------------------------------------------------------===//
+
+LLVM_YAML_STRONG_TYPEDEF(int, MyNumber)
+LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyNumber)
+LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::StringRef)
+
+namespace llvm {
+namespace yaml {
+ template<>
+ struct ScalarTraits<MyNumber> {
+ static void output(const MyNumber &value, void *, llvm::raw_ostream &out) {
+ out << value;
+ }
+
+ static StringRef input(StringRef scalar, void *, MyNumber &value) {
+ int64_t n;
+ if ( getAsSignedInteger(scalar, 0, n) )
+ return "invalid number";
+ value = n;
+ return StringRef();
+ }
+ };
+}
+}
+
+struct NameAndNumbers {
+ llvm::StringRef name;
+ std::vector<llvm::StringRef> strings;
+ std::vector<MyNumber> single;
+ std::vector<MyNumber> numbers;
+};
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct MappingTraits<NameAndNumbers> {
+ static void mapping(IO &io, NameAndNumbers& nn) {
+ io.mapRequired("name", nn.name);
+ io.mapRequired("strings", nn.strings);
+ io.mapRequired("single", nn.single);
+ io.mapRequired("numbers", nn.numbers);
+ }
+ };
+}
+}
+
+
+//
+// Test writing then reading back custom values
+//
+TEST(YAMLIO, TestReadWriteMyFlowSequence) {
+ std::string intermediate;
+ {
+ NameAndNumbers map;
+ map.name = "hello";
+ map.strings.push_back(llvm::StringRef("one"));
+ map.strings.push_back(llvm::StringRef("two"));
+ map.single.push_back(1);
+ map.numbers.push_back(10);
+ map.numbers.push_back(-30);
+ map.numbers.push_back(1024);
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << map;
+ }
+
+ {
+ Input yin(intermediate);
+ NameAndNumbers map2;
+ yin >> map2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_TRUE(map2.name.equals("hello"));
+ EXPECT_EQ(map2.strings.size(), 2UL);
+ EXPECT_TRUE(map2.strings[0].equals("one"));
+ EXPECT_TRUE(map2.strings[1].equals("two"));
+ EXPECT_EQ(map2.single.size(), 1UL);
+ EXPECT_EQ(1, map2.single[0]);
+ EXPECT_EQ(map2.numbers.size(), 3UL);
+ EXPECT_EQ(10, map2.numbers[0]);
+ EXPECT_EQ(-30, map2.numbers[1]);
+ EXPECT_EQ(1024, map2.numbers[2]);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Test normalizing/denormalizing
+//===----------------------------------------------------------------------===//
+
+LLVM_YAML_STRONG_TYPEDEF(uint32_t, TotalSeconds)
+
+typedef std::vector<TotalSeconds> SecondsSequence;
+
+LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(TotalSeconds)
+
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct MappingTraits<TotalSeconds> {
+
+ class NormalizedSeconds {
+ public:
+ NormalizedSeconds(IO &io)
+ : hours(0), minutes(0), seconds(0) {
+ }
+ NormalizedSeconds(IO &, TotalSeconds &secs)
+ : hours(secs/3600),
+ minutes((secs - (hours*3600))/60),
+ seconds(secs % 60) {
+ }
+ TotalSeconds denormalize(IO &) {
+ return TotalSeconds(hours*3600 + minutes*60 + seconds);
+ }
+
+ uint32_t hours;
+ uint8_t minutes;
+ uint8_t seconds;
+ };
+
+ static void mapping(IO &io, TotalSeconds &secs) {
+ MappingNormalization<NormalizedSeconds, TotalSeconds> keys(io, secs);
+
+ io.mapOptional("hours", keys->hours, (uint32_t)0);
+ io.mapOptional("minutes", keys->minutes, (uint8_t)0);
+ io.mapRequired("seconds", keys->seconds);
+ }
+ };
+}
+}
+
+
+//
+// Test the reading of a yaml sequence of mappings
+//
+TEST(YAMLIO, TestReadMySecondsSequence) {
+ SecondsSequence seq;
+ Input yin("---\n - hours: 1\n seconds: 5\n - seconds: 59\n...\n");
+ yin >> seq;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(seq.size(), 2UL);
+ EXPECT_EQ(seq[0], 3605U);
+ EXPECT_EQ(seq[1], 59U);
+}
+
+
+//
+// Test writing then reading back custom values
+//
+TEST(YAMLIO, TestReadWriteMySecondsSequence) {
+ std::string intermediate;
+ {
+ SecondsSequence seq;
+ seq.push_back(4000);
+ seq.push_back(500);
+ seq.push_back(59);
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << seq;
+ }
+ {
+ Input yin(intermediate);
+ SecondsSequence seq2;
+ yin >> seq2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(seq2.size(), 3UL);
+ EXPECT_EQ(seq2[0], 4000U);
+ EXPECT_EQ(seq2[1], 500U);
+ EXPECT_EQ(seq2[2], 59U);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Test dynamic typing
+//===----------------------------------------------------------------------===//
+
+enum AFlags {
+ a1,
+ a2,
+ a3
+};
+
+enum BFlags {
+ b1,
+ b2,
+ b3
+};
+
+enum Kind {
+ kindA,
+ kindB
+};
+
+struct KindAndFlags {
+ KindAndFlags() : kind(kindA), flags(0) { }
+ KindAndFlags(Kind k, uint32_t f) : kind(k), flags(f) { }
+ Kind kind;
+ uint32_t flags;
+};
+
+typedef std::vector<KindAndFlags> KindAndFlagsSequence;
+
+LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(KindAndFlags)
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct ScalarEnumerationTraits<AFlags> {
+ static void enumeration(IO &io, AFlags &value) {
+ io.enumCase(value, "a1", a1);
+ io.enumCase(value, "a2", a2);
+ io.enumCase(value, "a3", a3);
+ }
+ };
+ template <>
+ struct ScalarEnumerationTraits<BFlags> {
+ static void enumeration(IO &io, BFlags &value) {
+ io.enumCase(value, "b1", b1);
+ io.enumCase(value, "b2", b2);
+ io.enumCase(value, "b3", b3);
+ }
+ };
+ template <>
+ struct ScalarEnumerationTraits<Kind> {
+ static void enumeration(IO &io, Kind &value) {
+ io.enumCase(value, "A", kindA);
+ io.enumCase(value, "B", kindB);
+ }
+ };
+ template <>
+ struct MappingTraits<KindAndFlags> {
+ static void mapping(IO &io, KindAndFlags& kf) {
+ io.mapRequired("kind", kf.kind);
+ // type of flags field varies depending on kind field
+ if ( kf.kind == kindA )
+ io.mapRequired("flags", *((AFlags*)&kf.flags));
+ else
+ io.mapRequired("flags", *((BFlags*)&kf.flags));
+ }
+ };
+}
+}
+
+
+//
+// Test the reading of a yaml sequence dynamic types
+//
+TEST(YAMLIO, TestReadKindAndFlagsSequence) {
+ KindAndFlagsSequence seq;
+ Input yin("---\n - kind: A\n flags: a2\n - kind: B\n flags: b1\n...\n");
+ yin >> seq;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(seq.size(), 2UL);
+ EXPECT_EQ(seq[0].kind, kindA);
+ EXPECT_EQ(seq[0].flags, a2);
+ EXPECT_EQ(seq[1].kind, kindB);
+ EXPECT_EQ(seq[1].flags, b1);
+}
+
+//
+// Test writing then reading back dynamic types
+//
+TEST(YAMLIO, TestReadWriteKindAndFlagsSequence) {
+ std::string intermediate;
+ {
+ KindAndFlagsSequence seq;
+ seq.push_back(KindAndFlags(kindA,a1));
+ seq.push_back(KindAndFlags(kindB,b1));
+ seq.push_back(KindAndFlags(kindA,a2));
+ seq.push_back(KindAndFlags(kindB,b2));
+ seq.push_back(KindAndFlags(kindA,a3));
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << seq;
+ }
+ {
+ Input yin(intermediate);
+ KindAndFlagsSequence seq2;
+ yin >> seq2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(seq2.size(), 5UL);
+ EXPECT_EQ(seq2[0].kind, kindA);
+ EXPECT_EQ(seq2[0].flags, a1);
+ EXPECT_EQ(seq2[1].kind, kindB);
+ EXPECT_EQ(seq2[1].flags, b1);
+ EXPECT_EQ(seq2[2].kind, kindA);
+ EXPECT_EQ(seq2[2].flags, a2);
+ EXPECT_EQ(seq2[3].kind, kindB);
+ EXPECT_EQ(seq2[3].flags, b2);
+ EXPECT_EQ(seq2[4].kind, kindA);
+ EXPECT_EQ(seq2[4].flags, a3);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Test document list
+//===----------------------------------------------------------------------===//
+
+struct FooBarMap {
+ int foo;
+ int bar;
+};
+typedef std::vector<FooBarMap> FooBarMapDocumentList;
+
+LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(FooBarMap)
+
+
+namespace llvm {
+namespace yaml {
+ template <>
+ struct MappingTraits<FooBarMap> {
+ static void mapping(IO &io, FooBarMap& fb) {
+ io.mapRequired("foo", fb.foo);
+ io.mapRequired("bar", fb.bar);
+ }
+ };
+}
+}
+
+
+//
+// Test the reading of a yaml mapping
+//
+TEST(YAMLIO, TestDocRead) {
+ FooBarMap doc;
+ Input yin("---\nfoo: 3\nbar: 5\n...\n");
+ yin >> doc;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(doc.foo, 3);
+ EXPECT_EQ(doc.bar,5);
+}
+
+
+
+//
+// Test writing then reading back a sequence of mappings
+//
+TEST(YAMLIO, TestSequenceDocListWriteAndRead) {
+ std::string intermediate;
+ {
+ FooBarMap doc1;
+ doc1.foo = 10;
+ doc1.bar = -3;
+ FooBarMap doc2;
+ doc2.foo = 257;
+ doc2.bar = 0;
+ std::vector<FooBarMap> docList;
+ docList.push_back(doc1);
+ docList.push_back(doc2);
+
+ llvm::raw_string_ostream ostr(intermediate);
+ Output yout(ostr);
+ yout << docList;
+ }
+
+
+ {
+ Input yin(intermediate);
+ std::vector<FooBarMap> docList2;
+ yin >> docList2;
+
+ EXPECT_FALSE(yin.error());
+ EXPECT_EQ(docList2.size(), 2UL);
+ FooBarMap& map1 = docList2[0];
+ FooBarMap& map2 = docList2[1];
+ EXPECT_EQ(map1.foo, 10);
+ EXPECT_EQ(map1.bar, -3);
+ EXPECT_EQ(map2.foo, 257);
+ EXPECT_EQ(map2.bar, 0);
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Test error handling
+//===----------------------------------------------------------------------===//
+
+
+
+static void suppressErrorMessages(const llvm::SMDiagnostic &, void *) {
+}
+
+
+//
+// Test error handling of unknown enumerated scalar
+//
+TEST(YAMLIO, TestColorsReadError) {
+ ColorMap map;
+ Input yin("---\n"
+ "c1: blue\n"
+ "c2: purple\n"
+ "c3: green\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> map;
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling of flow sequence with unknown value
+//
+TEST(YAMLIO, TestFlagsReadError) {
+ FlagsMap map;
+ Input yin("---\n"
+ "f1: [ big ]\n"
+ "f2: [ round, hollow ]\n"
+ "f3: []\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> map;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in uint8_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(uint8_t)
+TEST(YAMLIO, TestReadBuiltInTypesUint8Error) {
+ std::vector<uint8_t> seq;
+ Input yin("---\n"
+ "- 255\n"
+ "- 0\n"
+ "- 257\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in uint16_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(uint16_t)
+TEST(YAMLIO, TestReadBuiltInTypesUint16Error) {
+ std::vector<uint16_t> seq;
+ Input yin("---\n"
+ "- 65535\n"
+ "- 0\n"
+ "- 66000\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in uint32_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(uint32_t)
+TEST(YAMLIO, TestReadBuiltInTypesUint32Error) {
+ std::vector<uint32_t> seq;
+ Input yin("---\n"
+ "- 4000000000\n"
+ "- 0\n"
+ "- 5000000000\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in uint64_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(uint64_t)
+TEST(YAMLIO, TestReadBuiltInTypesUint64Error) {
+ std::vector<uint64_t> seq;
+ Input yin("---\n"
+ "- 18446744073709551615\n"
+ "- 0\n"
+ "- 19446744073709551615\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in int8_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(int8_t)
+TEST(YAMLIO, TestReadBuiltInTypesint8OverError) {
+ std::vector<int8_t> seq;
+ Input yin("---\n"
+ "- -128\n"
+ "- 0\n"
+ "- 127\n"
+ "- 128\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in int8_t type
+//
+TEST(YAMLIO, TestReadBuiltInTypesint8UnderError) {
+ std::vector<int8_t> seq;
+ Input yin("---\n"
+ "- -128\n"
+ "- 0\n"
+ "- 127\n"
+ "- -129\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in int16_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(int16_t)
+TEST(YAMLIO, TestReadBuiltInTypesint16UnderError) {
+ std::vector<int16_t> seq;
+ Input yin("---\n"
+ "- 32767\n"
+ "- 0\n"
+ "- -32768\n"
+ "- -32769\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in int16_t type
+//
+TEST(YAMLIO, TestReadBuiltInTypesint16OverError) {
+ std::vector<int16_t> seq;
+ Input yin("---\n"
+ "- 32767\n"
+ "- 0\n"
+ "- -32768\n"
+ "- 32768\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in int32_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(int32_t)
+TEST(YAMLIO, TestReadBuiltInTypesint32UnderError) {
+ std::vector<int32_t> seq;
+ Input yin("---\n"
+ "- 2147483647\n"
+ "- 0\n"
+ "- -2147483648\n"
+ "- -2147483649\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in int32_t type
+//
+TEST(YAMLIO, TestReadBuiltInTypesint32OverError) {
+ std::vector<int32_t> seq;
+ Input yin("---\n"
+ "- 2147483647\n"
+ "- 0\n"
+ "- -2147483648\n"
+ "- 2147483649\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in int64_t type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(int64_t)
+TEST(YAMLIO, TestReadBuiltInTypesint64UnderError) {
+ std::vector<int64_t> seq;
+ Input yin("---\n"
+ "- -9223372036854775808\n"
+ "- 0\n"
+ "- 9223372036854775807\n"
+ "- -9223372036854775809\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in int64_t type
+//
+TEST(YAMLIO, TestReadBuiltInTypesint64OverError) {
+ std::vector<int64_t> seq;
+ Input yin("---\n"
+ "- -9223372036854775808\n"
+ "- 0\n"
+ "- 9223372036854775807\n"
+ "- 9223372036854775809\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in float type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(float)
+TEST(YAMLIO, TestReadBuiltInTypesFloatError) {
+ std::vector<float> seq;
+ Input yin("---\n"
+ "- 0.0\n"
+ "- 1000.1\n"
+ "- -123.456\n"
+ "- 1.2.3\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in float type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(double)
+TEST(YAMLIO, TestReadBuiltInTypesDoubleError) {
+ std::vector<double> seq;
+ Input yin("---\n"
+ "- 0.0\n"
+ "- 1000.1\n"
+ "- -123.456\n"
+ "- 1.2.3\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in Hex8 type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(Hex8)
+TEST(YAMLIO, TestReadBuiltInTypesHex8Error) {
+ std::vector<Hex8> seq;
+ Input yin("---\n"
+ "- 0x12\n"
+ "- 0xFE\n"
+ "- 0x123\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+
+//
+// Test error handling reading built-in Hex16 type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(Hex16)
+TEST(YAMLIO, TestReadBuiltInTypesHex16Error) {
+ std::vector<Hex16> seq;
+ Input yin("---\n"
+ "- 0x0012\n"
+ "- 0xFEFF\n"
+ "- 0x12345\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in Hex32 type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(Hex32)
+TEST(YAMLIO, TestReadBuiltInTypesHex32Error) {
+ std::vector<Hex32> seq;
+ Input yin("---\n"
+ "- 0x0012\n"
+ "- 0xFEFF0000\n"
+ "- 0x1234556789\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+//
+// Test error handling reading built-in Hex64 type
+//
+LLVM_YAML_IS_SEQUENCE_VECTOR(Hex64)
+TEST(YAMLIO, TestReadBuiltInTypesHex64Error) {
+ std::vector<Hex64> seq;
+ Input yin("---\n"
+ "- 0x0012\n"
+ "- 0xFFEEDDCCBBAA9988\n"
+ "- 0x12345567890ABCDEF0\n"
+ "...\n");
+ yin.setDiagHandler(suppressErrorMessages);
+ yin >> seq;
+
+ EXPECT_TRUE(yin.error());
+}
+
+