summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/ADT/IntervalMap.h1705
-rw-r--r--lib/Support/CMakeLists.txt1
-rw-r--r--lib/Support/IntervalMap.cpp60
-rw-r--r--unittests/ADT/IntervalMapTest.cpp357
-rw-r--r--unittests/CMakeLists.txt1
5 files changed, 2124 insertions, 0 deletions
diff --git a/include/llvm/ADT/IntervalMap.h b/include/llvm/ADT/IntervalMap.h
new file mode 100644
index 0000000000..f54a0abf6c
--- /dev/null
+++ b/include/llvm/ADT/IntervalMap.h
@@ -0,0 +1,1705 @@
+//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a coalescing interval map for small objects.
+//
+// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
+// same value are represented in a compressed form.
+//
+// Iterators provide ordered access to the compressed intervals rather than the
+// individual keys, and insert and erase operations use key intervals as well.
+//
+// Like SmallVector, IntervalMap will store the first N intervals in the map
+// object itself without any allocations. When space is exhausted it switches to
+// a B+-tree representation with very small overhead for small key and value
+// objects.
+//
+// A Traits class specifies how keys are compared. It also allows IntervalMap to
+// work with both closed and half-open intervals.
+//
+// Keys and values are not stored next to each other in a std::pair, so we don't
+// provide such a value_type. Dereferencing iterators only returns the mapped
+// value. The interval bounds are accessible through the start() and stop()
+// iterator methods.
+//
+// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
+// is the optimal size. For large objects use std::map instead.
+//
+//===----------------------------------------------------------------------===//
+//
+// Synopsis:
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap {
+// public:
+// typedef KeyT key_type;
+// typedef ValT mapped_type;
+// typedef RecyclingAllocator<...> Allocator;
+// class iterator;
+// class const_iterator;
+//
+// explicit IntervalMap(Allocator&);
+// ~IntervalMap():
+//
+// bool empty() const;
+// KeyT start() const;
+// KeyT stop() const;
+// ValT lookup(KeyT x, Value NotFound = Value()) const;
+//
+// const_iterator begin() const;
+// const_iterator end() const;
+// iterator begin();
+// iterator end();
+// const_iterator find(KeyT x) const;
+// iterator find(KeyT x);
+//
+// void insert(KeyT a, KeyT b, ValT y);
+// void clear();
+// };
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap::const_iterator :
+// public std::iterator<std::bidirectional_iterator_tag, ValT> {
+// public:
+// bool operator==(const const_iterator &) const;
+// bool operator!=(const const_iterator &) const;
+// bool valid() const;
+//
+// const KeyT &start() const;
+// const KeyT &stop() const;
+// const ValT &value() const;
+// const ValT &operator*() const;
+// const ValT *operator->() const;
+//
+// const_iterator &operator++();
+// const_iterator &operator++(int);
+// const_iterator &operator--();
+// const_iterator &operator--(int);
+// void goToBegin();
+// void goToEnd();
+// void find(KeyT x);
+// void advanceTo(KeyT x);
+// };
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap::iterator : public const_iterator {
+// public:
+// void insert(KeyT a, KeyT b, Value y);
+// void erase();
+// };
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_INTERVALMAP_H
+#define LLVM_ADT_INTERVALMAP_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/RecyclingAllocator.h"
+#include <limits>
+#include <iterator>
+
+// FIXME: Remove debugging code
+#ifndef NDEBUG
+#include "llvm/Support/raw_ostream.h"
+#endif
+
+namespace llvm {
+
+
+//===----------------------------------------------------------------------===//
+//--- Key traits ---//
+//===----------------------------------------------------------------------===//
+//
+// The IntervalMap works with closed or half-open intervals.
+// Adjacent intervals that map to the same value are coalesced.
+//
+// The IntervalMapInfo traits class is used to determine if a key is contained
+// in an interval, and if two intervals are adjacent so they can be coalesced.
+// The provided implementation works for closed integer intervals, other keys
+// probably need a specialized version.
+//
+// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
+//
+// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
+// allowed. This is so that stopLess(a, b) can be used to determine if two
+// intervals overlap.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename T>
+struct IntervalMapInfo {
+
+ /// startLess - Return true if x is not in [a;b].
+ /// This is x < a both for closed intervals and for [a;b) half-open intervals.
+ static inline bool startLess(const T &x, const T &a) {
+ return x < a;
+ }
+
+ /// stopLess - Return true if x is not in [a;b].
+ /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
+ static inline bool stopLess(const T &b, const T &x) {
+ return b < x;
+ }
+
+ /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
+ /// This is a+1 == b for closed intervals, a == b for half-open intervals.
+ static inline bool adjacent(const T &a, const T &b) {
+ return a+1 == b;
+ }
+
+};
+
+/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
+/// It should be considered private to the implementation.
+namespace IntervalMapImpl {
+
+// Forward declarations.
+template <typename, typename, unsigned, typename> class LeafNode;
+template <typename, typename, unsigned, typename> class BranchNode;
+
+typedef std::pair<unsigned,unsigned> IdxPair;
+
+
+//===----------------------------------------------------------------------===//
+//--- Node Storage ---//
+//===----------------------------------------------------------------------===//
+//
+// Both leaf and branch nodes store vectors of (key,value) pairs.
+// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (KeyT, NodeRef).
+//
+// Keys and values are stored in separate arrays to avoid padding caused by
+// different object alignments. This also helps improve locality of reference
+// when searching the keys.
+//
+// The nodes don't know how many elements they contain - that information is
+// stored elsewhere. Omitting the size field prevents padding and allows a node
+// to fill the allocated cache lines completely.
+//
+// These are typical key and value sizes, the node branching factor (N), and
+// wasted space when nodes are sized to fit in three cache lines (192 bytes):
+//
+// KT VT N Waste Used by
+// 4 4 24 0 Branch<4> (32-bit pointers)
+// 4 8 16 0 Branch<4>
+// 8 4 16 0 Leaf<4,4>
+// 8 8 12 0 Leaf<4,8>, Branch<8>
+// 16 4 9 12 Leaf<8,4>
+// 16 8 8 0 Leaf<8,8>
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KT, typename VT, unsigned N>
+class NodeBase {
+public:
+ enum { Capacity = N };
+
+ KT key[N];
+ VT val[N];
+
+ /// copy - Copy elements from another node.
+ /// @param other Node elements are copied from.
+ /// @param i Beginning of the source range in other.
+ /// @param j Beginning of the destination range in this.
+ /// @param count Number of elements to copy.
+ template <unsigned M>
+ void copy(const NodeBase<KT, VT, M> &Other, unsigned i,
+ unsigned j, unsigned Count) {
+ assert(i + Count <= M && "Invalid source range");
+ assert(j + Count <= N && "Invalid dest range");
+ std::copy(Other.key + i, Other.key + i + Count, key + j);
+ std::copy(Other.val + i, Other.val + i + Count, val + j);
+ }
+
+ /// lmove - Move elements to the left.
+ /// @param i Beginning of the source range.
+ /// @param j Beginning of the destination range.
+ /// @param count Number of elements to copy.
+ void lmove(unsigned i, unsigned j, unsigned Count) {
+ assert(j <= i && "Use rmove shift elements right");
+ copy(*this, i, j, Count);
+ }
+
+ /// rmove - Move elements to the right.
+ /// @param i Beginning of the source range.
+ /// @param j Beginning of the destination range.
+ /// @param count Number of elements to copy.
+ void rmove(unsigned i, unsigned j, unsigned Count) {
+ assert(i <= j && "Use lmove shift elements left");
+ assert(j + Count <= N && "Invalid range");
+ std::copy_backward(key + i, key + i + Count, key + j + Count);
+ std::copy_backward(val + i, val + i + Count, val + j + Count);
+ }
+
+ /// erase - Erase elements [i;j).
+ /// @param i Beginning of the range to erase.
+ /// @param j End of the range. (Exclusive).
+ /// @param size Number of elements in node.
+ void erase(unsigned i, unsigned j, unsigned Size) {
+ lmove(j, i, Size - j);
+ }
+
+ /// shift - Shift elements [i;size) 1 position to the right.
+ /// @param i Beginning of the range to move.
+ /// @param size Number of elements in node.
+ void shift(unsigned i, unsigned Size) {
+ rmove(i, i + 1, Size - i);
+ }
+
+ /// xferLeft - Transfer elements to a left sibling node.
+ /// @param size Number of elements in this.
+ /// @param sib Left sibling node.
+ /// @param ssize Number of elements in sib.
+ /// @param count Number of elements to transfer.
+ void xferLeft(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
+ Sib.copy(*this, 0, SSize, Count);
+ erase(0, Count, Size);
+ }
+
+ /// xferRight - Transfer elements to a right sibling node.
+ /// @param size Number of elements in this.
+ /// @param sib Right sibling node.
+ /// @param ssize Number of elements in sib.
+ /// @param count Number of elements to transfer.
+ void xferRight(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
+ Sib.rmove(0, Count, SSize);
+ Sib.copy(*this, Size-Count, 0, Count);
+ }
+
+ /// adjLeftSib - Adjust the number if elements in this node by moving
+ /// elements to or from a left sibling node.
+ /// @param size Number of elements in this.
+ /// @param sib Right sibling node.
+ /// @param ssize Number of elements in sib.
+ /// @param add The number of elements to add to this node, possibly < 0.
+ /// @return Number of elements added to this node, possibly negative.
+ int adjLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
+ if (Add > 0) {
+ // We want to grow, copy from sib.
+ unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
+ Sib.xferRight(SSize, *this, Size, Count);
+ return Count;
+ } else {
+ // We want to shrink, copy to sib.
+ unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
+ xferLeft(Size, Sib, SSize, Count);
+ return -Count;
+ }
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+//--- NodeSizer ---//
+//===----------------------------------------------------------------------===//
+//
+// Compute node sizes from key and value types.
+//
+// The branching factors are chosen to make nodes fit in three cache lines.
+// This may not be possible if keys or values are very large. Such large objects
+// are handled correctly, but a std::map would probably give better performance.
+//
+//===----------------------------------------------------------------------===//
+
+enum {
+ // Cache line size. Most architectures have 32 or 64 byte cache lines.
+ // We use 64 bytes here because it provides good branching factors.
+ Log2CacheLine = 6,
+ CacheLineBytes = 1 << Log2CacheLine,
+ DesiredNodeBytes = 3 * CacheLineBytes
+};
+
+template <typename KeyT, typename ValT>
+struct NodeSizer {
+ enum {
+ // Compute the leaf node branching factor that makes a node fit in three
+ // cache lines. The branching factor must be at least 3, or some B+-tree
+ // balancing algorithms won't work.
+ // LeafSize can't be larger than CacheLineBytes. This is required by the
+ // PointerIntPair used by NodeRef.
+ DesiredLeafSize = DesiredNodeBytes /
+ static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
+ MinLeafSize = 3,
+ LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize,
+
+ // Now that we have the leaf branching factor, compute the actual allocation
+ // unit size by rounding up to a whole number of cache lines.
+ LeafBytes = sizeof(NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>),
+ AllocBytes = (LeafBytes + CacheLineBytes-1) & ~(CacheLineBytes-1),
+
+ // Determine the branching factor for branch nodes.
+ BranchSize = AllocBytes /
+ static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
+ };
+
+ /// Allocator - The recycling allocator used for both branch and leaf nodes.
+ /// This typedef is very likely to be identical for all IntervalMaps with
+ /// reasonably sized entries, so the same allocator can be shared among
+ /// different kinds of maps.
+ typedef RecyclingAllocator<BumpPtrAllocator, char,
+ AllocBytes, CacheLineBytes> Allocator;
+
+};
+
+
+//===----------------------------------------------------------------------===//
+//--- NodeRef ---//
+//===----------------------------------------------------------------------===//
+//
+// B+-tree nodes can be leaves or branches, so we need a polymorphic node
+// pointer that can point to both kinds.
+//
+// All nodes are cache line aligned and the low 6 bits of a node pointer are
+// always 0. These bits are used to store the number of elements in the
+// referenced node. Besides saving space, placing node sizes in the parents
+// allow tree balancing algorithms to run without faulting cache lines for nodes
+// that may not need to be modified.
+//
+// A NodeRef doesn't know whether it references a leaf node or a branch node.
+// It is the responsibility of the caller to use the correct types.
+//
+// Nodes are never supposed to be empty, and it is invalid to store a node size
+// of 0 in a NodeRef. The valid range of sizes is 1-64.
+//
+//===----------------------------------------------------------------------===//
+
+struct CacheAlignedPointerTraits {
+ static inline void *getAsVoidPointer(void *P) { return P; }
+ static inline void *getFromVoidPointer(void *P) { return P; }
+ enum { NumLowBitsAvailable = Log2CacheLine };
+};
+
+template <typename KeyT, typename ValT, typename Traits>
+class NodeRef {
+public:
+ typedef LeafNode<KeyT, ValT, NodeSizer<KeyT, ValT>::LeafSize, Traits> Leaf;
+ typedef BranchNode<KeyT, ValT, NodeSizer<KeyT, ValT>::BranchSize,
+ Traits> Branch;
+
+private:
+ PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
+
+public:
+ /// NodeRef - Create a null ref.
+ NodeRef() {}
+
+ /// operator bool - Detect a null ref.
+ operator bool() const { return pip.getOpaqueValue(); }
+
+ /// NodeRef - Create a reference to the leaf node p with n elements.
+ NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {}
+
+ /// NodeRef - Create a reference to the branch node p with n elements.
+ NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {}
+
+ /// size - Return the number of elements in the referenced node.
+ unsigned size() const { return pip.getInt() + 1; }
+
+ /// setSize - Update the node size.
+ void setSize(unsigned n) { pip.setInt(n - 1); }
+
+ /// leaf - Return the referenced leaf node.
+ /// Note there are no dynamic type checks.
+ Leaf &leaf() const {
+ return *reinterpret_cast<Leaf*>(pip.getPointer());
+ }
+
+ /// branch - Return the referenced branch node.
+ /// Note there are no dynamic type checks.
+ Branch &branch() const {
+ return *reinterpret_cast<Branch*>(pip.getPointer());
+ }
+
+ bool operator==(const NodeRef &RHS) const {
+ if (pip == RHS.pip)
+ return true;
+ assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
+ return false;
+ }
+
+ bool operator!=(const NodeRef &RHS) const {
+ return !operator==(RHS);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+//--- Leaf nodes ---//
+//===----------------------------------------------------------------------===//
+//
+// Leaf nodes store up to N disjoint intervals with corresponding values.
+//
+// The intervals are kept sorted and fully coalesced so there are no adjacent
+// intervals mapping to the same value.
+//
+// These constraints are always satisfied:
+//
+// - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals.
+//
+// - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted.
+//
+// - val[i] != val[i + 1] ||
+// !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
+public:
+ const KeyT &start(unsigned i) const { return this->key[i].first; }
+ const KeyT &stop(unsigned i) const { return this->key[i].second; }
+ const ValT &value(unsigned i) const { return this->val[i]; }
+
+ KeyT &start(unsigned i) { return this->key[i].first; }
+ KeyT &stop(unsigned i) { return this->key[i].second; }
+ ValT &value(unsigned i) { return this->val[i]; }
+
+ /// findFrom - Find the first interval after i that may contain x.
+ /// @param i Starting index for the search.
+ /// @param size Number of elements in node.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i].stop, x), or size.
+ /// This is the first interval that can possibly contain x.
+ unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
+ assert(i <= Size && Size <= N && "Bad indices");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index is past the needed point");
+ while (i != Size && Traits::stopLess(stop(i), x)) ++i;
+ return i;
+ }
+
+ /// safeFind - Find an interval that is known to exist. This is the same as
+ /// findFrom except is it assumed that x is at least within range of the last
+ /// interval.
+ /// @param i Starting index for the search.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i].stop, x), never size.
+ /// This is the first interval that can possibly contain x.
+ unsigned safeFind(unsigned i, KeyT x) const {
+ assert(i < N && "Bad index");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index is past the needed point");
+ while (Traits::stopLess(stop(i), x)) ++i;
+ assert(i < N && "Unsafe intervals");
+ return i;
+ }
+
+ /// safeLookup - Lookup mapped value for a safe key.
+ /// It is assumed that x is within range of the last entry.
+ /// @param x Key to search for.
+ /// @param NotFound Value to return if x is not in any interval.
+ /// @return The mapped value at x or NotFound.
+ ValT safeLookup(KeyT x, ValT NotFound) const {
+ unsigned i = safeFind(0, x);
+ return Traits::startLess(x, start(i)) ? NotFound : value(i);
+ }
+
+ IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
+ unsigned extendStop(unsigned i, unsigned Size, KeyT b);
+
+#ifndef NDEBUG
+ void dump(unsigned Size) {
+ errs() << " N" << this << " [shape=record label=\"{ " << Size << '/' << N;
+ for (unsigned i = 0; i != Size; ++i)
+ errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
+ errs() << "}\"];\n";
+ }
+#endif
+
+};
+
+/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
+/// possible. This may cause the node to grow by 1, or it may cause the node
+/// to shrink because of coalescing.
+/// @param i Starting index = insertFrom(0, size, a)
+/// @param size Number of elements in node.
+/// @param a Interval start.
+/// @param b Interval stop.
+/// @param y Value be mapped.
+/// @return (insert position, new size), or (i, Capacity+1) on overflow.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IdxPair LeafNode<KeyT, ValT, N, Traits>::
+insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
+ assert(i <= Size && Size <= N && "Invalid index");
+ assert(!Traits::stopLess(b, a) && "Invalid interval");
+
+ // Verify the findFrom invariant.
+ assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
+ assert((i == Size || !Traits::stopLess(stop(i), a)));
+
+ // Coalesce with previous interval.
+ if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
+ return IdxPair(i - 1, extendStop(i - 1, Size, b));
+
+ // Detect overflow.
+ if (i == N)
+ return IdxPair(i, N + 1);
+
+ // Add new interval at end.
+ if (i == Size) {
+ start(i) = a;
+ stop(i) = b;
+ value(i) = y;
+ return IdxPair(i, Size + 1);
+ }
+
+ // Overlapping intervals?
+ if (!Traits::stopLess(b, start(i))) {
+ assert(value(i) == y && "Inconsistent values in overlapping intervals");
+ if (Traits::startLess(a, start(i)))
+ start(i) = a;
+ return IdxPair(i, extendStop(i, Size, b));
+ }
+
+ // Try to coalesce with following interval.
+ if (value(i) == y && Traits::adjacent(b, start(i))) {
+ start(i) = a;
+ return IdxPair(i, Size);
+ }
+
+ // We must insert before i. Detect overflow.
+ if (Size == N)
+ return IdxPair(i, N + 1);
+
+ // Insert before i.
+ this->shift(i, Size);
+ start(i) = a;
+ stop(i) = b;
+ value(i) = y;
+ return IdxPair(i, Size + 1);
+}
+
+/// extendStop - Extend stop(i) to b, coalescing with following intervals.
+/// @param i Interval to extend.
+/// @param size Number of elements in node.
+/// @param b New interval end point.
+/// @return New node size after coalescing.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+unsigned LeafNode<KeyT, ValT, N, Traits>::
+extendStop(unsigned i, unsigned Size, KeyT b) {
+ assert(i < Size && Size <= N && "Bad indices");
+
+ // Are we even extending the interval?
+ if (Traits::startLess(b, stop(i)))
+ return Size;
+
+ // Find the first interval that may be preserved.
+ unsigned j = findFrom(i + 1, Size, b);
+ if (j < Size) {
+ // Would key[i] overlap key[j] after the extension?
+ if (Traits::stopLess(b, start(j))) {
+ // Not overlapping. Perhaps adjacent and coalescable?
+ if (value(i) == value(j) && Traits::adjacent(b, start(j)))
+ b = stop(j++);
+ } else {
+ // Overlap. Include key[j] in the new interval.
+ assert(value(i) == value(j) && "Overlapping values");
+ b = stop(j++);
+ }
+ }
+ stop(i) = b;
+
+ // Entries [i+1;j) were coalesced.
+ if (i + 1 < j && j < Size)
+ this->erase(i + 1, j, Size);
+ return Size - (j - (i + 1));
+}
+
+
+//===----------------------------------------------------------------------===//
+//--- Branch nodes ---//
+//===----------------------------------------------------------------------===//
+//
+// A branch node stores references to 1--N subtrees all of the same height.
+//
+// The key array in a branch node holds the rightmost stop key of each subtree.
+// It is redundant to store the last stop key since it can be found in the
+// parent node, but doing so makes tree balancing a lot simpler.
+//
+// It is unusual for a branch node to only have one subtree, but it can happen
+// in the root node if it is smaller than the normal nodes.
+//
+// When all of the leaf nodes from all the subtrees are concatenated, they must
+// satisfy the same constraints as a single leaf node. They must be sorted,
+// sane, and fully coalesced.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class BranchNode : public NodeBase<KeyT, NodeRef<KeyT, ValT, Traits>, N> {
+ typedef NodeRef<KeyT, ValT, Traits> NodeRefT;
+public:
+ const KeyT &stop(unsigned i) const { return this->key[i]; }
+ const NodeRefT &subtree(unsigned i) const { return this->val[i]; }
+
+ KeyT &stop(unsigned i) { return this->key[i]; }
+ NodeRefT &subtree(unsigned i) { return this->val[i]; }
+
+ /// findFrom - Find the first subtree after i that may contain x.
+ /// @param i Starting index for the search.
+ /// @param size Number of elements in node.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i], x), or size.
+ /// This is the first subtree that can possibly contain x.
+ unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
+ assert(i <= Size && Size <= N && "Bad indices");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index to findFrom is past the needed point");
+ while (i != Size && Traits::stopLess(stop(i), x)) ++i;
+ return i;
+ }
+
+ /// safeFind - Find a subtree that is known to exist. This is the same as
+ /// findFrom except is it assumed that x is in range.
+ /// @param i Starting index for the search.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i], x), never size.
+ /// This is the first subtree that can possibly contain x.
+ unsigned safeFind(unsigned i, KeyT x) const {
+ assert(i < N && "Bad index");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index is past the needed point");
+ while (Traits::stopLess(stop(i), x)) ++i;
+ assert(i < N && "Unsafe intervals");
+ return i;
+ }
+
+ /// safeLookup - Get the subtree containing x, Assuming that x is in range.
+ /// @param x Key to search for.
+ /// @return Subtree containing x
+ NodeRefT safeLookup(KeyT x) const {
+ return subtree(safeFind(0, x));
+ }
+
+ /// insert - Insert a new (subtree, stop) pair.
+ /// @param i Insert position, following entries will be shifted.
+ /// @param size Number of elements in node.
+ /// @param node Subtree to insert.
+ /// @param stp Last key in subtree.
+ void insert(unsigned i, unsigned Size, NodeRefT Node, KeyT Stop) {
+ assert(Size < N && "branch node overflow");
+ assert(i <= Size && "Bad insert position");
+ this->shift(i, Size);
+ subtree(i) = Node;
+ stop(i) = Stop;
+ }
+
+#ifndef NDEBUG
+ void dump(unsigned Size) {
+ errs() << " N" << this << " [shape=record label=\"" << Size << '/' << N;
+ for (unsigned i = 0; i != Size; ++i)
+ errs() << " | <s" << i << "> " << stop(i);
+ errs() << "\"];\n";
+ for (unsigned i = 0; i != Size; ++i)
+ errs() << " N" << this << ":s" << i << " -> N"
+ << &subtree(i).branch() << ";\n";
+ }
+#endif
+
+};
+
+} // namespace IntervalMapImpl
+
+
+//===----------------------------------------------------------------------===//
+//--- IntervalMap ----//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT,
+ unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
+ typename Traits = IntervalMapInfo<KeyT> >
+class IntervalMap {
+ typedef IntervalMapImpl::NodeRef<KeyT, ValT, Traits> NodeRef;
+ typedef IntervalMapImpl::NodeSizer<KeyT, ValT> NodeSizer;
+ typedef typename NodeRef::Leaf Leaf;
+ typedef typename NodeRef::Branch Branch;
+ typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
+ typedef IntervalMapImpl::IdxPair IdxPair;
+
+ // The RootLeaf capacity is given as a template parameter. We must compute the
+ // corresponding RootBranch capacity.
+ enum {
+ DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
+ (sizeof(KeyT) + sizeof(NodeRef)),
+ RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
+ };
+
+ typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits> RootBranch;
+
+ // When branched, we store a global start key as well as the branch node.
+ struct RootBranchData {
+ KeyT start;
+ RootBranch node;
+ };
+
+ enum {
+ RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
+ sizeof(RootBranchData) : sizeof(RootLeaf)
+ };
+
+public:
+ typedef typename NodeSizer::Allocator Allocator;
+
+private:
+ // The root data is either a RootLeaf or a RootBranchData instance.
+ // We can't put them in a union since C++03 doesn't allow non-trivial
+ // constructors in unions.
+ // Instead, we use a char array with pointer alignment. The alignment is
+ // ensured by the allocator member in the class, but still verified in the
+ // constructor. We don't support keys or values that are more aligned than a
+ // pointer.
+ char data[RootDataSize];
+
+ // Tree height.
+ // 0: Leaves in root.
+ // 1: Root points to leaf.
+ // 2: root->branch->leaf ...
+ unsigned height;
+
+ // Number of entries in the root node.
+ unsigned rootSize;
+
+ // Allocator used for creating external nodes.
+ Allocator &allocator;
+
+ /// dataAs - Represent data as a node type without breaking aliasing rules.
+ template <typename T>
+ T &dataAs() const {
+ union {
+ const char *d;
+ T *t;
+ } u;
+ u.d = data;
+ return *u.t;
+ }
+
+ const RootLeaf &rootLeaf() const {
+ assert(!branched() && "Cannot acces leaf data in branched root");
+ return dataAs<RootLeaf>();
+ }
+ RootLeaf &rootLeaf() {
+ assert(!branched() && "Cannot acces leaf data in branched root");
+ return dataAs<RootLeaf>();
+ }
+ RootBranchData &rootBranchData() const {
+ assert(branched() && "Cannot access branch data in non-branched root");
+ return dataAs<RootBranchData>();
+ }
+ RootBranchData &rootBranchData() {
+ assert(branched() && "Cannot access branch data in non-branched root");
+ return dataAs<RootBranchData>();
+ }
+ const RootBranch &rootBranch() const { return rootBranchData().node; }
+ RootBranch &rootBranch() { return rootBranchData().node; }
+ KeyT rootBranchStart() const { return rootBranchData().start; }
+ KeyT &rootBranchStart() { return rootBranchData().start; }
+
+ Leaf *allocLeaf() {
+ return new(allocator.template Allocate<Leaf>()) Leaf();
+ }
+ void freeLeaf(Leaf *P) {
+ P->~Leaf();
+ allocator.Deallocate(P);
+ }
+
+ Branch *allocBranch() {
+ return new(allocator.template Allocate<Branch>()) Branch();
+ }
+ void freeBranch(Branch *P) {
+ P->~Branch();
+ allocator.Deallocate(P);
+ }
+
+
+ IdxPair branchRoot(unsigned Position);
+ IdxPair splitRoot(unsigned Position);
+
+ void switchRootToBranch() {
+ rootLeaf().~RootLeaf();
+ height = 1;
+ new (&rootBranchData()) RootBranchData();
+ }
+
+ void switchRootToLeaf() {
+ rootBranchData().~RootBranchData();
+ height = 0;
+ new(&rootLeaf()) RootLeaf();
+ }
+
+ bool branched() const { return height > 0; }
+
+ ValT treeSafeLookup(KeyT x, ValT NotFound) const;
+
+ void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level));
+
+public:
+ explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
+ assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
+ "Insufficient alignment");
+ new(&rootLeaf()) RootLeaf();
+ }
+
+ /// empty - Return true when no intervals are mapped.
+ bool empty() const {
+ return rootSize == 0;
+ }
+
+ /// start - Return the smallest mapped key in a non-empty map.
+ KeyT start() const {
+ assert(!empty() && "Empty IntervalMap has no start");
+ return !branched() ? rootLeaf().start(0) : rootBranchStart();
+ }
+
+ /// stop - Return the largest mapped key in a non-empty map.
+ KeyT stop() const {
+ assert(!empty() && "Empty IntervalMap has no stop");
+ return !branched() ? rootLeaf().stop(rootSize - 1) :
+ rootBranch().stop(rootSize - 1);
+ }
+
+ /// lookup - Return the mapped value at x or NotFound.
+ ValT lookup(KeyT x, ValT NotFound = ValT()) const {
+ if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
+ return NotFound;
+ return branched() ? treeSafeLookup(x, NotFound) :
+ rootLeaf().safeLookup(x, NotFound);
+ }
+
+ /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
+ /// It is assumed that no key in the interval is mapped to another value, but
+ /// overlapping intervals already mapped to y will be coalesced.
+ void insert(KeyT a, KeyT b, ValT y) {
+ find(a).insert(a, b, y);
+ }
+
+ class const_iterator;
+ class iterator;
+ friend class const_iterator;
+ friend class iterator;
+
+ const_iterator begin() const {
+ iterator I(*this);
+ I.goToBegin();
+ return I;
+ }
+
+ iterator begin() {
+ iterator I(*this);
+ I.goToBegin();
+ return I;
+ }
+
+ const_iterator end() const {
+ iterator I(*this);
+ I.goToEnd();
+ return I;
+ }
+
+ iterator end() {
+ iterator I(*this);
+ I.goToEnd();
+ return I;
+ }
+
+ /// find - Return an iterator pointing to the first interval ending at or
+ /// after x, or end().
+ const_iterator find(KeyT x) const {
+ iterator I(*this);
+ I.find(x);
+ return I;
+ }
+
+ iterator find(KeyT x) {
+ iterator I(*this);
+ I.find(x);
+ return I;
+ }
+
+#ifndef NDEBUG
+ void dump();
+ void dumpNode(NodeRef Node, unsigned Height);
+#endif
+};
+
+/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
+/// branched root.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+ValT IntervalMap<KeyT, ValT, N, Traits>::
+treeSafeLookup(KeyT x, ValT NotFound) const {
+ assert(branched() && "treeLookup assumes a branched root");
+
+ NodeRef NR = rootBranch().safeLookup(x);
+ for (unsigned h = height-1; h; --h)
+ NR = NR.branch().safeLookup(x);
+ return NR.leaf().safeLookup(x, NotFound);
+}
+
+
+// branchRoot - Switch from a leaf root to a branched root.
+// Return the new (root offset, node offset) corresponding to Position.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
+branchRoot(unsigned Position) {
+ // How many external leaf nodes to hold RootLeaf+1?
+ const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
+
+ // Compute element distribution among new nodes.
+ unsigned size[Nodes];
+ IdxPair NewOffset(0, Position);
+
+ // Is is very common for the root node to be smaller than external nodes.
+ if (Nodes == 1)
+ size[0] = rootSize;
+ else
+ NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
+ Position, true);
+
+ // Allocate new nodes.
+ unsigned pos = 0;
+ NodeRef node[Nodes];
+ for (unsigned n = 0; n != Nodes; ++n) {
+ node[n] = NodeRef(allocLeaf(), size[n]);
+ node[n].leaf().copy(rootLeaf(), pos, 0, size[n]);
+ pos += size[n];
+ }
+
+ // Destroy the old leaf node, construct branch node instead.
+ switchRootToBranch();
+ for (unsigned n = 0; n != Nodes; ++n) {
+ rootBranch().stop(n) = node[n].leaf().stop(size[n]-1);
+ rootBranch().subtree(n) = node[n];
+ }
+ rootBranchStart() = node[0].leaf().start(0);
+ rootSize = Nodes;
+ return NewOffset;
+}
+
+// splitRoot - Split the current BranchRoot into multiple Branch nodes.
+// Return the new (root offset, node offset) corresponding to Position.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
+splitRoot(unsigned Position) {
+ // How many external leaf nodes to hold RootBranch+1?
+ const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
+
+ // Compute element distribution among new nodes.
+ unsigned Size[Nodes];
+ IdxPair NewOffset(0, Position);
+
+ // Is is very common for the root node to be smaller than external nodes.
+ if (Nodes == 1)
+ Size[0] = rootSize;
+ else
+ NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
+ Position, true);
+
+ // Allocate new nodes.
+ unsigned Pos = 0;
+ NodeRef Node[Nodes];
+ for (unsigned n = 0; n != Nodes; ++n) {
+ Node[n] = NodeRef(allocBranch(), Size[n]);
+ Node[n].branch().copy(rootBranch(), Pos, 0, Size[n]);
+ Pos += Size[n];
+ }
+
+ for (unsigned n = 0; n != Nodes; ++n) {
+ rootBranch().stop(n) = Node[n].branch().stop(Size[n]-1);
+ rootBranch().subtree(n) = Node[n];
+ }
+ rootSize = Nodes;
+ return NewOffset;
+}
+
+/// visitNodes - Visit each external node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
+ if (!branched())
+ return;
+ SmallVector<NodeRef, 4> Refs, NextRefs;
+
+ // Collect level 0 nodes from the root.
+ for (unsigned i = 0; i != rootSize; ++i)
+ Refs.push_back(rootBranch().subtree(i));
+
+ // Visit all branch nodes.
+ for (unsigned h = height - 1; h; --h) {
+ for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
+ Branch &B = Refs[i].branch();
+ for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
+ NextRefs.push_back(B.subtree(j));
+ (this->*f)(Refs[i], h);
+ }
+ Refs.clear();
+ Refs.swap(NextRefs);
+ }
+
+ // Visit all leaf nodes.
+ for (unsigned i = 0, e = Refs.size(); i != e; ++i)
+ (this->*f)(Refs[i], 0);
+}
+
+#ifndef NDEBUG
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+dumpNode(NodeRef Node, unsigned Height) {
+ if (Height)
+ Node.branch().dump(Node.size());
+ else
+ Node.leaf().dump(Node.size());
+}
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+dump() {
+ errs() << "digraph {\n";
+ if (branched())
+ rootBranch().dump(rootSize);
+ else
+ rootLeaf().dump(rootSize);
+ visitNodes(&IntervalMap::dumpNode);
+ errs() << "}\n";
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+//--- const_iterator ----//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
+ public std::iterator<std::bidirectional_iterator_tag, ValT> {
+protected:
+ friend class IntervalMap;
+ typedef std::pair<NodeRef, unsigned> PathEntry;
+ typedef SmallVector<PathEntry, 4> Path;
+
+ // The map referred to.
+ IntervalMap *map;
+
+ // The offset into map's root node.
+ unsigned rootOffset;
+
+ // We store a full path from the root to the current position.
+ //
+ // When rootOffset == map->rootSize, we are at end() and path() is empty.
+ // Otherwise, when branched these conditions hold:
+ //
+ // 1. path.front().first == rootBranch().subtree(rootOffset)
+ // 2. path[i].first == path[i-1].first.branch().subtree(path[i-1].second)
+ // 3. path.size() == map->height.
+ //
+ // Thus, path.back() always refers to the current leaf node unless the root is
+ // unbranched.
+ //
+ // The path may be partially filled, but never between iterator calls.
+ Path path;
+
+ explicit const_iterator(IntervalMap &map)
+ : map(&map), rootOffset(map.rootSize) {}
+
+ bool branched() const {
+ assert(map && "Invalid iterator");
+ return map->branched();
+ }
+
+ NodeRef pathNode(unsigned h) const { return path[h].first; }
+ NodeRef &pathNode(unsigned h) { return path[h].first; }
+ unsigned pathOffset(unsigned h) const { return path[h].second; }
+ unsigned &pathOffset(unsigned h) { return path[h].second; }
+
+ Leaf &treeLeaf() const {
+ assert(branched() && path.size() == map->height);
+ return path.back().first.leaf();
+ }
+ unsigned treeLeafSize() const {
+ assert(branched() && path.size() == map->height);
+ return path.back().first.size();
+ }
+ unsigned &treeLeafOffset() {
+ assert(branched() && path.size() == map->height);
+ return path.back().second;
+ }
+ unsigned treeLeafOffset() const {
+ assert(branched() && path.size() == map->height);
+ return path.back().second;
+ }
+
+ // Get the next node ptr for an incomplete path.
+ NodeRef pathNextDown() {
+ assert(path.size() < map->height && "Path is already complete");
+
+ if (path.empty())
+ return map->rootBranch().subtree(rootOffset);
+ else
+ return path.back().first.branch().subtree(path.back().second);
+ }
+
+ void pathFillLeft();
+ void pathFillFind(KeyT x);
+ void pathFillRight();
+
+ NodeRef leftSibling(unsigned level) const;
+ NodeRef rightSibling(unsigned level) const;
+
+ void treeIncrement();
+ void treeDecrement();
+ void treeFind(KeyT x);
+
+public:
+ /// valid - Return true if the current position is valid, false for end().
+ bool valid() const {
+ assert(map && "Invalid iterator");
+ return rootOffset < map->rootSize;
+ }
+
+ /// start - Return the beginning of the current interval.
+ const KeyT &start() const {
+ assert(valid() && "Cannot access invalid iterator");
+ return branched() ? treeLeaf().start(treeLeafOffset()) :
+ map->rootLeaf().start(rootOffset);
+ }
+
+ /// stop - Return the end of the current interval.
+ const KeyT &stop() const {
+ assert(valid() && "Cannot access invalid iterator");
+ return branched() ? treeLeaf().stop(treeLeafOffset()) :
+ map->rootLeaf().stop(rootOffset);
+ }
+
+ /// value - Return the mapped value at the current interval.
+ const ValT &value() const {
+ assert(valid() && "Cannot access invalid iterator");
+ return branched() ? treeLeaf().value(treeLeafOffset()) :
+ map->rootLeaf().value(rootOffset);
+ }
+
+ const ValT &operator*() const {
+ return value();
+ }
+
+ bool operator==(const const_iterator &RHS) const {
+ assert(map == RHS.map && "Cannot compare iterators from different maps");
+ return rootOffset == RHS.rootOffset &&
+ (!valid() || !branched() || path.back() == RHS.path.back());
+ }
+
+ bool operator!=(const const_iterator &RHS) const {
+ return !operator==(RHS);
+ }
+
+ /// goToBegin - Move to the first interval in map.
+ void goToBegin() {
+ rootOffset = 0;
+ path.clear();
+ if (branched())
+ pathFillLeft();
+ }
+
+ /// goToEnd - Move beyond the last interval in map.
+ void goToEnd() {
+ rootOffset = map->rootSize;
+ path.clear();
+ }
+
+ /// preincrement - move to the next interval.
+ const_iterator &operator++() {
+ assert(valid() && "Cannot increment end()");
+ if (!branched())
+ ++rootOffset;
+ else if (treeLeafOffset() != treeLeafSize() - 1)
+ ++treeLeafOffset();
+ else
+ treeIncrement();
+ return *this;
+ }
+
+ /// postincrement - Dont do that!
+ const_iterator operator++(int) {
+ const_iterator tmp = *this;
+ operator++();
+ return tmp;
+ }
+
+ /// predecrement - move to the previous interval.
+ const_iterator &operator--() {
+ if (!branched()) {
+ assert(rootOffset && "Cannot decrement begin()");
+ --rootOffset;
+ } else if (treeLeafOffset())
+ --treeLeafOffset();
+ else
+ treeDecrement();
+ return *this;
+ }
+
+ /// postdecrement - Dont do that!
+ const_iterator operator--(int) {
+ const_iterator tmp = *this;
+ operator--();
+ return tmp;
+ }
+
+ /// find - Move to the first interval with stop >= x, or end().
+ /// This is a full search from the root, the current position is ignored.
+ void find(KeyT x) {
+ if (branched())
+ treeFind(x);
+ else
+ rootOffset = map->rootLeaf().findFrom(0, map->rootSize, x);
+ }
+
+ /// advanceTo - Move to the first interval with stop >= x, or end().
+ /// The search is started from the current position, and no earlier positions
+ /// can be found. This is much faster than find() for small moves.
+ void advanceTo(KeyT x) {
+ if (branched())
+ treeAdvanceTo(x);
+ else
+ rootOffset = map->rootLeaf().findFrom(rootOffset, map->rootSize, x);
+ }
+
+};
+
+// pathFillLeft - Complete path by following left-most branches.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::pathFillLeft() {
+ NodeRef NR = pathNextDown();
+ for (unsigned i = map->height - path.size() - 1; i; --i) {
+ path.push_back(PathEntry(NR, 0));
+ NR = NR.branch().subtree(0);
+ }
+ path.push_back(PathEntry(NR, 0));
+}
+
+// pathFillFind - Complete path by searching for x.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::pathFillFind(KeyT x) {
+ NodeRef NR = pathNextDown();
+ for (unsigned i = map->height - path.size() - 1; i; --i) {
+ unsigned p = NR.branch().safeFind(0, x);
+ path.push_back(PathEntry(NR, p));
+ NR = NR.branch().subtree(p);
+ }
+ path.push_back(PathEntry(NR, NR.leaf().safeFind(0, x)));
+}
+
+// pathFillRight - Complete path by adding rightmost entries.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::pathFillRight() {
+ NodeRef NR = pathNextDown();
+ for (unsigned i = map->height - path.size() - 1; i; --i) {
+ unsigned p = NR.size() - 1;
+ path.push_back(PathEntry(NR, p));
+ NR = NR.branch().subtree(p);
+ }
+ path.push_back(PathEntry(NR, NR.size() - 1));
+}
+
+/// leftSibling - find the left sibling node to path[level].
+/// @param level 0 is just below the root, map->height - 1 for the leaves.
+/// @return The left sibling NodeRef, or NULL.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
+IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::leftSibling(unsigned level) const {
+ assert(branched() && "Not at a branched node");
+ assert(level <= path.size() && "Bad level");
+
+ // Go up the tree until we can go left.
+ unsigned h = level;
+ while (h && pathOffset(h - 1) == 0)
+ --h;
+
+ // We are at the first leaf node, no left sibling.
+ if (!h && rootOffset == 0)
+ return NodeRef();
+
+ // NR is the subtree containing our left sibling.
+ NodeRef NR = h ?
+ pathNode(h - 1).branch().subtree(pathOffset(h - 1) - 1) :
+ map->rootBranch().subtree(rootOffset - 1);
+
+ // Keep right all the way down.
+ for (; h != level; ++h)
+ NR = NR.branch().subtree(NR.size() - 1);
+ return NR;
+}
+
+/// rightSibling - find the right sibling node to path[level].
+/// @param level 0 is just below the root, map->height - 1 for the leaves.
+/// @return The right sibling NodeRef, or NULL.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
+IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::rightSibling(unsigned level) const {
+ assert(branched() && "Not at a branched node");
+ assert(level <= this->path.size() && "Bad level");
+
+ // Go up the tree until we can go right.
+ unsigned h = level;
+ while (h && pathOffset(h - 1) == pathNode(h - 1).size() - 1)
+ --h;
+
+ // We are at the last leaf node, no right sibling.
+ if (!h && rootOffset == map->rootSize - 1)
+ return NodeRef();
+
+ // NR is the subtree containing our right sibling.
+ NodeRef NR = h ?
+ pathNode(h - 1).branch().subtree(pathOffset(h - 1) + 1) :
+ map->rootBranch().subtree(rootOffset + 1);
+
+ // Keep left all the way down.
+ for (; h != level; ++h)
+ NR = NR.branch().subtree(0);
+ return NR;
+}
+
+// treeIncrement - Move to the beginning of the next leaf node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::treeIncrement() {
+ assert(branched() && "treeIncrement is not for small maps");
+ assert(path.size() == map->height && "inconsistent iterator");
+ do path.pop_back();
+ while (!path.empty() && path.back().second == path.back().first.size() - 1);
+ if (path.empty()) {
+ ++rootOffset;
+ if (!valid())
+ return;
+ } else
+ ++path.back().second;
+ pathFillLeft();
+}
+
+// treeDecrement - Move to the end of the previous leaf node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::treeDecrement() {
+ assert(branched() && "treeDecrement is not for small maps");
+ if (valid()) {
+ assert(path.size() == map->height && "inconsistent iterator");
+ do path.pop_back();
+ while (!path.empty() && path.back().second == 0);
+ }
+ if (path.empty()) {
+ assert(rootOffset && "cannot treeDecrement() on begin()");
+ --rootOffset;
+ } else
+ --path.back().second;
+ pathFillRight();
+}
+
+// treeFind - Find in a branched tree.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::treeFind(KeyT x) {
+ path.clear();
+ rootOffset = map->rootBranch().findFrom(0, map->rootSize, x);
+ if (valid())
+ pathFillFind(x);
+}
+
+
+//===----------------------------------------------------------------------===//
+//--- iterator ----//
+//===----------------------------------------------------------------------===//
+
+namespace IntervalMapImpl {
+
+ /// distribute - Compute a new distribution of node elements after an overflow
+ /// or underflow. Reserve space for a new element at Position, and compute the
+ /// node that will hold Position after redistributing node elements.
+ ///
+ /// It is required that
+ ///
+ /// Elements == sum(CurSize), and
+ /// Elements + Grow <= Nodes * Capacity.
+ ///
+ /// NewSize[] will be filled in such that:
+ ///
+ /// sum(NewSize) == Elements, and
+ /// NewSize[i] <= Capacity.
+ ///
+ /// The returned index is the node where Position will go, so:
+ ///
+ /// sum(NewSize[0..idx-1]) <= Position
+ /// sum(NewSize[0..idx]) >= Position
+ ///
+ /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
+ /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
+ /// before the one holding the Position'th element where there is room for an
+ /// insertion.
+ ///
+ /// @param Nodes The number of nodes.
+ /// @param Elements Total elements in all nodes.
+ /// @param Capacity The capacity of each node.
+ /// @param CurSize Array[Nodes] of current node sizes, or NULL.
+ /// @param NewSize Array[Nodes] to receive the new node sizes.
+ /// @param Position Insert position.
+ /// @param Grow Reserve space for a new element at Position.
+ /// @return (node, offset) for Position.
+ IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
+ const unsigned *CurSize, unsigned NewSize[],
+ unsigned Position, bool Grow);
+
+}
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
+ friend class IntervalMap;
+ typedef IntervalMapImpl::IdxPair IdxPair;
+
+ explicit iterator(IntervalMap &map) : const_iterator(map) {}
+
+ void setNodeSize(unsigned Level, unsigned Size);
+ void setNodeStop(unsigned Level, KeyT Stop);
+ void insertNode(unsigned Level, NodeRef Node, KeyT Stop);
+ void overflowLeaf();
+ void treeInsert(KeyT a, KeyT b, ValT y);
+
+public:
+ /// insert - Insert mapping [a;b] -> y before the current position.
+ void insert(KeyT a, KeyT b, ValT y);
+
+};
+
+/// setNodeSize - Set the size of the node at path[level], updating both path
+/// and the real tree.
+/// @param level 0 is just below the root, map->height - 1 for the leaves.
+/// @param size New node size.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::setNodeSize(unsigned Level, unsigned Size) {
+ this->pathNode(Level).setSize(Size);
+ if (Level)
+ this->pathNode(Level-1).branch()
+ .subtree(this->pathOffset(Level-1)).setSize(Size);
+ else
+ this->map->rootBranch().subtree(this->rootOffset).setSize(Size);
+}
+
+/// setNodeStop - Update the stop key of the current node at level and above.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::setNodeStop(unsigned Level, KeyT Stop) {
+ while (Level--) {
+ this->pathNode(Level).branch().stop(this->pathOffset(Level)) = Stop;
+ if (this->pathOffset(Level) != this->pathNode(Level).size() - 1)
+ return;
+ }
+ this->map->rootBranch().stop(this->rootOffset) = Stop;
+}
+
+/// insertNode - insert a node before the current path at level.
+/// Leave the current path pointing at the new node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) {
+ if (!Level) {
+ // Insert into the root branch node.
+ IntervalMap &IM = *this->map;
+ if (IM.rootSize < RootBranch::Capacity) {
+ IM.rootBranch().insert(this->rootOffset, IM.rootSize, Node, Stop);
+ ++IM.rootSize;
+ return;
+ }
+
+ // We need to split the root while keeping our position.
+ IdxPair Offset = IM.splitRoot(this->rootOffset);
+ this->rootOffset = Offset.first;
+ this->path.insert(this->path.begin(),std::make_pair(
+ this->map->rootBranch().subtree(Offset.first), Offset.second));
+ Level = 1;
+ }
+
+ // When inserting before end(), make sure we have a valid path.
+ if (!this->valid()) {
+ this->treeDecrement();
+ ++this->pathOffset(Level-1);
+ }
+
+ // Insert into the branch node at level-1.
+ NodeRef NR = this->pathNode(Level-1);
+ unsigned Offset = this->pathOffset(Level-1);
+ assert(NR.size() < Branch::Capacity && "Branch overflow");
+ NR.branch().insert(Offset, NR.size(), Node, Stop);
+ setNodeSize(Level - 1, NR.size() + 1);
+}
+
+// insert
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::insert(KeyT a, KeyT b, ValT y) {
+ if (this->branched())
+ return treeInsert(a, b, y);
+ IdxPair IP = this->map->rootLeaf().insertFrom(this->rootOffset,
+ this->map->rootSize,
+ a, b, y);
+ if (IP.second <= RootLeaf::Capacity) {
+ this->rootOffset = IP.first;
+ this->map->rootSize = IP.second;
+ return;
+ }
+ IdxPair Offset = this->map->branchRoot(this->rootOffset);
+ this->rootOffset = Offset.first;
+ this->path.push_back(std::make_pair(
+ this->map->rootBranch().subtree(Offset.first), Offset.second));
+ treeInsert(a, b, y);
+}
+
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::treeInsert(KeyT a, KeyT b, ValT y) {
+ if (!this->valid()) {
+ // end() has an empty path. Go back to the last leaf node and use an
+ // invalid offset instead.
+ this->treeDecrement();
+ ++this->treeLeafOffset();
+ }
+ IdxPair IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
+ this->treeLeafSize(), a, b, y);
+ this->treeLeafOffset() = IP.first;
+ if (IP.second <= Leaf::Capacity) {
+ setNodeSize(this->map->height - 1, IP.second);
+ if (IP.first == IP.second - 1)
+ setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
+ return;
+ }
+ // Leaf node has no space.
+ overflowLeaf();
+ IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
+ this->treeLeafSize(), a, b, y);
+ this->treeLeafOffset() = IP.first;
+ setNodeSize(this->map->height-1, IP.second);
+ if (IP.first == IP.second - 1)
+ setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
+
+ // FIXME: Handle cross-node coalescing.
+}
+
+// overflowLeaf - Distribute entries of the current leaf node evenly among
+// its siblings and ensure that the current node is not full.
+// This may require allocating a new node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::overflowLeaf() {
+ unsigned CurSize[4];
+ Leaf *Node[4];
+ unsigned Nodes = 0;
+ unsigned Elements = 0;
+ unsigned Offset = this->treeLeafOffset();
+
+ // Do we have a left sibling?
+ NodeRef LeftSib = this->leftSibling(this->map->height-1);
+ if (LeftSib) {
+ Offset += Elements = CurSize[Nodes] = LeftSib.size();
+ Node[Nodes++] = &LeftSib.leaf();
+ }
+
+ // Current leaf node.
+ Elements += CurSize[Nodes] = this->treeLeafSize();
+ Node[Nodes++] = &this->treeLeaf();
+
+ // Do we have a right sibling?
+ NodeRef RightSib = this->rightSibling(this->map->height-1);
+ if (RightSib) {
+ Offset += Elements = CurSize[Nodes] = RightSib.size();
+ Node[Nodes++] = &RightSib.leaf();
+ }
+
+ // Do we need to allocate a new node?
+ unsigned NewNode = 0;
+ if (Elements + 1 > Nodes * Leaf::Capacity) {
+ // Insert NewNode at the penultimate position, or after a single node.
+ NewNode = Nodes == 1 ? 1 : Nodes - 1;
+ CurSize[Nodes] = CurSize[NewNode];
+ Node[Nodes] = Node[NewNode];
+ CurSize[NewNode] = 0;
+ Node[NewNode] = this->map->allocLeaf();
+ ++Nodes;
+ }
+
+ // Compute the new element distribution.
+ unsigned NewSize[4];
+ IdxPair NewOffset =
+ IntervalMapImpl::distribute(Nodes, Elements, Leaf::Capacity,
+ CurSize, NewSize, Offset, true);
+
+ // Move current location to the leftmost node.
+ if (LeftSib)
+ this->treeDecrement();
+
+ // Move elements right.
+ for (int n = Nodes - 1; n; --n) {
+ if (CurSize[n] == NewSize[n])
+ continue;
+ for (int m = n - 1; m != -1; --m) {
+ int d = Node[n]->adjLeftSib(CurSize[n], *Node[m], CurSize[m],
+ NewSize[n] - CurSize[n]);
+ CurSize[m] -= d;
+ CurSize[n] += d;
+ // Keep going if the current node was exhausted.
+ if (CurSize[n] >= NewSize[n])
+ break;
+ }
+ }
+
+ // Move elements left.
+ for (unsigned n = 0; n != Nodes - 1; ++n) {
+ if (CurSize[n] == NewSize[n])
+ continue;
+ for (unsigned m = n + 1; m != Nodes; ++m) {
+ int d = Node[m]->adjLeftSib(CurSize[m], *Node[n], CurSize[n],
+ CurSize[n] - NewSize[n]);
+ CurSize[m] += d;
+ CurSize[n] -= d;
+ // Keep going if the current node was exhausted.
+ if (CurSize[n] >= NewSize[n])
+ break;
+ }
+ }
+
+#ifndef NDEBUG
+ for (unsigned n = 0; n != Nodes; n++)
+ assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
+#endif
+
+ // Elements have been rearranged, now update node sizes and stops.
+ unsigned Pos = 0;
+ for (;;) {
+ KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
+ if (NewNode && Pos == NewNode)
+ insertNode(this->map->height - 1, NodeRef(Node[Pos], NewSize[Pos]), Stop);
+ else {
+ setNodeSize(this->map->height - 1, NewSize[Pos]);
+ setNodeStop(this->map->height - 1, Stop);
+ }
+ if (Pos + 1 == Nodes)
+ break;
+ this->treeIncrement();
+ ++Pos;
+ }
+
+ // Where was I? Find NewOffset.
+ while(Pos != NewOffset.first) {
+ this->treeDecrement();
+ --Pos;
+ }
+ this->treeLeafOffset() = NewOffset.second;
+}
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Support/CMakeLists.txt b/lib/Support/CMakeLists.txt
index c9c862ce84..8a6ed6fa6d 100644
--- a/lib/Support/CMakeLists.txt
+++ b/lib/Support/CMakeLists.txt
@@ -19,6 +19,7 @@ add_llvm_library(LLVMSupport
FoldingSet.cpp
FormattedStream.cpp
GraphWriter.cpp
+ IntervalMap.cpp
IsInf.cpp
IsNAN.cpp
ManagedStatic.cpp
diff --git a/lib/Support/IntervalMap.cpp b/lib/Support/IntervalMap.cpp
new file mode 100644
index 0000000000..9f5c72fef1
--- /dev/null
+++ b/lib/Support/IntervalMap.cpp
@@ -0,0 +1,60 @@
+//===- lib/Support/IntervalMap.cpp - A sorted interval map ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the few non-templated functions in IntervalMap.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/IntervalMap.h"
+
+namespace llvm {
+namespace IntervalMapImpl {
+
+IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
+ const unsigned *CurSize, unsigned NewSize[],
+ unsigned Position, bool Grow) {
+ assert(Elements + Grow <= Nodes * Capacity && "Not enough room for elements");
+ assert(Position <= Elements && "Invalid position");
+ if (!Nodes)
+ return IdxPair();
+
+ // Trivial algorithm: left-leaning even distribution.
+ const unsigned PerNode = (Elements + Grow) / Nodes;
+ const unsigned Extra = (Elements + Grow) % Nodes;
+ IdxPair PosPair = IdxPair(Nodes, 0);
+ unsigned Sum = 0;
+ for (unsigned n = 0; n != Nodes; ++n) {
+ Sum += NewSize[n] = PerNode + (n < Extra);
+ if (PosPair.first == Nodes && Sum > Position)
+ PosPair = IdxPair(n, Position - (Sum - NewSize[n]));
+ }
+ assert(Sum == Elements + Grow && "Bad distribution sum");
+
+ // Subtract the Grow element that was added.
+ if (Grow) {
+ assert(PosPair.first < Nodes && "Bad algebra");
+ assert(NewSize[PosPair.first] && "Too few elements to need Grow");
+ --NewSize[PosPair.first];
+ }
+
+#ifndef NDEBUG
+ Sum = 0;
+ for (unsigned n = 0; n != Nodes; ++n) {
+ assert(NewSize[n] <= Capacity && "Overallocated node");
+ Sum += NewSize[n];
+ }
+ assert(Sum == Elements && "Bad distribution sum");
+#endif
+
+ return PosPair;
+}
+
+} // namespace IntervalMapImpl
+} // namespace llvm
+
diff --git a/unittests/ADT/IntervalMapTest.cpp b/unittests/ADT/IntervalMapTest.cpp
new file mode 100644
index 0000000000..5c8b61f278
--- /dev/null
+++ b/unittests/ADT/IntervalMapTest.cpp
@@ -0,0 +1,357 @@
+//===---- ADT/IntervalMapTest.cpp - IntervalMap unit tests ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/IntervalMap.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+namespace {
+
+typedef IntervalMap<unsigned, unsigned> UUMap;
+
+// Empty map tests
+TEST(IntervalMapTest, EmptyMap) {
+ UUMap::Allocator allocator;
+ UUMap map(allocator);
+ EXPECT_TRUE(map.empty());
+
+ // Lookup on empty map.
+ EXPECT_EQ(0u, map.lookup(0));
+ EXPECT_EQ(7u, map.lookup(0, 7));
+ EXPECT_EQ(0u, map.lookup(~0u-1));
+ EXPECT_EQ(7u, map.lookup(~0u-1, 7));
+
+ // Iterators.
+ EXPECT_TRUE(map.begin() == map.begin());
+ EXPECT_TRUE(map.begin() == map.end());
+ EXPECT_TRUE(map.end() == map.end());
+ EXPECT_FALSE(map.begin() != map.begin());
+ EXPECT_FALSE(map.begin() != map.end());
+ EXPECT_FALSE(map.end() != map.end());
+ EXPECT_FALSE(map.begin().valid());
+ EXPECT_FALSE(map.end().valid());
+ UUMap::iterator I = map.begin();
+ EXPECT_FALSE(I.valid());
+ EXPECT_TRUE(I == map.end());
+}
+
+// Single entry map tests
+TEST(IntervalMapTest, SingleEntryMap) {
+ UUMap::Allocator allocator;
+ UUMap map(allocator);
+ map.insert(100, 150, 1);
+ EXPECT_FALSE(map.empty());
+
+ // Lookup around interval.
+ EXPECT_EQ(0u, map.lookup(0));
+ EXPECT_EQ(0u, map.lookup(99));
+ EXPECT_EQ(1u, map.lookup(100));
+ EXPECT_EQ(1u, map.lookup(101));
+ EXPECT_EQ(1u, map.lookup(125));
+ EXPECT_EQ(1u, map.lookup(149));
+ EXPECT_EQ(1u, map.lookup(150));
+ EXPECT_EQ(0u, map.lookup(151));
+ EXPECT_EQ(0u, map.lookup(200));
+ EXPECT_EQ(0u, map.lookup(~0u-1));
+
+ // Iterators.
+ EXPECT_TRUE(map.begin() == map.begin());
+ EXPECT_FALSE(map.begin() == map.end());
+ EXPECT_TRUE(map.end() == map.end());
+ EXPECT_TRUE(map.begin().valid());
+ EXPECT_FALSE(map.end().valid());
+
+ // Iter deref.
+ UUMap::iterator I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(150u, I.stop());
+ EXPECT_EQ(1u, I.value());
+
+ // Preincrement.
+ ++I;
+ EXPECT_FALSE(I.valid());
+ EXPECT_FALSE(I == map.begin());
+ EXPECT_TRUE(I == map.end());
+
+ // PreDecrement.
+ --I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(150u, I.stop());
+ EXPECT_EQ(1u, I.value());
+ EXPECT_TRUE(I == map.begin());
+ EXPECT_FALSE(I == map.end());
+}
+
+// Flat coalescing tests.
+TEST(IntervalMapTest, RootCoalescing) {
+ UUMap::Allocator allocator;
+ UUMap map(allocator);
+ map.insert(100, 150, 1);
+
+ // Coalesce from the left.
+ map.insert(90, 99, 1);
+ EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(90u, map.start());
+ EXPECT_EQ(150u, map.stop());
+
+ // Overlap left.
+ map.insert(80, 100, 1);
+ EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(80u, map.start());
+ EXPECT_EQ(150u, map.stop());
+
+ // Inside.
+ map.insert(100, 130, 1);
+ EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(80u, map.start());
+ EXPECT_EQ(150u, map.stop());
+
+ // Overlap both.
+ map.insert(70, 160, 1);
+ EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(70u, map.start());
+ EXPECT_EQ(160u, map.stop());
+
+ // Overlap right.
+ map.insert(80, 170, 1);
+ EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(70u, map.start());
+ EXPECT_EQ(170u, map.stop());
+
+ // Coalesce from the right.
+ map.insert(170, 200, 1);
+ EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(70u, map.start());
+ EXPECT_EQ(200u, map.stop());
+
+ // Non-coalesce from the left.
+ map.insert(60, 69, 2);
+ EXPECT_EQ(2, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(60u, map.start());
+ EXPECT_EQ(200u, map.stop());
+ EXPECT_EQ(2u, map.lookup(69));
+ EXPECT_EQ(1u, map.lookup(70));
+
+ UUMap::iterator I = map.begin();
+ EXPECT_EQ(60u, I.start());
+ EXPECT_EQ(69u, I.stop());
+ EXPECT_EQ(2u, I.value());
+ ++I;
+ EXPECT_EQ(70u, I.start());
+ EXPECT_EQ(200u, I.stop());
+ EXPECT_EQ(1u, I.value());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Non-coalesce from the right.
+ map.insert(201, 210, 2);
+ EXPECT_EQ(3, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(60u, map.start());
+ EXPECT_EQ(210u, map.stop());
+ EXPECT_EQ(2u, map.lookup(201));
+ EXPECT_EQ(1u, map.lookup(200));
+}
+
+// Flat multi-coalescing tests.
+TEST(IntervalMapTest, RootMultiCoalescing) {
+ UUMap::Allocator allocator;
+ UUMap map(allocator);
+ map.insert(140, 150, 1);
+ map.insert(160, 170, 1);
+ map.insert(100, 110, 1);
+ map.insert(120, 130, 1);
+ EXPECT_EQ(4, std::distance(map.begin(), map.end()));
+ EXPECT_EQ(100u, map.start());
+ EXPECT_EQ(170u, map.stop());
+
+ // Verify inserts.
+ UUMap::iterator I = map.begin();
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(110u, I.stop());
+ ++I;
+ EXPECT_EQ(120u, I.start());
+ EXPECT_EQ(130u, I.stop());
+ ++I;
+ EXPECT_EQ(140u, I.start());
+ EXPECT_EQ(150u, I.stop());
+ ++I;
+ EXPECT_EQ(160u, I.start());
+ EXPECT_EQ(170u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+
+ // Coalesce left with followers.
+ // [100;110] [120;130] [140;150] [160;170]
+ map.insert(111, 115, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(115u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(120u, I.start());
+ EXPECT_EQ(130u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(140u, I.start());
+ EXPECT_EQ(150u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(160u, I.start());
+ EXPECT_EQ(170u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Coalesce right with followers.
+ // [100;115] [120;130] [140;150] [160;170]
+ map.insert(135, 139, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(115u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(120u, I.start());
+ EXPECT_EQ(130u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(135u, I.start());
+ EXPECT_EQ(150u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(160u, I.start());
+ EXPECT_EQ(170u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Coalesce left and right with followers.
+ // [100;115] [120;130] [135;150] [160;170]
+ map.insert(131, 134, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(115u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(120u, I.start());
+ EXPECT_EQ(150u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(160u, I.start());
+ EXPECT_EQ(170u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Coalesce multiple with overlap right.
+ // [100;115] [120;150] [160;170]
+ map.insert(116, 165, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(170u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Coalesce multiple with overlap left
+ // [100;170]
+ map.insert(180, 190, 1);
+ map.insert(200, 210, 1);
+ map.insert(220, 230, 1);
+ // [100;170] [180;190] [200;210] [220;230]
+ map.insert(160, 199, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(100u, I.start());
+ EXPECT_EQ(210u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(220u, I.start());
+ EXPECT_EQ(230u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Overwrite 2 from gap to gap.
+ // [100;210] [220;230]
+ map.insert(50, 250, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(50u, I.start());
+ EXPECT_EQ(250u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+
+ // Coalesce at end of full root.
+ // [50;250]
+ map.insert(260, 270, 1);
+ map.insert(280, 290, 1);
+ map.insert(300, 310, 1);
+ // [50;250] [260;270] [280;290] [300;310]
+ map.insert(311, 320, 1);
+ I = map.begin();
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(50u, I.start());
+ EXPECT_EQ(250u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(260u, I.start());
+ EXPECT_EQ(270u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(280u, I.start());
+ EXPECT_EQ(290u, I.stop());
+ ++I;
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(300u, I.start());
+ EXPECT_EQ(320u, I.stop());
+ ++I;
+ EXPECT_FALSE(I.valid());
+}
+
+// Branched, non-coalescing tests.
+TEST(IntervalMapTest, Branched) {
+ UUMap::Allocator allocator;
+ UUMap map(allocator);
+
+ // Insert enough intervals to force a branched tree.
+ // This creates 9 leaf nodes with 11 elements each, tree height = 1.
+ for (unsigned i = 1; i < 100; ++i)
+ map.insert(10*i, 10*i+5, i);
+
+ // Tree limits.
+ EXPECT_FALSE(map.empty());
+ EXPECT_EQ(10u, map.start());
+ EXPECT_EQ(995u, map.stop());
+
+ // Tree lookup.
+ for (unsigned i = 1; i < 100; ++i) {
+ EXPECT_EQ(0u, map.lookup(10*i-1));
+ EXPECT_EQ(i, map.lookup(10*i));
+ EXPECT_EQ(i, map.lookup(10*i+5));
+ EXPECT_EQ(0u, map.lookup(10*i+6));
+ }
+
+ // Forward iteration.
+ UUMap::iterator I = map.begin();
+ for (unsigned i = 1; i < 100; ++i) {
+ ASSERT_TRUE(I.valid());
+ EXPECT_EQ(10*i, I.start());
+ EXPECT_EQ(10*i+5, I.stop());
+ EXPECT_EQ(i, *I);
+ ++I;
+ }
+ EXPECT_FALSE(I.valid());
+ EXPECT_TRUE(I == map.end());
+
+}
+
+} // namespace
diff --git a/unittests/CMakeLists.txt b/unittests/CMakeLists.txt
index fda1875241..eaecc9cc0b 100644
--- a/unittests/CMakeLists.txt
+++ b/unittests/CMakeLists.txt
@@ -45,6 +45,7 @@ add_llvm_unittest(ADT
ADT/DenseSetTest.cpp
ADT/ilistTest.cpp
ADT/ImmutableSetTest.cpp
+ ADT/IntervalMapTest.cpp
ADT/SmallBitVectorTest.cpp
ADT/SmallStringTest.cpp
ADT/SmallVectorTest.cpp