summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/IntervalIterator.h223
-rw-r--r--include/llvm/Analysis/IntervalPartition.h123
2 files changed, 346 insertions, 0 deletions
diff --git a/include/llvm/Analysis/IntervalIterator.h b/include/llvm/Analysis/IntervalIterator.h
new file mode 100644
index 0000000000..ec70c8782d
--- /dev/null
+++ b/include/llvm/Analysis/IntervalIterator.h
@@ -0,0 +1,223 @@
+//===- IntervalIterator.h - Interval Iterator Declaration --------*- C++ -*--=//
+//
+// This file defines an iterator that enumerates the intervals in a control flow
+// graph of some sort. This iterator is parametric, allowing iterator over the
+// following types of graphs:
+//
+// TODO
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_INTERVAL_ITERATOR_H
+#define LLVM_INTERVAL_ITERATOR_H
+
+#include "llvm/Analysis/IntervalPartition.h"
+#include "llvm/Method.h"
+#include "llvm/CFG.h"
+#include <stack>
+#include <set>
+#include <algorithm>
+
+namespace cfg {
+
+// TODO: Provide an interval iterator that codifies the internals of
+// IntervalPartition. Inside, it would have a stack of Interval*'s, and would
+// walk the interval partition in depth first order. IntervalPartition would
+// then be a client of this iterator. The iterator should work on Method*,
+// const Method*, IntervalPartition*, and const IntervalPartition*.
+//
+
+
+// getNodeHeader - Given a source graph node and the source graph, return the
+// BasicBlock that is the header node. This is the opposite of
+// getSourceGraphNode.
+//
+inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
+inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
+
+// getSourceGraphNode - Given a BasicBlock and the source graph, return the
+// source graph node that corresponds to the BasicBlock. This is the opposite
+// of getNodeHeader.
+//
+inline BasicBlock *getSourceGraphNode(Method *, BasicBlock *BB) {
+ return BB;
+}
+inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
+ return IP->getBlockInterval(BB);
+}
+
+// addNodeToInterval - This method exists to assist the generic ProcessNode
+// with the task of adding a node to the new interval, depending on the
+// type of the source node. In the case of a CFG source graph (BasicBlock
+// case), the BasicBlock itself is added to the interval.
+//
+inline void addNodeToInterval(Interval *Int, BasicBlock *BB){
+ Int->Nodes.push_back(BB);
+}
+
+// addNodeToInterval - This method exists to assist the generic ProcessNode
+// with the task of adding a node to the new interval, depending on the
+// type of the source node. In the case of a CFG source graph (BasicBlock
+// case), the BasicBlock itself is added to the interval. In the case of
+// an IntervalPartition source graph (Interval case), all of the member
+// BasicBlocks are added to the interval.
+//
+inline void addNodeToInterval(Interval *Int, Interval *I) {
+ // Add all of the nodes in I as new nodes in Int.
+ copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
+}
+
+
+template<class NodeTy, class OrigContainer_t>
+class IntervalIterator {
+ stack<pair<Interval, typename Interval::succ_iterator> > IntStack;
+ set<BasicBlock*> Visited;
+ OrigContainer_t *OrigContainer;
+public:
+ typedef BasicBlock* _BB;
+
+ typedef IntervalIterator<NodeTy, OrigContainer_t> _Self;
+ typedef forward_iterator_tag iterator_category;
+
+ IntervalIterator() {} // End iterator, empty stack
+ IntervalIterator(Method *M) {
+ OrigContainer = M;
+ if (!ProcessInterval(M->getBasicBlocks().front())) {
+ assert(0 && "ProcessInterval should never fail for first interval!");
+ }
+ }
+
+ IntervalIterator(IntervalPartition &IP) {
+ OrigContainer = &IP;
+ if (!ProcessInterval(IP.getRootInterval())) {
+ assert(0 && "ProcessInterval should never fail for first interval!");
+ }
+ }
+
+ inline bool operator==(const _Self& x) const { return IntStack == x.IntStack; }
+ inline bool operator!=(const _Self& x) const { return !operator==(x); }
+
+ inline Interval &operator*() const { return IntStack.top(); }
+ inline Interval *operator->() const { return &(operator*()); }
+
+ inline _Self& operator++() { // Preincrement
+ do {
+ // All of the intervals on the stack have been visited. Try visiting their
+ // successors now.
+ Interval &CurInt = IntStack.top().first;
+ Interval::iterator &SuccIt = IntStack.top().second,End = succ_end(&CurInt);
+
+ for (; SuccIt != End; ++SuccIt) // Loop over all interval successors
+ if (ProcessInterval(*SuccIt)) // Found a new interval!
+ return *this; // Use it!
+
+ // We ran out of successors for this interval... pop off the stack
+ IntStack.pop();
+ } while (!IntStack.empty());
+
+ return *this;
+ }
+ inline _Self operator++(int) { // Postincrement
+ _Self tmp = *this; ++*this; return tmp;
+ }
+
+private:
+ // ProcessInterval - This method is used during the construction of the
+ // interval graph. It walks through the source graph, recursively creating
+ // an interval per invokation until the entire graph is covered. This uses
+ // the ProcessNode method to add all of the nodes to the interval.
+ //
+ // This method is templated because it may operate on two different source
+ // graphs: a basic block graph, or a preexisting interval graph.
+ //
+ bool ProcessInterval(NodeTy *Node) {
+ BasicBlock *Header = getNodeHeader(Node);
+ if (Visited.count(Header)) return false;
+
+ Interval Int(Header);
+ Visited.insert(Header); // The header has now been visited!
+
+ // Check all of our successors to see if they are in the interval...
+ for (typename NodeTy::succ_iterator I = succ_begin(Node), E = succ_end(Node);
+ I != E; ++I)
+ ProcessNode(&Int, getSourceGraphNode(OrigContainer, *I));
+
+ IntStack.push(make_pair(Int, succ_begin(&Int)));
+ return true;
+ }
+
+ // ProcessNode - This method is called by ProcessInterval to add nodes to the
+ // interval being constructed, and it is also called recursively as it walks
+ // the source graph. A node is added to the current interval only if all of
+ // its predecessors are already in the graph. This also takes care of keeping
+ // the successor set of an interval up to date.
+ //
+ // This method is templated because it may operate on two different source
+ // graphs: a basic block graph, or a preexisting interval graph.
+ //
+ void ProcessNode(Interval *Int, NodeTy *Node) {
+ assert(Int && "Null interval == bad!");
+ assert(Node && "Null Node == bad!");
+
+ BasicBlock *NodeHeader = getNodeHeader(Node);
+
+ if (Visited.count(NodeHeader)) { // Node already been visited?
+ if (Int->contains(NodeHeader)) { // Already in this interval...
+ return;
+ } else { // In another interval, add as successor
+ if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
+ Int->Successors.push_back(NodeHeader);
+ }
+ } else { // Otherwise, not in interval yet
+ for (typename NodeTy::pred_iterator I = pred_begin(Node),
+ E = pred_end(Node); I != E; ++I) {
+ if (!Int->contains(*I)) { // If pred not in interval, we can't be
+ if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
+ Int->Successors.push_back(NodeHeader);
+ return; // See you later
+ }
+ }
+
+ // If we get here, then all of the predecessors of BB are in the interval
+ // already. In this case, we must add BB to the interval!
+ addNodeToInterval(Int, Node);
+ Visited.insert(NodeHeader); // The node has now been visited!
+
+ if (Int->isSuccessor(NodeHeader)) {
+ // If we were in the successor list from before... remove from succ list
+ Int->Successors.erase(remove(Int->Successors.begin(),
+ Int->Successors.end(), NodeHeader),
+ Int->Successors.end());
+ }
+
+ // Now that we have discovered that Node is in the interval, perhaps some
+ // of its successors are as well?
+ for (typename NodeTy::succ_iterator It = succ_begin(Node),
+ End = succ_end(Node); It != End; ++It)
+ ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
+ }
+ }
+};
+
+typedef IntervalIterator<BasicBlock, Method> method_interval_iterator;
+typedef IntervalIterator<Interval, IntervalPartition> interval_part_interval_iterator;
+
+
+inline method_interval_iterator intervals_begin(Method *M) {
+ return method_interval_iterator(M);
+}
+inline method_interval_iterator intervals_end(Method *M) {
+ return method_interval_iterator();
+}
+
+inline interval_part_interval_iterator intervals_begin(IntervalPartition &IP) {
+ return interval_part_interval_iterator(IP);
+}
+
+inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
+ return interval_part_interval_iterator();
+}
+
+} // End namespace cfg
+
+#endif
diff --git a/include/llvm/Analysis/IntervalPartition.h b/include/llvm/Analysis/IntervalPartition.h
new file mode 100644
index 0000000000..fd24b2fb98
--- /dev/null
+++ b/include/llvm/Analysis/IntervalPartition.h
@@ -0,0 +1,123 @@
+//===- IntervalPartition.h - Interval partition Calculation ------*- C++ -*--=//
+//
+// This file contains the declaration of the cfg::IntervalPartition class, which
+// calculates and represents the interval partition of a method, or a
+// preexisting interval partition.
+//
+// In this way, the interval partition may be used to reduce a flow graph down
+// to its degenerate single node interval partition (unless it is irreducible).
+//
+// TODO: The IntervalPartition class should take a bool parameter that tells
+// whether it should add the "tails" of an interval to an interval itself or if
+// they should be represented as distinct intervals.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_INTERVAL_PARTITION_H
+#define LLVM_INTERVAL_PARTITION_H
+
+#include "llvm/Analysis/Interval.h"
+#include <map>
+
+class Method;
+
+namespace cfg {
+
+//===----------------------------------------------------------------------===//
+//
+// IntervalPartition - This class builds and holds an "interval partition" for
+// a method. This partition divides the control flow graph into a set of
+// maximal intervals, as defined with the properties above. Intuitively, a
+// BasicBlock is a (possibly nonexistent) loop with a "tail" of non looping
+// nodes following it.
+//
+class IntervalPartition {
+ typedef map<BasicBlock*, Interval*> IntervalMapTy;
+ IntervalMapTy IntervalMap;
+
+ typedef vector<Interval*> IntervalListTy;
+ IntervalListTy IntervalList;
+ Interval *RootInterval;
+
+public:
+ typedef IntervalListTy::iterator iterator;
+
+public:
+ // IntervalPartition ctor - Build the partition for the specified method
+ IntervalPartition(Method *M);
+
+ // IntervalPartition ctor - Build a reduced interval partition from an
+ // existing interval graph. This takes an additional boolean parameter to
+ // distinguish it from a copy constructor. Always pass in false for now.
+ //
+ IntervalPartition(IntervalPartition &I, bool);
+
+ // Destructor - Free memory
+ ~IntervalPartition();
+
+ // getRootInterval() - Return the root interval that contains the starting
+ // block of the method.
+ inline Interval *getRootInterval() { return RootInterval; }
+
+ // isDegeneratePartition() - Returns true if the interval partition contains
+ // a single interval, and thus cannot be simplified anymore.
+ bool isDegeneratePartition() { return size() == 1; }
+
+ // TODO: isIrreducible - look for triangle graph.
+
+ // getBlockInterval - Return the interval that a basic block exists in.
+ inline Interval *getBlockInterval(BasicBlock *BB) {
+ IntervalMapTy::iterator I = IntervalMap.find(BB);
+ return I != IntervalMap.end() ? I->second : 0;
+ }
+
+ // Iterators to iterate over all of the intervals in the method
+ inline iterator begin() { return IntervalList.begin(); }
+ inline iterator end() { return IntervalList.end(); }
+ inline unsigned size() { return IntervalList.size(); }
+
+private:
+ // ProcessInterval - This method is used during the construction of the
+ // interval graph. It walks through the source graph, recursively creating
+ // an interval per invokation until the entire graph is covered. This uses
+ // the ProcessNode method to add all of the nodes to the interval.
+ //
+ // This method is templated because it may operate on two different source
+ // graphs: a basic block graph, or a preexisting interval graph.
+ //
+ template<class NodeTy, class OrigContainer>
+ void ProcessInterval(NodeTy *Node, OrigContainer *OC);
+
+ // ProcessNode - This method is called by ProcessInterval to add nodes to the
+ // interval being constructed, and it is also called recursively as it walks
+ // the source graph. A node is added to the current interval only if all of
+ // its predecessors are already in the graph. This also takes care of keeping
+ // the successor set of an interval up to date.
+ //
+ // This method is templated because it may operate on two different source
+ // graphs: a basic block graph, or a preexisting interval graph.
+ //
+ template<class NodeTy, class OrigContainer>
+ void ProcessNode(Interval *Int, NodeTy *Node, OrigContainer *OC);
+
+ // addNodeToInterval - This method exists to assist the generic ProcessNode
+ // with the task of adding a node to the new interval, depending on the
+ // type of the source node. In the case of a CFG source graph (BasicBlock
+ // case), the BasicBlock itself is added to the interval. In the case of
+ // an IntervalPartition source graph (Interval case), all of the member
+ // BasicBlocks are added to the interval.
+ //
+ inline void addNodeToInterval(Interval *Int, Interval *I);
+ inline void addNodeToInterval(Interval *Int, BasicBlock *BB);
+
+ // updatePredecessors - Interval generation only sets the successor fields of
+ // the interval data structures. After interval generation is complete,
+ // run through all of the intervals and propogate successor info as
+ // predecessor info.
+ //
+ void updatePredecessors(Interval *Int);
+};
+
+} // End namespace cfg
+
+#endif