summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/Target/X86/Makefile7
-rw-r--r--lib/Target/X86/X86.h6
-rw-r--r--lib/Target/X86/X86SimpInstrSelector.cpp2826
-rw-r--r--lib/Target/X86/X86TargetMachine.cpp6
4 files changed, 2 insertions, 2843 deletions
diff --git a/lib/Target/X86/Makefile b/lib/Target/X86/Makefile
index 896feae08d..350a47348b 100644
--- a/lib/Target/X86/Makefile
+++ b/lib/Target/X86/Makefile
@@ -13,8 +13,7 @@ include $(LEVEL)/Makefile.common
# Make sure that tblgen is run, first thing.
$(SourceDepend): X86GenRegisterInfo.h.inc X86GenRegisterNames.inc \
X86GenRegisterInfo.inc X86GenInstrNames.inc \
- X86GenInstrInfo.inc X86GenSimpInstrSelector.inc \
- X86GenInstrSelector.inc
+ X86GenInstrInfo.inc X86GenInstrSelector.inc
X86GenRegisterNames.inc:: $(SourceDir)/X86.td $(SourceDir)/X86RegisterInfo.td \
$(SourceDir)/../Target.td $(TBLGEN)
@@ -41,10 +40,6 @@ X86GenInstrInfo.inc:: $(SourceDir)/X86.td $(SourceDir)/X86InstrInfo.td \
@echo "Building X86.td instruction information with tblgen"
$(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-instr-desc -o $@
-X86GenSimpInstrSelector.inc:: $(SourceDir)/X86InstrSel.td $(TBLGEN)
- @echo "Building X86.td simple instruction selector with tblgen"
- $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-simp-instr-sel -o $@
-
X86GenInstrSelector.inc:: $(SourceDir)/X86.td $(SourceDir)/X86InstrInfo.td \
$(SourceDir)/../Target.td $(TBLGEN)
@echo "Building X86.td instruction selector with tblgen"
diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h
index fde6bc6108..54e2861a5f 100644
--- a/lib/Target/X86/X86.h
+++ b/lib/Target/X86/X86.h
@@ -29,12 +29,6 @@ class IntrinsicLowering;
///
FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM);
-/// createX86ReallySimpleInstructionSelector - This pass converts an LLVM
-/// function into a machine code representation in an even simpler fashion
-/// than above.
-///
-FunctionPass *createX86ReallySimpleInstructionSelector(TargetMachine &TM);
-
/// createX86PatternInstructionSelector - This pass converts an LLVM function
/// into a machine code representation using pattern matching and a machine
/// description file.
diff --git a/lib/Target/X86/X86SimpInstrSelector.cpp b/lib/Target/X86/X86SimpInstrSelector.cpp
deleted file mode 100644
index 2ada795718..0000000000
--- a/lib/Target/X86/X86SimpInstrSelector.cpp
+++ /dev/null
@@ -1,2826 +0,0 @@
-//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a simple peephole instruction selector for the x86 target
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrBuilder.h"
-#include "X86InstrInfo.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/CFG.h"
-#include "Support/Statistic.h"
-using namespace llvm;
-
-namespace {
- Statistic<>
- NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
-}
-
-namespace {
- struct ISel : public FunctionPass, InstVisitor<ISel> {
- TargetMachine &TM;
- MachineFunction *F; // The function we are compiling into
- MachineBasicBlock *BB; // The current MBB we are compiling
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
- int ReturnAddressIndex; // FrameIndex for the return address
-
- std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
-
- // MBBMap - Mapping between LLVM BB -> Machine BB
- std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
- ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
-
- /// runOnFunction - Top level implementation of instruction selection for
- /// the entire function.
- ///
- bool runOnFunction(Function &Fn) {
- // First pass over the function, lower any unknown intrinsic functions
- // with the IntrinsicLowering class.
- LowerUnknownIntrinsicFunctionCalls(Fn);
-
- F = &MachineFunction::construct(&Fn, TM);
-
- // Create all of the machine basic blocks for the function...
- for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
- BB = &F->front();
-
- // Set up a frame object for the return address. This is used by the
- // llvm.returnaddress & llvm.frameaddress intrinisics.
- ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
-
- // Copy incoming arguments off of the stack...
- LoadArgumentsToVirtualRegs(Fn);
-
- // Instruction select everything except PHI nodes
- visit(Fn);
-
- // Select the PHI nodes
- SelectPHINodes();
-
- // Insert the FP_REG_KILL instructions into blocks that need them.
- InsertFPRegKills();
-
- RegMap.clear();
- MBBMap.clear();
- F = 0;
- // We always build a machine code representation for the function
- return true;
- }
-
- virtual const char *getPassName() const {
- return "X86 Simple Instruction Selection";
- }
-
- /// visitBasicBlock - This method is called when we are visiting a new basic
- /// block. This simply creates a new MachineBasicBlock to emit code into
- /// and adds it to the current MachineFunction. Subsequent visit* for
- /// instructions will be invoked for all instructions in the basic block.
- ///
- void visitBasicBlock(BasicBlock &LLVM_BB) {
- BB = MBBMap[&LLVM_BB];
- }
-
- /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
- /// function, lowering any calls to unknown intrinsic functions into the
- /// equivalent LLVM code.
- ///
- void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
- /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
- /// from the stack into virtual registers.
- ///
- void LoadArgumentsToVirtualRegs(Function &F);
-
- /// SelectPHINodes - Insert machine code to generate phis. This is tricky
- /// because we have to generate our sources into the source basic blocks,
- /// not the current one.
- ///
- void SelectPHINodes();
-
- /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
- /// that need them. This only occurs due to the floating point stackifier
- /// not being aggressive enough to handle arbitrary global stackification.
- ///
- void InsertFPRegKills();
-
- // Visitation methods for various instructions. These methods simply emit
- // fixed X86 code for each instruction.
- //
-
- // Control flow operators
- void visitReturnInst(ReturnInst &RI);
- void visitBranchInst(BranchInst &BI);
-
- struct ValueRecord {
- Value *Val;
- unsigned Reg;
- const Type *Ty;
- ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
- ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
- };
- void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args);
- void visitCallInst(CallInst &I);
- void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
- // Arithmetic operators
- void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
- void visitAdd(BinaryOperator &B);// visitSimpleBinary(B, 0); }
- void visitSub(BinaryOperator &B);// { visitSimpleBinary(B, 1); }
- void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Reg);
- void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Val);
- void visitMul(BinaryOperator &B);
-
- void visitDiv(BinaryOperator &B) { visitDivRem(B); }
- void visitRem(BinaryOperator &B) { visitDivRem(B); }
- void visitDivRem(BinaryOperator &B);
-
- // Bitwise operators
- void visitAnd(BinaryOperator &B);// { visitSimpleBinary(B, 2); }
- void visitOr (BinaryOperator &B);// { visitSimpleBinary(B, 3); }
- void visitXor(BinaryOperator &B);// { visitSimpleBinary(B, 4); }
-
- // Comparison operators...
- void visitSetCondInst(SetCondInst &I);
- unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI);
-
- // Memory Instructions
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitMallocInst(MallocInst &I);
- void visitFreeInst(FreeInst &I);
-
- // Other operators
- void visitShiftInst(ShiftInst &I);
- void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
- void visitCastInst(CastInst &I);
- void visitVANextInst(VANextInst &I);
- void visitVAArgInst(VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- std::cerr << "Cannot instruction select: " << I;
- abort();
- }
-
- /// promote32 - Make a value 32-bits wide, and put it somewhere.
- ///
- void promote32(unsigned targetReg, const ValueRecord &VR);
-
- /// getAddressingMode - Get the addressing mode to use to address the
- /// specified value. The returned value should be used with addFullAddress.
- void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
- unsigned &IndexReg, unsigned &Disp);
-
-
- /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
- /// expressions.
- void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- std::vector<Value*> &GEPOps,
- std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
-
- /// isGEPFoldable - Return true if the specified GEP can be completely
- /// folded into the addressing mode of a load/store or lea instruction.
- bool isGEPFoldable(MachineBasicBlock *MBB,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
-
- /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
- /// constant expression GEP support.
- ///
- void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg);
-
- /// emitCastOperation - Common code shared between visitCastInst and
- /// constant expression cast support.
- ///
- void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy, unsigned TargetReg);
-
- /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
- /// and constant expression support.
- ///
- void emitSimpleBinaryOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- void emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
- const Type *Ty, unsigned TargetReg);
-
- /// emitSetCCOperation - Common code shared between visitSetCondInst and
- /// constant expression support.
- ///
- void emitSetCCOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg);
-
- /// emitShiftOperation - Common code shared between visitShiftInst and
- /// constant expression support.
- ///
- void emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg);
-
-
- /// copyConstantToRegister - Output the instructions required to put the
- /// specified constant into the specified register.
- ///
- void copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- Constant *C, unsigned Reg);
-
- /// makeAnotherReg - This method returns the next register number we haven't
- /// yet used.
- ///
- /// Long values are handled somewhat specially. They are always allocated
- /// as pairs of 32 bit integer values. The register number returned is the
- /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
- /// of the long value.
- ///
- unsigned makeAnotherReg(const Type *Ty) {
- assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
- "Current target doesn't have X86 reg info??");
- const X86RegisterInfo *MRI =
- static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
- if (Ty == Type::LongTy || Ty == Type::ULongTy) {
- const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
- // Create the lower part
- F->getSSARegMap()->createVirtualRegister(RC);
- // Create the upper part.
- return F->getSSARegMap()->createVirtualRegister(RC)-1;
- }
-
- // Add the mapping of regnumber => reg class to MachineFunction
- const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
- return F->getSSARegMap()->createVirtualRegister(RC);
- }
-
- /// getReg - This method turns an LLVM value into a register number. This
- /// is guaranteed to produce the same register number for a particular value
- /// every time it is queried.
- ///
- unsigned getReg(Value &V) { return getReg(&V); } // Allow references
- unsigned getReg(Value *V) {
- // Just append to the end of the current bb.
- MachineBasicBlock::iterator It = BB->end();
- return getReg(V, BB, It);
- }
- unsigned getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt) {
- unsigned &Reg = RegMap[V];
- if (Reg == 0) {
- Reg = makeAnotherReg(V->getType());
- RegMap[V] = Reg;
- }
-
- // If this operand is a constant, emit the code to copy the constant into
- // the register here...
- //
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // Move the address of the global into the register
- BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
- RegMap.erase(V); // Assign a new name to this address if ref'd again
- } else if (Constant *C = dyn_cast<Constant>(V)) {
- copyConstantToRegister(MBB, IPt, C, Reg);
- RegMap.erase(V); // Assign a new name to this constant if ref'd again
- }
-
- return Reg;
- }
- };
-}
-
-/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
-/// Representation.
-///
-enum TypeClass {
- cByte, cShort, cInt, cFP, cLong
-};
-
-enum Subclasses {
- NegOne, PosOne, Cons, Other
-};
-
-
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::SByteTyID:
- case Type::UByteTyID: return cByte; // Byte operands are class #0
- case Type::ShortTyID:
- case Type::UShortTyID: return cShort; // Short operands are class #1
- case Type::IntTyID:
- case Type::UIntTyID:
- case Type::PointerTyID: return cInt; // Int's and pointers are class #2
-
- case Type::FloatTyID:
- case Type::DoubleTyID: return cFP; // Floating Point is #3
-
- case Type::LongTyID:
- case Type::ULongTyID: return cLong; // Longs are class #4
- default:
- assert(0 && "Invalid type to getClass!");
- return cByte; // not reached
- }
-}
-
-// getClassB - Just like getClass, but treat boolean values as bytes.
-static inline TypeClass getClassB(const Type *Ty) {
- if (Ty == Type::BoolTy) return cByte;
- return getClass(Ty);
-}
-
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Constant *C, unsigned R) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- unsigned Class = 0;
- switch (CE->getOpcode()) {
- case Instruction::GetElementPtr:
- emitGEPOperation(MBB, IP, CE->getOperand(0),
- CE->op_begin()+1, CE->op_end(), R);
- return;
- case Instruction::Cast:
- emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
- return;
-
- case Instruction::Xor: ++Class; // FALL THROUGH
- case Instruction::Or: ++Class; // FALL THROUGH
- case Instruction::And: ++Class; // FALL THROUGH
- case Instruction::Sub: ++Class; // FALL THROUGH
- case Instruction::Add:
- emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- Class, R);
- return;
-
- case Instruction::Mul: {
- unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
- unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
- doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
- return;
- }
- case Instruction::Div:
- case Instruction::Rem: {
- unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
- unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
- emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
- CE->getOpcode() == Instruction::Div,
- CE->getType(), R);
- return;
- }
-
- case Instruction::SetNE:
- case Instruction::SetEQ:
- case Instruction::SetLT:
- case Instruction::SetGT:
- case Instruction::SetLE:
- case Instruction::SetGE:
- emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- CE->getOpcode(), R);
- return;
-
- case Instruction::Shl:
- case Instruction::Shr:
- emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
- CE->getOpcode() == Instruction::Shl, CE->getType(), R);
- return;
-
- default:
- std::cerr << "Offending expr: " << *C << "\n";
- assert(0 && "Constant expression not yet handled!\n");
- }
- }
-
- if (C->getType()->isIntegral()) {
- unsigned Class = getClassB(C->getType());
-
- if (Class == cLong) {
- // Copy the value into the register pair.
- uint64_t Val = cast<ConstantInt>(C)->getRawValue();
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
- return;
- }
-
- assert(Class <= cInt && "Type not handled yet!");
-
- static const unsigned IntegralOpcodeTab[] = {
- X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
- };
-
- if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
- } else {
- ConstantInt *CI = cast<ConstantInt>(C);
- BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
- }
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->isExactlyValue(+0.0))
- BuildMI(*MBB, IP, X86::FLD0, 0, R);
- else if (CFP->isExactlyValue(+1.0))
- BuildMI(*MBB, IP, X86::FLD1, 0, R);
- else {
- // Otherwise we need to spill the constant to memory...
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
-
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
- unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
- addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
- }
-
- } else if (isa<ConstantPointerNull>(C)) {
- // Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
- BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
- } else {
- std::cerr << "Offending constant: " << *C << "\n";
- assert(0 && "Type not handled yet!");
- }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-///
-void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
- // Emit instructions to load the arguments... On entry to a function on the
- // X86, the stack frame looks like this:
- //
- // [ESP] -- return address
- // [ESP + 4] -- first argument (leftmost lexically)
- // [ESP + 8] -- second argument, if first argument is four bytes in size
- // ...
- //
- unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
- MachineFrameInfo *MFI = F->getFrameInfo();
-
- for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
- unsigned Reg = getReg(*I);
-
- int FI; // Frame object index
- switch (getClassB(I->getType())) {
- case cByte:
- FI = MFI->CreateFixedObject(1, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
- break;
- case cShort:
- FI = MFI->CreateFixedObject(2, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
- break;
- case cInt:
- FI = MFI->CreateFixedObject(4, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
- break;
- case cLong:
- FI = MFI->CreateFixedObject(8, ArgOffset);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
- ArgOffset += 4; // longs require 4 additional bytes
- break;
- case cFP:
- unsigned Opcode;
- if (I->getType() == Type::FloatTy) {
- Opcode = X86::FLD32m;
- FI = MFI->CreateFixedObject(4, ArgOffset);
- } else {
- Opcode = X86::FLD64m;
- FI = MFI->CreateFixedObject(8, ArgOffset);
- ArgOffset += 4; // doubles require 4 additional bytes
- }
- addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
- break;
- default:
- assert(0 && "Unhandled argument type!");
- }
- ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
- }
-
- // If the function takes variable number of arguments, add a frame offset for
- // the start of the first vararg value... this is used to expand
- // llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis. This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void ISel::SelectPHINodes() {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const Function &LF = *F->getFunction(); // The LLVM function...
- for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
- const BasicBlock *BB = I;
- MachineBasicBlock &MBB = *MBBMap[I];
-
- // Loop over all of the PHI nodes in the LLVM basic block...
- MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
- for (BasicBlock::const_iterator I = BB->begin();
- PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
- // Create a new machine instr PHI node, and insert it.
- unsigned PHIReg = getReg(*PN);
- MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
- X86::PHI, PN->getNumOperands(), PHIReg);
-
- MachineInstr *LongPhiMI = 0;
- if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
- LongPhiMI = BuildMI(MBB, PHIInsertPoint,
- X86::PHI, PN->getNumOperands(), PHIReg+1);
-
- // PHIValues - Map of blocks to incoming virtual registers. We use this
- // so that we only initialize one incoming value for a particular block,
- // even if the block has multiple entries in the PHI node.
- //
- std::map<MachineBasicBlock*, unsigned> PHIValues;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
- unsigned ValReg;
- std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
- PHIValues.lower_bound(PredMBB);
-
- if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
- // We already inserted an initialization of the register for this
- // predecessor. Recycle it.
- ValReg = EntryIt->second;
-
- } else {
- // Get the incoming value into a virtual register.
- //
- Value *Val = PN->getIncomingValue(i);
-
- // If this is a constant or GlobalValue, we may have to insert code
- // into the basic block to compute it into a virtual register.
- if (isa<Constant>(Val)) {
- // Because we don't want to clobber any values which might be in
- // physical registers with the computation of this constant (which
- // might be arbitrarily complex if it is a constant expression),
- // just insert the computation at the top of the basic block.
- MachineBasicBlock::iterator PI = PredMBB->begin();
-
- // Skip over any PHI nodes though!
- while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
- ++PI;
-
- ValReg = getReg(Val, PredMBB, PI);
- } else {
- ValReg = getReg(Val);
- }
-
- // Remember that we inserted a value for this PHI for this predecessor
- PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
- }
-
- PhiMI->addRegOperand(ValReg);
- PhiMI->addMachineBasicBlockOperand(PredMBB);
- if (LongPhiMI) {
- LongPhiMI->addRegOperand(ValReg+1);
- LongPhiMI->addMachineBasicBlockOperand(PredMBB);
- }
- }
-
- // Now that we emitted all of the incoming values for the PHI node, make
- // sure to reposition the InsertPoint after the PHI that we just added.
- // This is needed because we might have inserted a constant into this
- // block, right after the PHI's which is before the old insert point!
- PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
- ++PHIInsertPoint;
- }
- }
-}
-
-/// RequiresFPRegKill - The floating point stackifier pass cannot insert
-/// compensation code on critical edges. As such, it requires that we kill all
-/// FP registers on the exit from any blocks that either ARE critical edges, or
-/// branch to a block that has incoming critical edges.
-///
-/// Note that this kill instruction will eventually be eliminated when
-/// restrictions in the stackifier are relaxed.
-///
-static bool RequiresFPRegKill(const BasicBlock *BB) {
-#if 0
- for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
- const BasicBlock *Succ = *SI;
- pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
- ++PI; // Block have at least one predecessory
- if (PI != PE) { // If it has exactly one, this isn't crit edge
- // If this block has more than one predecessor, check all of the
- // predecessors to see if they have multiple successors. If so, then the
- // block we are analyzing needs an FPRegKill.
- for (PI = pred_begin(Succ); PI != PE; ++PI) {
- const BasicBlock *Pred = *PI;
- succ_const_iterator SI2 = succ_begin(Pred);
- ++SI2; // There must be at least one successor of this block.
- if (SI2 != succ_end(Pred))
- return true; // Yes, we must insert the kill on this edge.
- }
- }
- }
- // If we got this far, there is no need to insert the kill instruction.
- return false;
-#else
- return true;
-#endif
-}
-
-// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
-// need them. This only occurs due to the floating point stackifier not being
-// aggressive enough to handle arbitrary global stackification.
-//
-// Currently we insert an FP_REG_KILL instruction into each block that uses or
-// defines a floating point virtual register.
-//
-// When the global register allocators (like linear scan) finally update live
-// variable analysis, we can keep floating point values in registers across
-// portions of the CFG that do not involve critical edges. This will be a big
-// win, but we are waiting on the global allocators before we can do this.
-//
-// With a bit of work, the floating point stackifier pass can be enhanced to
-// break critical edges as needed (to make a place to put compensation code),
-// but this will require some infrastructure improvements as well.
-//
-void ISel::InsertFPRegKills() {
- SSARegMap &RegMap = *F->getSSARegMap();
-
- for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
- for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = I->getOperand(i);
- if (MO.isRegister() && MO.getReg()) {
- unsigned Reg = MO.getReg();
- if (MRegisterInfo::isVirtualRegister(Reg))
- if (RegMap.getRegClass(Reg)->getSize() == 10)
- goto UsesFPReg;
- }
- }
- // If we haven't found an FP register use or def in this basic block, check
- // to see if any of our successors has an FP PHI node, which will cause a
- // copy to be inserted into this block.
- for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()),
- E = succ_end(BB->getBasicBlock()); SI != E; ++SI) {
- MachineBasicBlock *SBB = MBBMap[*SI];
- for (MachineBasicBlock::iterator I = SBB->begin();
- I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
- if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
- goto UsesFPReg;
- }
- }
- continue;
- UsesFPReg:
- // Okay, this block uses an FP register. If the block has successors (ie,
- // it's not an unwind/return), insert the FP_REG_KILL instruction.
- if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() &&
- RequiresFPRegKill(BB->getBasicBlock())) {
- BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
- ++NumFPKill;
- }
- }
-}
-
-
-// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
-// the conditional branch instruction which is the only user of the cc
-// instruction. This is the case if the conditional branch is the only user of
-// the setcc, and if the setcc is in the same basic block as the conditional
-// branch. We also don't handle long arguments below, so we reject them here as
-// well.
-//
-static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
- if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
- SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
- const Type *Ty = SCI->getOperand(0)->getType();
- if (Ty != Type::LongTy && Ty != Type::ULongTy)
- return SCI;
- }
- return 0;
-}
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
- switch(Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return 0;
- case Instruction::SetNE: return 1;
- case Instruction::SetLT: return 2;
- case Instruction::SetGE: return 3;
- case Instruction::SetGT: return 4;
- case Instruction::SetLE: return 5;
- }
-}
-
-// LLVM -> X86 signed X86 unsigned
-// ----- ---------- ------------
-// seteq -> sete sete
-// setne -> setne setne
-// setlt -> setl setb
-// setge -> setge setae
-// setgt -> setg seta
-// setle -> setle setbe
-// ----
-// sets // Used by comparison with 0 optimization
-// setns
-static const unsigned SetCCOpcodeTab[2][8] = {
- { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
- 0, 0 },
- { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
- X86::SETSr, X86::SETNSr },
-};
-
-// EmitComparison - This function emits a comparison of the two operands,
-// returning the extended setcc code to use.
-unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP) {
- // The arguments are already supposed to be of the same type.
- const Type *CompTy = Op0->getType();
- unsigned Class = getClassB(CompTy);
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // Special case handling of: cmp R, i
- if (Class == cByte || Class == cShort || Class == cInt)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
-
- // Mask off any upper bits of the constant, if there are any...
- Op1v &= (1ULL << (8 << Class)) - 1;
-
- // If this is a comparison against zero, emit more efficient code. We
- // can't handle unsigned comparisons against zero unless they are == or
- // !=. These should have been strength reduced already anyway.
- if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
- static const unsigned TESTTab[] = {
- X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
- };
- BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
-
- if (OpNum == 2) return 6; // Map jl -> js
- if (OpNum == 3) return 7; // Map jg -> jns
- return OpNum;
- }
-
- static const unsigned CMPTab[] = {
- X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
- };
-
- BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
- return OpNum;
- }
-
- // Special case handling of comparison against +/- 0.0
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
- if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
- BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
- BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
- BuildMI(*MBB, IP, X86::SAHF, 1);
- return OpNum;
- }
-
- unsigned Op1r = getReg(Op1, MBB, IP);
- switch (Class) {
- default: assert(0 && "Unknown type class!");
- // Emit: cmp <var1>, <var2> (do the comparison). We can
- // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
- // 32-bit.
- case cByte:
- BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
- break;
- case cShort:
- BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
- break;
- case cInt:
- BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
- break;
- case cFP:
- BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
- BuildMI(*MBB, IP, X86::SAHF, 1);
- break;
-
- case cLong:
- if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- break; // Allow the sete or setne to be generated from flags set by OR
- } else {
- // Emit a sequence of code which compares the high and low parts once
- // each, then uses a conditional move to handle the overflow case. For
- // example, a setlt for long would generate code like this:
- //
- // AL = lo(op1) < lo(op2) // Signedness depends on operands
- // BL = hi(op1) < hi(op2) // Always unsigned comparison
- // dest = hi(op1) == hi(op2) ? AL : BL;
- //
-
- // FIXME: This would be much better if we had hierarchical register
- // classes! Until then, hardcode registers so that we can deal with their
- // aliases (because we don't have conditional byte moves).
- //
- BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
- BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
- BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
- BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
- BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
- .addReg(X86::AX);
- // NOTE: visitSetCondInst knows that the value is dumped into the BL
- // register at this point for long values...
- return OpNum;
- }
- }
- return OpNum;
-}
-
-
-/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
-/// register, then move it to wherever the result should be.
-///
-void ISel::visitSetCondInst(SetCondInst &I) {
- if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
-
- unsigned DestReg = getReg(I);
- MachineBasicBlock::iterator MII = BB->end();
- emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
- DestReg);
-}
-
-/// emitSetCCOperation - Common code shared between visitSetCondInst and
-/// constant expression support.
-///
-void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg) {
- unsigned OpNum = getSetCCNumber(Opcode);
- OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
-
- const Type *CompTy = Op0->getType();
- unsigned CompClass = getClassB(CompTy);
- bool isSigned = CompTy->isSigned() && CompClass != cFP;
-
- if (CompClass != cLong || OpNum < 2) {
- // Handle normal comparisons with a setcc instruction...
- BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
- } else {
- // Handle long comparisons by copying the value which is already in BL into
- // the register we want...
- BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
- }
-}
-
-
-
-
-/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
-/// operand, in the specified target register.
-///
-void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
- bool isUnsigned = VR.Ty->isUnsigned();
-
- // Make sure we have the register number for this value...
- unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
-
- switch (getClassB(VR.Ty)) {
- case cByte:
- // Extend value into target register (8->32)
- if (isUnsigned)
- BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
- else
- BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
- break;
- case cShort:
- // Extend value into target register (16->32)
- if (isUnsigned)
- BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
- else
- BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
- break;
- case cInt:
- // Move value into target register (32->32)
- BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
- break;
- default:
- assert(0 && "Unpromotable operand class in promote32");
- }
-}
-
-/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
-/// we have the following possibilities:
-///
-/// ret void: No return value, simply emit a 'ret' instruction
-/// ret sbyte, ubyte : Extend value into EAX and return
-/// ret short, ushort: Extend value into EAX and return
-/// ret int, uint : Move value into EAX and return
-/// ret pointer : Move value into EAX and return
-/// ret long, ulong : Move value into EAX/EDX and return
-/// ret float/double : Top of FP stack
-///
-void ISel::visitReturnInst(ReturnInst &I) {
- if (I.getNumOperands() == 0) {
- BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
- return;
- }
-
- Value *RetVal = I.getOperand(0);
- unsigned RetReg = getReg(RetVal);
- switch (getClassB(RetVal->getType())) {
- case cByte: // integral return values: extend or move into EAX and return
- case cShort:
- case cInt:
- promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
- // Declare that EAX is live on exit
- BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
- break;
- case cFP: // Floats & Doubles: Return in ST(0)
- BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
- // Declare that top-of-stack is live on exit
- BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
- break;
- case cLong:
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
- // Declare that EAX & EDX are live on exit
- BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
- .addReg(X86::ESP);
- break;
- default:
- visitInstruction(I);
- }
- // Emit a 'ret' instruction
- BuildMI(BB, X86::RET, 0);
-}
-
-// getBlockAfter - Return the basic block which occurs lexically after the
-// specified one.
-static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
- Function::iterator I = BB; ++I; // Get iterator to next block
- return I != BB->getParent()->end() ? &*I : 0;
-}
-
-/// visitBranchInst - Handle conditional and unconditional branches here. Note
-/// that since code layout is frozen at this point, that if we are trying to
-/// jump to a block that is the immediate successor of the current block, we can
-/// just make a fall-through (but we don't currently).
-///
-void ISel::visitBranchInst(BranchInst &BI) {
- BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
-
- if (!BI.isConditional()) { // Unconditional branch?
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
- return;
- }
-
- // See if we can fold the setcc into the branch itself...
- SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
- if (SCI == 0) {
- // Nope, cannot fold setcc into this branch. Emit a branch on a condition
- // computed some other way...
- unsigned condReg = getReg(BI.getCondition());
- BuildMI(BB, X86::CMP8ri, 2).addReg(condReg).addImm(0);
- if (BI.getSuccessor(1) == NextBB) {
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
- } else {
- BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
-
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
- }
- return;
- }
-
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- MachineBasicBlock::iterator MII = BB->end();
- OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
-
- const Type *CompTy = SCI->getOperand(0)->getType();
- bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
-
-
- // LLVM -> X86 signed X86 unsigned
- // ----- ---------- ------------
- // seteq -> je je
- // setne -> jne jne
- // setlt -> jl jb
- // setge -> jge jae
- // setgt -> jg ja
- // setle -> jle jbe
- // ----
- // js // Used by comparison with 0 optimization
- // jns
-
- static const unsigned OpcodeTab[2][8] = {
- { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
- { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
- X86::JS, X86::JNS },
- };
-
- if (BI.getSuccessor(0) != NextBB) {
- BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
- if (BI.getSuccessor(1) != NextBB)
- BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
- } else {
- // Change to the inverse condition...
- if (BI.getSuccessor(1) != NextBB) {
- OpNum ^= 1;
- BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
- }
- }
-}
-
-
-/// doCall - This emits an abstract call instruction, setting up the arguments
-/// and the return value as appropriate. For the actual function call itself,
-/// it inserts the specified CallMI instruction into the stream.
-///
-void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args) {
-
- // Count how many bytes are to be pushed on the stack...
- unsigned NumBytes = 0;
-
- if (!Args.empty()) {
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- switch (getClassB(Args[i].Ty)) {
- case cByte: case cShort: case cInt:
- NumBytes += 4; break;
- case cLong:
- NumBytes += 8; break;
- case cFP:
- NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
- break;
- default: assert(0 && "Unknown class!");
- }
-
- // Adjust the stack pointer for the new arguments...
- BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
-
- // Arguments go on the stack in reverse order, as specified by the ABI.
- unsigned ArgOffset = 0;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- unsigned ArgReg;
- switch (getClassB(Args[i].Ty)) {
- case cByte:
- case cShort:
- if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
- // Zero/Sign extend constant, then stuff into memory.
- ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
- Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
- .addImm(Val->getRawValue() & 0xFFFFFFFF);
- } else {
- // Promote arg to 32 bits wide into a temporary register...
- ArgReg = makeAnotherReg(Type::UIntTy);
- promote32(ArgReg, Args[i]);
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- }
- break;
- case cInt:
- if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
- unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
- addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
- X86::ESP, ArgOffset).addImm(Val);
- } else {
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- }
- break;
- case cLong:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
- X86::ESP, ArgOffset+4).addReg(ArgReg+1);
- ArgOffset += 4; // 8 byte entry, not 4.
- break;
-
- case cFP:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- if (Args[i].Ty == Type::FloatTy) {
- addRegOffset(BuildMI(BB, X86::FST32m, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- } else {
- assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
- addRegOffset(BuildMI(BB, X86::FST64m, 5),
- X86::ESP, ArgOffset).addReg(ArgReg);
- ArgOffset += 4; // 8 byte entry, not 4.
- }
- break;
-
- default: assert(0 && "Unknown class!");
- }
- ArgOffset += 4;
- }
- } else {
- BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
- }
-
- BB->push_back(CallMI);
-
- BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
-
- // If there is a return value, scavenge the result from the location the call
- // leaves it in...
- //
- if (Ret.Ty != Type::VoidTy) {
- unsigned DestClass = getClassB(Ret.Ty);
- switch (DestClass) {
- case cByte:
- case cShort:
- case cInt: {
- // Integral results are in %eax, or the appropriate portion
- // thereof.
- static const unsigned regRegMove[] = {
- X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
- };
- static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
- BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
- break;
- }
- case cFP: // Floating-point return values live in %ST(0)
- BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
- break;
- case cLong: // Long values are left in EDX:EAX
- BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
- BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
- break;
- default: assert(0 && "Unknown class!");
- }
- }
-}
-
-
-/// visitCallInst - Push args on stack and do a procedure call instruction.
-void ISel::visitCallInst(CallInst &CI) {
- MachineInstr *TheCall;
- if (Function *F = CI.getCalledFunction()) {
- // Is it an intrinsic function call?
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
- visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
- return;
- }
-
- // Emit a CALL instruction with PC-relative displacement.
- TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
- } else { // Emit an indirect call...
- unsigned Reg = getReg(CI.getCalledValue());
- TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
- }
-
- std::vector<ValueRecord> Args;
- for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
- Args.push_back(ValueRecord(CI.getOperand(i)));
-
- unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
- doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
-}
-
-
-/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-/// function, lowering any calls to unknown intrinsic functions into the
-/// equivalent LLVM code.
-///
-void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- case Intrinsic::memcpy:
- case Intrinsic::memset:
- // We directly implement these intrinsics
- break;
- default:
- // All other intrinsic calls we must lower.
- Instruction *Before = CI->getPrev();
- TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- }
-
-}
-
-void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
- unsigned TmpReg1, TmpReg2;
- switch (ID) {
- case Intrinsic::vastart:
- // Get the address of the first vararg value...
- TmpReg1 = getReg(CI);
- addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
- return;
-
- case Intrinsic::vacopy:
- TmpReg1 = getReg(CI);
- TmpReg2 = getReg(CI.getOperand(1));
- BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
- return;
- case Intrinsic::vaend: return; // Noop on X86
-
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- if (ID == Intrinsic::returnaddress) {
- // Just load the return address
- addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
- ReturnAddressIndex);
- } else {
- addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
- ReturnAddressIndex, -4);
- }
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
- }
- return;
-
- case Intrinsic::memcpy: {
- assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
- unsigned Align = 1;
- if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
- Align = AlignC->getRawValue();
- if (Align == 0) Align = 1;
- }
-
- // Turn the byte code into # iterations
- unsigned CountReg;
- unsigned Opcode;
- switch (Align & 3) {
- case 2: // WORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
- }
- Opcode = X86::REP_MOVSW;
- break;
- case 0: // DWORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
- }
- Opcode = X86::REP_MOVSD;
- break;
- default: // BYTE aligned
- CountReg = getReg(CI.getOperand(3));
- Opcode = X86::REP_MOVSB;
- break;
- }
-
- // No matter what the alignment is, we put the source in ESI, the
- // destination in EDI, and the count in ECX.
- TmpReg1 = getReg(CI.getOperand(1));
- TmpReg2 = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
- BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
- BuildMI(BB, Opcode, 0);
- return;
- }
- case Intrinsic::memset: {
- assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
- unsigned Align = 1;
- if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
- Align = AlignC->getRawValue();
- if (Align == 0) Align = 1;
- }
-
- // Turn the byte code into # iterations
- unsigned CountReg;
- unsigned Opcode;
- if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
- unsigned Val = ValC->getRawValue() & 255;
-
- // If the value is a constant, then we can potentially use larger copies.
- switch (Align & 3) {
- case 2: // WORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
- }
- BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
- Opcode = X86::REP_STOSW;
- break;
- case 0: // DWORD aligned
- if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
- CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
- } else {
- CountReg = makeAnotherReg(Type::IntTy);
- unsigned ByteReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
- }
- Val = (Val << 8) | Val;
- BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
- Opcode = X86::REP_STOSD;
- break;
- default: // BYTE aligned
- CountReg = getReg(CI.getOperand(3));
- BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
- Opcode = X86::REP_STOSB;
- break;
- }
- } else {
- // If it's not a constant value we are storing, just fall back. We could
- // try to be clever to form 16 bit and 32 bit values, but we don't yet.
- unsigned ValReg = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
- CountReg = getReg(CI.getOperand(3));
- Opcode = X86::REP_STOSB;
- }
-
- // No matter what the alignment is, we put the source in ESI, the
- // destination in EDI, and the count in ECX.
- TmpReg1 = getReg(CI.getOperand(1));
- //TmpReg2 = getReg(CI.getOperand(2));
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
- BuildMI(BB, Opcode, 0);
- return;
- }
-
- default: assert(0 && "Error: unknown intrinsics should have been lowered!");
- }
-}
-
-static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
- if (LI.getParent() != User.getParent())
- return false;
- BasicBlock::iterator It = &LI;
- // Check all of the instructions between the load and the user. We should
- // really use alias analysis here, but for now we just do something simple.
- for (++It; It != BasicBlock::iterator(&User); ++It) {
- switch (It->getOpcode()) {
- case Instruction::Store:
- case Instruction::Call:
- case Instruction::Invoke:
- return false;
- }
- }
- return true;
-}
-
-
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
-/// Xor.
-///
-void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
- unsigned DestReg = getReg(B);
- MachineBasicBlock::iterator MI = BB->end();
- Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
-
- // Special case: op Reg, load [mem]
- if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
- if (!B.swapOperands())
- std::swap(Op0, Op1); // Make sure any loads are in the RHS.
-
- unsigned Class = getClassB(B.getType());
- if (isa<LoadInst>(Op1) && Class < cFP &&
- isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
-
- static const unsigned OpcodeTab[][3] = {
- // Arithmetic operators
- { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
- { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
-
- // Bitwise operators
- { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
- { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
- { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
- };
-
- assert(Class < cFP && "General code handles 64-bit integer types!");
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
-
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
- Scale, IndexReg, Disp);
-
- unsigned Op0r = getReg(Op0);
- addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r),
- BaseReg, Scale, IndexReg, Disp);
- return;
- }
-
- emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
-}
-
-/// emitSimpleBinaryOperation - Implement simple binary operators for integral
-/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
-/// Or, 4 for Xor.
-///
-/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
-/// and constant expression support.
-///
-void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg) {
- unsigned Class = getClassB(Op0->getType());
-
- // sub 0, X -> neg X
- if (OperatorClass == 1 && Class != cLong)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
- if (CI->isNullValue()) {
- unsigned op1Reg = getReg(Op1, MBB, IP);
- switch (Class) {
- default: assert(0 && "Unknown class for this function!");
- case cByte:
- BuildMI(*MBB, IP, X86::NEG8r, 1, DestReg).addReg(op1Reg);
- return;
- case cShort:
- BuildMI(*MBB, IP, X86::NEG16r, 1, DestReg).addReg(op1Reg);
- return;
- case cInt:
- BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg).addReg(op1Reg);
- return;
- }
- }
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
- if (CFP->isExactlyValue(-0.0)) {
- // -0.0 - X === -X
- unsigned op1Reg = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
- return;
- }
-
- // Special case: op Reg, <const>
- if (Class != cLong && isa<ConstantInt>(Op1)) {
- ConstantInt *Op1C = cast<ConstantInt>(Op1);
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // xor X, -1 -> not X
- if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
- static unsigned const NOTTab[] = { X86::NOT8r, X86::NOT16r, X86::NOT32r };
- BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
- return;
- }
-
- // add X, -1 -> dec X
- if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
- static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
- BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
- return;
- }
-
- // add X, 1 -> inc X
- if (OperatorClass == 0 && Op1C->equalsInt(1)) {
- static unsigned const DECTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
- BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
- return;
- }
-
- static const unsigned OpcodeTab[][3] = {
- // Arithmetic operators
- { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri }, // ADD
- { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri }, // SUB
-
- // Bitwise operators
- { X86::AND8ri, X86::AND16ri, X86::AND32ri }, // AND
- { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri }, // OR
- { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri }, // XOR
- };
-
- assert(Class < cFP && "General code handles 64-bit integer types!");
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
-
-
- uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
- BuildMI(*MBB, IP, Opcode, 5, DestReg).addReg(Op0r).addImm(Op1v);
- return;
- }
-
- // Finally, handle the general case now.
- static const unsigned OpcodeTab[][4] = {
- // Arithmetic operators
- { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, X86::FpADD }, // ADD
- { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB }, // SUB
-
- // Bitwise operators
- { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0 }, // AND
- { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0 }, // OR
- { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0 }, // XOR
- };
-
- bool isLong = false;
- if (Class == cLong) {
- isLong = true;
- Class = cInt; // Bottom 32 bits are handled just like ints
- }
-
- unsigned Opcode = OpcodeTab[OperatorClass][Class];
- assert(Opcode && "Floating point arguments to logical inst?");
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-
- if (isLong) { // Handle the upper 32 bits of long values...
- static const unsigned TopTab[] = {
- X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
- };
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
- DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
- }
-}
-
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
-/// result should be given as DestTy.
-///
-void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned op1Reg) {
- unsigned Class = getClass(DestTy);
- switch (Class) {
- case cFP: // Floating point multiply
- BuildMI(*MBB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
- return;
- case cInt:
- case cShort:
- BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
- .addReg(op0Reg).addReg(op1Reg);
- return;
- case cByte:
- // Must use the MUL instruction, which forces use of AL...
- BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
- BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
- BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
- return;
- default:
- case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
- }
-}
-
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
- if (Val == 0) return 0;
- unsigned Count = 0;
- while (Val != 1) {
- if (Val & 1) return 0;
- Val >>= 1;
- ++Count;
- }
- return Count+1;
-}
-
-void ISel::doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned ConstRHS) {
- unsigned Class = getClass(DestTy);
-
- // If the element size is exactly a power of 2, use a shift to get it.
- if (unsigned Shift = ExactLog2(ConstRHS)) {
- switch (Class) {
- default: assert(0 && "Unknown class for this function!");
- case cByte:
- BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
- return;
- case cShort:
- BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
- return;
- case cInt:
- BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
- return;
- }
- }
-
- if (Class == cShort) {
- BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
- return;
- } else if (Class == cInt) {
- BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
- return;
- }
-
- // Most general case, emit a normal multiply...
- static const unsigned MOVriTab[] = {
- X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
- };
-
- unsigned TmpReg = makeAnotherReg(DestTy);
- BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
-
- // Emit a MUL to multiply the register holding the index by
- // elementSize, putting the result in OffsetReg.
- doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
-}
-
-/// visitMul - Multiplies are not simple binary operators because they must deal
-/// with the EAX register explicitly.
-///
-void ISel::visitMul(BinaryOperator &I) {
- unsigned Op0Reg = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- // Simple scalar multiply?
- if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
- unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
- } else {
- unsigned Op1Reg = getReg(I.getOperand(1));
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
- }
- } else {
- unsigned Op1Reg = getReg(I.getOperand(1));
-
- // Long value. We have to do things the hard way...
- // Multiply the two low parts... capturing carry into EDX
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
- BuildMI(BB, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
-
- unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
- BuildMI(BB, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
-
- MachineBasicBlock::iterator MBBI = BB->end();
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
- BuildMI(*BB, MBBI, X86::IMUL32rr,2,AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
-
- unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
- AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
-
- MBBI = BB->end();
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
- BuildMI(*BB, MBBI, X86::IMUL32rr,2,ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
-
- BuildMI(*BB, MBBI, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
- }
-}
-
-
-/// visitDivRem - Handle division and remainder instructions... these
-/// instruction both require the same instructions to be generated, they just
-/// select the result from a different register. Note that both of these
-/// instructions work differently for signed and unsigned operands.
-///
-void ISel::visitDivRem(BinaryOperator &I) {
- unsigned Op0Reg = getReg(I.getOperand(0));
- unsigned Op1Reg = getReg(I.getOperand(1));
- unsigned ResultReg = getReg(I);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
- I.getType(), ResultReg);
-}
-
-void ISel::emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
- const Type *Ty, unsigned ResultReg) {
- unsigned Class = getClass(Ty);
- switch (Class) {
- case cFP: // Floating point divide
- if (isDiv) {
- BuildMI(*BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
- } else { // Floating point remainder...
- MachineInstr *TheCall =
- BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
- Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
- doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
- }
- return;
- case cLong: {
- static const char *FnName[] =
- { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
-
- unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
- MachineInstr *TheCall =
- BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
- Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
- doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
- return;
- }
- case cByte: case cShort: case cInt:
- break; // Small integrals, handled below...
- default: assert(0 && "Unknown class!");
- }
-
- static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
- static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
- static const unsigned SarOpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
- static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
- static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
-
- static const unsigned DivOpcode[][4] = {
- { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
- { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
- };
-
- bool isSigned = Ty->isSigned();
- unsigned Reg = Regs[Class];
- unsigned ExtReg = ExtRegs[Class];
-
- // Put the first operand into one of the A registers...
- BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
-
- if (isSigned) {
- // Emit a sign extension instruction...
- unsigned ShiftResult = makeAnotherReg(Ty);
- BuildMI(*BB, IP, SarOpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
- BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
- } else {
- // If unsigned, emit a zeroing instruction... (reg = 0)
- BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
- }
-
- // Emit the appropriate divide or remainder instruction...
- BuildMI(*BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
-
- // Figure out which register we want to pick the result out of...
- unsigned DestReg = isDiv ? Reg : ExtReg;
-
- // Put the result into the destination register...
- BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
-}
-
-
-/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
-/// for constant immediate shift values, and for constant immediate
-/// shift values equal to 1. Even the general case is sort of special,
-/// because the shift amount has to be in CL, not just any old register.
-///
-void ISel::visitShiftInst(ShiftInst &I) {
- MachineBasicBlock::iterator IP = BB->end ();
- emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
- I.getOpcode () == Instruction::Shl, I.getType (),
- getReg (I));
-}
-
-/// emitShiftOperation - Common code shared between visitShiftInst and
-/// constant expression support.
-void ISel::emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg) {
- unsigned SrcReg = getReg (Op, MBB, IP);
- bool isSigned = ResultTy->isSigned ();
- unsigned Class = getClass (ResultTy);
-
- static const unsigned ConstantOperand[][4] = {
- { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
- { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
- { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
- { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
- };
-
- static const unsigned NonConstantOperand[][4] = {
- { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
- { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
- { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
- { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
- };
-
- // Longs, as usual, are handled specially...
- if (Class == cLong) {
- // If we have a constant shift, we can generate much more efficient code
- // than otherwise...
- //
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- unsigned Amount = CUI->getValue();
- if (Amount < 32) {
- const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
- if (isLeftShift) {
- BuildMI(*MBB, IP, Opc[3], 3,
- DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
- BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, Opc[3], 3,
- DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
- BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
- }
- } else { // Shifting more than 32 bits
- Amount -= 32;
- if (isLeftShift) {
- BuildMI(*MBB, IP, X86::SHL32ri, 2,
- DestReg + 1).addReg(SrcReg).addImm(Amount);
- BuildMI(*MBB, IP, X86::MOV32ri, 1,
- DestReg).addImm(0);
- } else {
- unsigned Opcode = isSigned ? X86::SAR32ri : X86::SHR32ri;
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addImm(Amount);
- BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
- }
- }
- } else {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
-
- if (!isLeftShift && isSigned) {
- // If this is a SHR of a Long, then we need to do funny sign extension
- // stuff. TmpReg gets the value to use as the high-part if we are
- // shifting more than 32 bits.
- BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
- } else {
- // Other shifts use a fixed zero value if the shift is more than 32
- // bits.
- BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
- }
-
- // Initialize CL with the shift amount...
- unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
- BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
-
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
- if (isLeftShift) {
- // TmpReg2 = shld inHi, inLo
- BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
- .addReg(SrcReg);
- // TmpReg3 = shl inLo, CL
- BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
-
- // Set the flags to indicate whether the shift was by more than 32 bits.
- BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
-
- // DestHi = (>32) ? TmpReg3 : TmpReg2;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
- // DestLo = (>32) ? TmpReg : TmpReg3;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg).addReg(TmpReg3).addReg(TmpReg);
- } else {
- // TmpReg2 = shrd inLo, inHi
- BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
- .addReg(SrcReg+1);
- // TmpReg3 = s[ah]r inHi, CL
- BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
- .addReg(SrcReg+1);
-
- // Set the flags to indicate whether the shift was by more than 32 bits.
- BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
-
- // DestLo = (>32) ? TmpReg3 : TmpReg2;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg).addReg(TmpReg2).addReg(TmpReg3);
-
- // DestHi = (>32) ? TmpReg : TmpReg3;
- BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
- DestReg+1).addReg(TmpReg3).addReg(TmpReg);
- }
- }
- return;
- }
-
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- // The shift amount is constant, guaranteed to be a ubyte. Get its value.
- assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
-
- const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
- BuildMI(*MBB, IP, Opc[Class], 2,
- DestReg).addReg(SrcReg).addImm(CUI->getValue());
- } else { // The shift amount is non-constant.
- unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
- BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
-
- const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
- BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
- }
-}
-
-
-void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
- unsigned &IndexReg, unsigned &Disp) {
- BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
- if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
- BaseReg, Scale, IndexReg, Disp))
- return;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (CE->getOpcode() == Instruction::GetElementPtr)
- if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
- BaseReg, Scale, IndexReg, Disp))
- return;
- }
-
- // If it's not foldable, reset addr mode.
- BaseReg = getReg(Addr);
- Scale = 1; IndexReg = 0; Disp = 0;
-}
-
-
-/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
-/// instruction. The load and store instructions are the only place where we
-/// need to worry about the memory layout of the target machine.
-///
-void ISel::visitLoadInst(LoadInst &I) {
- // Check to see if this load instruction is going to be folded into a binary
- // instruction, like add. If so, we don't want to emit it. Wouldn't a real
- // pattern matching instruction selector be nice?
- if (I.hasOneUse() && getClassB(I.getType()) < cFP) {
- Instruction *User = cast<Instruction>(I.use_back());
- switch (User->getOpcode()) {
- default: User = 0; break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- break;
- }
-
- if (User) {
- // Okay, we found a user. If the load is the first operand and there is
- // no second operand load, reverse the operand ordering. Note that this
- // can fail for a subtract (ie, no change will be made).
- if (!isa<LoadInst>(User->getOperand(1)))
- cast<BinaryOperator>(User)->swapOperands();
-
- // Okay, now that everything is set up, if this load is used by the second
- // operand, and if there are no instructions that invalidate the load
- // before the binary operator, eliminate the load.
- if (User->getOperand(1) == &I &&
- isSafeToFoldLoadIntoInstruction(I, *User))
- return; // Eliminate the load!
- }
- }
-
- unsigned DestReg = getReg(I);
- unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
- getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
-
- unsigned Class = getClassB(I.getType());
- if (Class == cLong) {
- addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
- BaseReg, Scale, IndexReg, Disp);
- addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
- BaseReg, Scale, IndexReg, Disp+4);
- return;
- }
-
- static const unsigned Opcodes[] = {
- X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m
- };
- unsigned Opcode = Opcodes[Class];
- if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
- addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
- BaseReg, Scale, IndexReg, Disp);
-}
-
-/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
-/// instruction.
-///
-void ISel::visitStoreInst(StoreInst &I) {
- unsigned BaseReg, Scale, IndexReg, Disp;
- getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
-
- const Type *ValTy = I.getOperand(0)->getType();
- unsigned Class = getClassB(ValTy);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
- uint64_t Val = CI->getRawValue();
- if (Class == cLong) {
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
- addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
- BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
- } else {
- static const unsigned Opcodes[] = {
- X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
- };
- unsigned Opcode = Opcodes[Class];
- addFullAddress(BuildMI(BB, Opcode, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(Val);
- }
- } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
- addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
- BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
- } else {
- if (Class == cLong) {
- unsigned ValReg = getReg(I.getOperand(0));
- addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
- BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
- addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
- BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
- } else {
- unsigned ValReg = getReg(I.getOperand(0));
- static const unsigned Opcodes[] = {
- X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
- };
- unsigned Opcode = Opcodes[Class];
- if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
- addFullAddress(BuildMI(BB, Opcode, 1+4),
- BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
- }
- }
-}
-
-
-/// visitCastInst - Here we have various kinds of copying with or without sign
-/// extension going on.
-///
-void ISel::visitCastInst(CastInst &CI) {
- Value *Op = CI.getOperand(0);
- // If this is a cast from a 32-bit integer to a Long type, and the only uses
- // of the case are GEP instructions, then the cast does not need to be
- // generated explicitly, it will be folded into the GEP.
- if (CI.getType() == Type::LongTy &&
- (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
- bool AllUsesAreGEPs = true;
- for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
- if (!isa<GetElementPtrInst>(*I)) {
- AllUsesAreGEPs = false;
- break;
- }
-
- // No need to codegen this cast if all users are getelementptr instrs...
- if (AllUsesAreGEPs) return;
- }
-
- unsigned DestReg = getReg(CI);
- MachineBasicBlock::iterator MI = BB->end();
- emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
-}
-
-/// emitCastOperation - Common code shared between visitCastInst and constant
-/// expression cast support.
-///
-void ISel::emitCastOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy,
- unsigned DestReg) {
- unsigned SrcReg = getReg(Src, BB, IP);
- const Type *SrcTy = Src->getType();
- unsigned SrcClass = getClassB(SrcTy);
- unsigned DestClass = getClassB(DestTy);
-
- // Implement casts to bool by using compare on the operand followed by set if
- // not zero on the result.
- if (DestTy == Type::BoolTy) {
- switch (SrcClass) {
- case cByte:
- BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
- break;
- case cShort:
- BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
- break;
- case cInt:
- BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
- break;
- case cLong: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
- break;
- }
- case cFP:
- BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
- BuildMI(*BB, IP, X86::FNSTSW8r, 0);
- BuildMI(*BB, IP, X86::SAHF, 1);
- break;
- }
-
- // If the zero flag is not set, then the value is true, set the byte to
- // true.
- BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
- return;
- }
-
- static const unsigned RegRegMove[] = {
- X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
- };
-
- // Implement casts between values of the same type class (as determined by
- // getClass) by using a register-to-register move.
- if (SrcClass == DestClass) {
- if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
- BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
- } else if (SrcClass == cFP) {
- if (SrcTy == Type::FloatTy) { // double -> float
- assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
- BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
- } else { // float -> double
- assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
- "Unknown cFP member!");
- // Truncate from double to float by storing to memory as short, then
- // reading it back.
- unsigned FltAlign = TM.getTargetData().getFloatAlignment();
- int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
- addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
- addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
- }
- } else if (SrcClass == cLong) {
- BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
- BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
- } else {
- assert(0 && "Cannot handle this type of cast instruction!");
- abort();
- }
- return;
- }
-
- // Handle cast of SMALLER int to LARGER int using a move with sign extension
- // or zero extension, depending on whether the source type was signed.
- if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
- SrcClass < DestClass) {
- bool isLong = DestClass == cLong;
- if (isLong) DestClass = cInt;
-
- static const unsigned Opc[][4] = {
- { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
- { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
- };
-
- bool isUnsigned = SrcTy->isUnsigned();
- BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
- DestReg).addReg(SrcReg);
-
- if (isLong) { // Handle upper 32 bits as appropriate...
- if (isUnsigned) // Zero out top bits...
- BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
- else // Sign extend bottom half...
- BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
- }
- return;
- }
-
- // Special case long -> int ...
- if (SrcClass == cLong && DestClass == cInt) {
- BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
- // move out of AX or AL.
- if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
- && SrcClass > DestClass) {
- static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
- BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
- BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
- return;
- }
-
- // Handle casts from integer to floating point now...
- if (DestClass == cFP) {
- // Promote the integer to a type supported by FLD. We do this because there
- // are no unsigned FLD instructions, so we must promote an unsigned value to
- // a larger signed value, then use FLD on the larger value.
- //
- const Type *PromoteType = 0;
- unsigned PromoteOpcode;
- unsigned RealDestReg = DestReg;
- switch (SrcTy->getTypeID()) {
- case Type::BoolTyID:
- case Type::SByteTyID:
- // We don't have the facilities for directly loading byte sized data from
- // memory (even signed). Promote it to 16 bits.
- PromoteType = Type::ShortTy;
- PromoteOpcode = X86::MOVSX16rr8;
- break;
- case Type::UByteTyID:
- PromoteType = Type::ShortTy;
- PromoteOpcode = X86::MOVZX16rr8;
- break;
- case Type::UShortTyID:
- PromoteType = Type::IntTy;
- PromoteOpcode = X86::MOVZX32rr16;
- break;
- case Type::UIntTyID: {
- // Make a 64 bit temporary... and zero out the top of it...
- unsigned TmpReg = makeAnotherReg(Type::LongTy);
- BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
- BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
- SrcTy = Type::LongTy;
- SrcClass = cLong;
- SrcReg = TmpReg;
- break;
- }
- case Type::ULongTyID:
- // Don't fild into the read destination.
- DestReg = makeAnotherReg(Type::DoubleTy);
- break;
- default: // No promotion needed...
- break;
- }
-
- if (PromoteType) {
- unsigned TmpReg = makeAnotherReg(PromoteType);
- unsigned Opc = SrcTy->isSigned() ? X86::MOVSX16rr8 : X86::MOVZX16rr8;
- BuildMI(*BB, IP, Opc, 1, TmpReg).addReg(SrcReg);
- SrcTy = PromoteType;
- SrcClass = getClass(PromoteType);
- SrcReg = TmpReg;
- }
-
- // Spill the integer to memory and reload it from there...
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
-
- if (SrcClass == cLong) {
- addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
- FrameIdx).addReg(SrcReg);
- addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
- FrameIdx, 4).addReg(SrcReg+1);
- } else {
- static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
- addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
- FrameIdx).addReg(SrcReg);
- }
-
- static const unsigned Op2[] =
- { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
- addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
-
- // We need special handling for unsigned 64-bit integer sources. If the
- // input number has the "sign bit" set, then we loaded it incorrectly as a
- // negative 64-bit number. In this case, add an offset value.
- if (SrcTy == Type::ULongTy) {
- // Emit a test instruction to see if the dynamic input value was signed.
- BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
-
- // If the sign bit is set, get a pointer to an offset, otherwise get a
- // pointer to a zero.
- MachineConstantPool *CP = F->getConstantPool();
- unsigned Zero = makeAnotherReg(Type::IntTy);
- Constant *Null = Constant::getNullValue(Type::UIntTy);
- addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
- CP->getConstantPoolIndex(Null));
- unsigned Offset = makeAnotherReg(Type::IntTy);
- Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
-
- addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
- CP->getConstantPoolIndex(OffsetCst));
- unsigned Addr = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
-
- // Load the constant for an add. FIXME: this could make an 'fadd' that
- // reads directly from memory, but we don't support these yet.
- unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
- addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
-
- BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
- .addReg(ConstReg).addReg(DestReg);
- }
-
- return;
- }
-
- // Handle casts from floating point to integer now...
- if (SrcClass == cFP) {
- // Change the floating point control register to use "round towards zero"
- // mode when truncating to an integer value.
- //
- int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
- addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
-
- // Load the old value of the high byte of the control word...
- unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
- addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
- CWFrameIdx, 1);
-
- // Set the high part to be round to zero...
- addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
- CWFrameIdx, 1).addImm(12);
-
- // Reload the modified control word now...
- addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
-
- // Restore the memory image of control word to original value
- addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
- CWFrameIdx, 1).addReg(HighPartOfCW);
-
- // We don't have the facilities for directly storing byte sized data to
- // memory. Promote it to 16 bits. We also must promote unsigned values to
- // larger classes because we only have signed FP stores.
- unsigned StoreClass = DestClass;
- const Type *StoreTy = DestTy;
- if (StoreClass == cByte || DestTy->isUnsigned())
- switch (StoreClass) {
- case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
- case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
- case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
- // The following treatment of cLong may not be perfectly right,
- // but it survives chains of casts of the form
- // double->ulong->double.
- case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
- default: assert(0 && "Unknown store class!");
- }
-
- // Spill the integer to memory and reload it from there...
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
-
- static const unsigned Op1[] =
- { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
- addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
- FrameIdx).addReg(SrcReg);
-
- if (DestClass == cLong) {
- addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
- addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
- FrameIdx, 4);
- } else {
- static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
- addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
- }
-
- // Reload the original control word now...
- addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
- return;
- }
-
- // Anything we haven't handled already, we can't (yet) handle at all.
- assert(0 && "Unhandled cast instruction!");
- abort();
-}
-
-/// visitVANextInst - Implement the va_next instruction...
-///
-void ISel::visitVANextInst(VANextInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- unsigned Size;
- switch (I.getArgType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- Size = 4;
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- case Type::DoubleTyID:
- Size = 8;
- break;
- }
-
- // Increment the VAList pointer...
- BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
-}
-
-void ISel::visitVAArgInst(VAArgInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- switch (I.getType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
- addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
- break;
- case Type::DoubleTyID:
- addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
- break;
- }
-}
-
-/// visitGetElementPtrInst - instruction-select GEP instructions
-///
-void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
- // If this GEP instruction will be folded into all of its users, we don't need
- // to explicitly calculate it!
- unsigned A, B, C, D;
- if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
- // Check all of the users of the instruction to see if they are loads and
- // stores.
- bool AllWillFold = true;
- for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
- if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
- cast<Instruction>(*UI)->getOperand(0) == &I) {
- AllWillFold = false;
- break;
- }
-
- // If the instruction is foldable, and will be folded into all users, don't
- // emit it!
- if (AllWillFold) return;
- }
-
- unsigned outputReg = getReg(I);
- emitGEPOperation(BB, BB->end(), I.getOperand(0),
- I.op_begin()+1, I.op_end(), outputReg);
-}
-
-/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
-/// GEPTypes (the derived types being stepped through at each level). On return
-/// from this function, if some indexes of the instruction are representable as
-/// an X86 lea instruction, the machine operands are put into the Ops
-/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
-/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
-/// addressing mode that only partially consumes the input, the BaseReg input of
-/// the addressing mode must be left free.
-///
-/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
-///
-void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- std::vector<Value*> &GEPOps,
- std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
- const TargetData &TD = TM.getTargetData();
-
- // Clear out the state we are working with...
- BaseReg = 0; // No base register
- Scale = 1; // Unit scale
- IndexReg = 0; // No index register
- Disp = 0; // No displacement
-
- // While there are GEP indexes that can be folded into the current address,
- // keep processing them.
- while (!GEPTypes.empty()) {
- if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
- // It's a struct access. CUI is the index into the structure,
- // which names the field. This index must have unsigned type.
- const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
-
- // Use the TargetData structure to pick out what the layout of the
- // structure is in memory. Since the structure index must be constant, we
- // can get its value and use it to find the right byte offset from the
- // StructLayout class's list of structure member offsets.
- Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
- } else {
- // It's an array or pointer access: [ArraySize x ElementType].
- const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
- Value *idx = GEPOps.back();
-
- // idx is the index into the array. Unlike with structure
- // indices, we may not know its actual value at code-generation
- // time.
- assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
-
- // If idx is a constant, fold it into the offset.
- unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
- if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
- Disp += TypeSize*CSI->getValue();
- } else {
- // If the index reg is already taken, we can't handle this index.
- if (IndexReg) return;
-
- // If this is a size that we can handle, then add the index as
- switch (TypeSize) {
- case 1: case 2: case 4: case 8:
- // These are all acceptable scales on X86.
- Scale = TypeSize;
- break;
- default:
- // Otherwise, we can't handle this scale
- return;
- }
-
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
- }
-
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
- }
- }
-
- // GEPTypes is empty, which means we have a single operand left. See if we
- // can set it as the base register.
- //
- // FIXME: When addressing modes are more powerful/correct, we could load
- // global addresses directly as 32-bit immediates.
- assert(BaseReg == 0);
- BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
- GEPOps.pop_back(); // Consume the last GEP operand
-}
-
-
-/// isGEPFoldable - Return true if the specified GEP can be completely
-/// folded into the addressing mode of a load/store or lea instruction.
-bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned &BaseReg,
- unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
- std::vector<Value*> GEPOps;
- GEPOps.resize(IdxEnd-IdxBegin+1);
- GEPOps[0] = Src;
- std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
-
- std::vector<const Type*> GEPTypes;
- GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
- gep_type_end(Src->getType(), IdxBegin, IdxEnd));
-
- MachineBasicBlock::iterator IP;
- if (MBB) IP = MBB->end();
- getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
-
- // We can fold it away iff the getGEPIndex call eliminated all operands.
- return GEPOps.empty();
-}
-
-void ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg) {
- const TargetData &TD = TM.getTargetData();
-
- std::vector<Value*> GEPOps;
- GEPOps.resize(IdxEnd-IdxBegin+1);
- GEPOps[0] = Src;
- std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
-
- std::vector<const Type*> GEPTypes;
- GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
- gep_type_end(Src->getType(), IdxBegin, IdxEnd));
-
- // Keep emitting instructions until we consume the entire GEP instruction.
- while (!GEPOps.empty()) {
- unsigned OldSize = GEPOps.size();
- unsigned BaseReg, Scale, IndexReg, Disp;
- getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
-
- if (GEPOps.size() != OldSize) {
- // getGEPIndex consumed some of the input. Build an LEA instruction here.
- unsigned NextTarget = 0;
- if (!GEPOps.empty()) {
- assert(BaseReg == 0 &&
- "getGEPIndex should have left the base register open for chaining!");
- NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
- }
-
- if (IndexReg == 0 && Disp == 0)
- BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
- else
- addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
- BaseReg, Scale, IndexReg, Disp);
- --IP;
- TargetReg = NextTarget;
- } else if (GEPTypes.empty()) {
- // The getGEPIndex operation didn't want to build an LEA. Check to see if
- // all operands are consumed but the base pointer. If so, just load it
- // into the register.
- if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
- BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
- } else {
- unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
- BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
- }
- break; // we are now done
-
- } else {
- // It's an array or pointer access: [ArraySize x ElementType].
- const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
- Value *idx = GEPOps.back();
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
-
- // idx is the index into the array. Unlike with structure
- // indices, we may not know its actual value at code-generation
- // time.
- assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
-
- // Most GEP instructions use a [cast (int/uint) to LongTy] as their
- // operand on X86. Handle this case directly now...
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- const Type *ElTy = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(ElTy);
-
- // If idxReg is a constant, we don't need to perform the multiply!
- if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
- if (!CSI->isNullValue()) {
- unsigned Offset = elementSize*CSI->getValue();
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
- .addReg(Reg).addImm(Offset);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
- }
- } else if (elementSize == 1) {
- // If the element size is 1, we don't have to multiply, just add
- unsigned idxReg = getReg(idx, MBB, IP);
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
- } else {
- unsigned idxReg = getReg(idx, MBB, IP);
- unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
-
- // Make sure we can back the iterator up to point to the first
- // instruction emitted.
- MachineBasicBlock::iterator BeforeIt = IP;
- if (IP == MBB->begin())
- BeforeIt = MBB->end();
- else
- --BeforeIt;
- doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
-
- // Emit an ADD to add OffsetReg to the basePtr.
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
- .addReg(Reg).addReg(OffsetReg);
-
- // Step to the first instruction of the multiply.
- if (BeforeIt == MBB->end())
- IP = MBB->begin();
- else
- IP = ++BeforeIt;
-
- TargetReg = Reg; // Codegen the rest of the GEP into this
- }
- }
- }
-}
-
-
-/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
-/// frame manager, otherwise do it the hard way.
-///
-void ISel::visitAllocaInst(AllocaInst &I) {
- // Find the data size of the alloca inst's getAllocatedType.
- const Type *Ty = I.getAllocatedType();
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-
- // If this is a fixed size alloca in the entry block for the function,
- // statically stack allocate the space.
- //
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
- if (I.getParent() == I.getParent()->getParent()->begin()) {
- TySize *= CUI->getValue(); // Get total allocated size...
- unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-
- // Create a new stack object using the frame manager...
- int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
- addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx);
- return;
- }
- }
-
- // Create a register to hold the temporary result of multiplying the type size
- // constant by the variable amount.
- unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
- unsigned SrcReg1 = getReg(I.getArraySize());
-
- // TotalSizeReg = mul <numelements>, <TypeSize>
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
-
- // AddedSize = add <TotalSizeReg>, 15
- unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
-
- // AlignedSize = and <AddedSize>, ~15
- unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
-
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
-
- // Put a pointer to the space into the result register, by copying
- // the stack pointer.
- BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
-
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- F->getFrameInfo()->CreateVariableSizedObject();
-}
-
-/// visitMallocInst - Malloc instructions are code generated into direct calls
-/// to the library malloc.
-///
-void ISel::visitMallocInst(MallocInst &I) {
- unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
- unsigned Arg;
-
- if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
- Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
- } else {
- Arg = makeAnotherReg(Type::UIntTy);
- unsigned Op0Reg = getReg(I.getOperand(0));
- MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
- }
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Arg, Type::UIntTy));
- MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
- 1).addExternalSymbol("malloc", true);
- doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
-}
-
-
-/// visitFreeInst - Free instructions are code gen'd to call the free libc
-/// function.
-///
-void ISel::visitFreeInst(FreeInst &I) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(I.getOperand(0)));
- MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
- 1).addExternalSymbol("free", true);
- doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
-}
-
-/// createX86SimpleInstructionSelector - This pass converts an LLVM function
-/// into a machine code representation is a very simple peep-hole fashion. The
-/// generated code sucks but the implementation is nice and simple.
-///
-FunctionPass *llvm::createX86ReallySimpleInstructionSelector(TargetMachine &TM) {
- return new ISel(TM);
-}
-
-#include "X86GenSimpInstrSelector.inc"
diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp
index dc107385bd..af03315280 100644
--- a/lib/Target/X86/X86TargetMachine.cpp
+++ b/lib/Target/X86/X86TargetMachine.cpp
@@ -34,8 +34,6 @@ namespace {
cl::opt<bool> DisableOutput("disable-x86-llc-output", cl::Hidden,
cl::desc("Disable the X86 asm printer, for use "
"when profiling the code generator."));
- cl::opt<bool> NoSimpleISel("disable-simple-isel", cl::init(true),
- cl::desc("Use the hand coded 'simple' X86 instruction selector"));
// Register the target.
RegisterTarget<X86TargetMachine> X("x86", " IA-32 (Pentium and above)");
@@ -85,10 +83,8 @@ bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM,
// Make sure that no unreachable blocks are instruction selected.
PM.add(createUnreachableBlockEliminationPass());
- if (NoPatternISel && NoSimpleISel)
+ if (NoPatternISel)
PM.add(createX86SimpleInstructionSelector(*this));
- else if (NoPatternISel)
- PM.add(createX86ReallySimpleInstructionSelector(*this));
else
PM.add(createX86PatternInstructionSelector(*this));