summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/ValueTracking.h15
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp159
-rw-r--r--lib/Analysis/ValueTracking.cpp154
3 files changed, 170 insertions, 158 deletions
diff --git a/include/llvm/Analysis/ValueTracking.h b/include/llvm/Analysis/ValueTracking.h
index 121da79cb9..05968914b9 100644
--- a/include/llvm/Analysis/ValueTracking.h
+++ b/include/llvm/Analysis/ValueTracking.h
@@ -19,6 +19,7 @@
#include <string>
namespace llvm {
+ template <typename T> class SmallVectorImpl;
class Value;
class Instruction;
class APInt;
@@ -77,6 +78,20 @@ namespace llvm {
///
bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
+ /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose
+ /// it into a base pointer with a constant offset and a number of scaled
+ /// symbolic offsets.
+ ///
+ /// When TargetData is around, this function is capable of analyzing
+ /// everything that Value::getUnderlyingObject() can look through. When not,
+ /// it just looks through pointer casts.
+ ///
+ const Value *DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
+ SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
+ const TargetData *TD);
+
+
+
/// FindScalarValue - Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if
/// it were inserted directly into the aggregrate.
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index e10e1f2d4c..b2983c722e 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -18,7 +18,6 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
-#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
@@ -28,11 +27,9 @@
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
#include <algorithm>
using namespace llvm;
@@ -379,160 +376,6 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
return NoAA::getModRefInfo(CS1, CS2);
}
-/// GetLinearExpression - Analyze the specified value as a linear expression:
-/// "A*V + B". Return the scale and offset values as APInts and return V as a
-/// Value*. The incoming Value is known to be a scalar integer.
-static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
- const TargetData *TD) {
- assert(isa<IntegerType>(V->getType()) && "Not an integer value");
-
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- switch (BOp->getOpcode()) {
- default: break;
- case Instruction::Or:
- // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
- // analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
- break;
- // FALL THROUGH.
- case Instruction::Add:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
- Offset += RHSC->getValue();
- return V;
- case Instruction::Mul:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
- Offset *= RHSC->getValue();
- Scale *= RHSC->getValue();
- return V;
- case Instruction::Shl:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
- Offset <<= RHSC->getValue().getLimitedValue();
- Scale <<= RHSC->getValue().getLimitedValue();
- return V;
- }
- }
- }
-
- Scale = 1;
- Offset = 0;
- return V;
-}
-
-/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
-/// into a base pointer with a constant offset and a number of scaled symbolic
-/// offsets.
-///
-/// When TargetData is around, this function is capable of analyzing everything
-/// that Value::getUnderlyingObject() can look through. When not, it just looks
-/// through pointer casts.
-///
-/// FIXME: Move this out to ValueTracking.cpp
-///
-static const Value *DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
- SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
- const TargetData *TD) {
- // FIXME: Should limit depth like getUnderlyingObject?
- BaseOffs = 0;
- while (1) {
- // See if this is a bitcast or GEP.
- const Operator *Op = dyn_cast<Operator>(V);
- if (Op == 0) {
- // The only non-operator case we can handle are GlobalAliases.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->mayBeOverridden()) {
- V = GA->getAliasee();
- continue;
- }
- }
- return V;
- }
-
- if (Op->getOpcode() == Instruction::BitCast) {
- V = Op->getOperand(0);
- continue;
- }
-
- const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
- if (GEPOp == 0)
- return V;
-
- // Don't attempt to analyze GEPs over unsized objects.
- if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
- ->getElementType()->isSized())
- return V;
-
- // If we are lacking TargetData information, we can't compute the offets of
- // elements computed by GEPs. However, we can handle bitcast equivalent
- // GEPs.
- if (!TD) {
- if (!GEPOp->hasAllZeroIndices())
- return V;
- V = GEPOp->getOperand(0);
- continue;
- }
-
- // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
- gep_type_iterator GTI = gep_type_begin(GEPOp);
- for (User::const_op_iterator I = next(GEPOp->op_begin()),
- E = GEPOp->op_end(); I != E; ++I) {
- Value *Index = *I;
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- if (FieldNo == 0) continue;
-
- BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
- continue;
- }
-
- // For an array/pointer, add the element offset, explicitly scaled.
- if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
- if (CIdx->isZero()) continue;
- BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
- continue;
- }
-
- // TODO: Could handle linear expressions here like A[X+1], also A[X*4|1].
- uint64_t Scale = TD->getTypeAllocSize(*GTI);
-
- unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
- APInt IndexScale(Width, 0), IndexOffset(Width, 0);
- Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD);
-
- Scale *= IndexScale.getZExtValue();
- BaseOffs += IndexOffset.getZExtValue()*Scale;
-
-
- // If we already had an occurrance of this index variable, merge this
- // scale into it. For example, we want to handle:
- // A[x][x] -> x*16 + x*4 -> x*20
- // This also ensures that 'x' only appears in the index list once.
- for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
- if (VarIndices[i].first == Index) {
- Scale += VarIndices[i].second;
- VarIndices.erase(VarIndices.begin()+i);
- break;
- }
- }
-
- // Make sure that we have a scale that makes sense for this target's
- // pointer size.
- if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
- Scale <<= ShiftBits;
- Scale >>= ShiftBits;
- }
-
- if (Scale)
- VarIndices.push_back(std::make_pair(Index, Scale));
- }
-
- // Analyze the base pointer next.
- V = GEPOp->getOperand(0);
- }
-}
-
/// GetIndiceDifference - Dest and Src are the variable indices from two
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index f4b550f9f7..5f9d0370f5 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -948,6 +948,160 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return false;
}
+
+/// GetLinearExpression - Analyze the specified value as a linear expression:
+/// "A*V + B". Return the scale and offset values as APInts and return V as a
+/// Value*. The incoming Value is known to be a scalar integer.
+static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
+ const TargetData *TD) {
+ assert(isa<IntegerType>(V->getType()) && "Not an integer value");
+
+ if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
+ switch (BOp->getOpcode()) {
+ default: break;
+ case Instruction::Or:
+ // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
+ // analyze it.
+ if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
+ break;
+ // FALL THROUGH.
+ case Instruction::Add:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
+ Offset += RHSC->getValue();
+ return V;
+ case Instruction::Mul:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
+ Offset *= RHSC->getValue();
+ Scale *= RHSC->getValue();
+ return V;
+ case Instruction::Shl:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD);
+ Offset <<= RHSC->getValue().getLimitedValue();
+ Scale <<= RHSC->getValue().getLimitedValue();
+ return V;
+ }
+ }
+ }
+
+ Scale = 1;
+ Offset = 0;
+ return V;
+}
+
+/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
+/// into a base pointer with a constant offset and a number of scaled symbolic
+/// offsets.
+///
+/// When TargetData is around, this function is capable of analyzing everything
+/// that Value::getUnderlyingObject() can look through. When not, it just looks
+/// through pointer casts.
+///
+const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
+ SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
+ const TargetData *TD) {
+ // FIXME: Should limit depth like getUnderlyingObject?
+ BaseOffs = 0;
+ while (1) {
+ // See if this is a bitcast or GEP.
+ const Operator *Op = dyn_cast<Operator>(V);
+ if (Op == 0) {
+ // The only non-operator case we can handle are GlobalAliases.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->mayBeOverridden()) {
+ V = GA->getAliasee();
+ continue;
+ }
+ }
+ return V;
+ }
+
+ if (Op->getOpcode() == Instruction::BitCast) {
+ V = Op->getOperand(0);
+ continue;
+ }
+
+ const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
+ if (GEPOp == 0)
+ return V;
+
+ // Don't attempt to analyze GEPs over unsized objects.
+ if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
+ ->getElementType()->isSized())
+ return V;
+
+ // If we are lacking TargetData information, we can't compute the offets of
+ // elements computed by GEPs. However, we can handle bitcast equivalent
+ // GEPs.
+ if (!TD) {
+ if (!GEPOp->hasAllZeroIndices())
+ return V;
+ V = GEPOp->getOperand(0);
+ continue;
+ }
+
+ // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
+ gep_type_iterator GTI = gep_type_begin(GEPOp);
+ for (User::const_op_iterator I = GEPOp->op_begin()+1,
+ E = GEPOp->op_end(); I != E; ++I) {
+ Value *Index = *I;
+ // Compute the (potentially symbolic) offset in bytes for this index.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
+ // For a struct, add the member offset.
+ unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
+ if (FieldNo == 0) continue;
+
+ BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
+ continue;
+ }
+
+ // For an array/pointer, add the element offset, explicitly scaled.
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
+ if (CIdx->isZero()) continue;
+ BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
+ continue;
+ }
+
+ // TODO: Could handle linear expressions here like A[X+1], also A[X*4|1].
+ uint64_t Scale = TD->getTypeAllocSize(*GTI);
+
+ unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
+ APInt IndexScale(Width, 0), IndexOffset(Width, 0);
+ Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD);
+
+ Scale *= IndexScale.getZExtValue();
+ BaseOffs += IndexOffset.getZExtValue()*Scale;
+
+
+ // If we already had an occurrance of this index variable, merge this
+ // scale into it. For example, we want to handle:
+ // A[x][x] -> x*16 + x*4 -> x*20
+ // This also ensures that 'x' only appears in the index list once.
+ for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
+ if (VarIndices[i].first == Index) {
+ Scale += VarIndices[i].second;
+ VarIndices.erase(VarIndices.begin()+i);
+ break;
+ }
+ }
+
+ // Make sure that we have a scale that makes sense for this target's
+ // pointer size.
+ if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
+ Scale <<= ShiftBits;
+ Scale >>= ShiftBits;
+ }
+
+ if (Scale)
+ VarIndices.push_back(std::make_pair(Index, Scale));
+ }
+
+ // Analyze the base pointer next.
+ V = GEPOp->getOperand(0);
+ }
+}
+
+
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of