summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/Makefile2
-rw-r--r--examples/ParallelJIT/Makefile16
-rw-r--r--examples/ParallelJIT/ParallelJIT.cpp295
3 files changed, 312 insertions, 1 deletions
diff --git a/examples/Makefile b/examples/Makefile
index 9b66d034a8..d71651deda 100644
--- a/examples/Makefile
+++ b/examples/Makefile
@@ -11,6 +11,6 @@ LEVEL=..
include $(LEVEL)/Makefile.config
#PARALLEL_DIRS:= $(patsubst %/Makefile,%,$(wildcard $(SourceDir)/*/Makefile))
-PARALLEL_DIRS:= Fibonacci HowToUseJIT ModuleMaker BFtoLLVM
+PARALLEL_DIRS:= ParallelJIT Fibonacci HowToUseJIT ModuleMaker BFtoLLVM
include $(LEVEL)/Makefile.common
diff --git a/examples/ParallelJIT/Makefile b/examples/ParallelJIT/Makefile
new file mode 100644
index 0000000000..10011662d3
--- /dev/null
+++ b/examples/ParallelJIT/Makefile
@@ -0,0 +1,16 @@
+##===- examples/HowToUseJIT/Makefile -----------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by Valery A. Khamenya and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../..
+TOOLNAME = ParallelJIT
+EXAMPLE_TOOL = 1
+
+# Enable JIT support
+LLVMLIBS := JIT
+
+include $(LEVEL)/Makefile.common
diff --git a/examples/ParallelJIT/ParallelJIT.cpp b/examples/ParallelJIT/ParallelJIT.cpp
new file mode 100644
index 0000000000..a533ba5947
--- /dev/null
+++ b/examples/ParallelJIT/ParallelJIT.cpp
@@ -0,0 +1,295 @@
+//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Evan Jones and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Parallel JIT
+//
+// This test program creates two LLVM functions then calls them from three
+// separate threads. It requires the pthreads library.
+// The three threads are created and then block waiting on a condition variable.
+// Once all threads are blocked on the conditional variable, the main thread
+// wakes them up. This complicated work is performed so that all three threads
+// call into the JIT at the same time (or the best possible approximation of the
+// same time). This test had assertion errors until I got the locking right.
+
+#include <pthread.h>
+#include "llvm/Module.h"
+#include "llvm/Constants.h"
+#include "llvm/Type.h"
+#include "llvm/Instructions.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include <iostream>
+using namespace llvm;
+
+static Function* createAdd1( Module* M )
+{
+ // Create the add1 function entry and insert this entry into module M. The
+ // function will have a return type of "int" and take an argument of "int".
+ // The '0' terminates the list of argument types.
+ Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 0);
+
+ // Add a basic block to the function. As before, it automatically inserts
+ // because of the last argument.
+ BasicBlock *BB = new BasicBlock("EntryBlock", Add1F);
+
+ // Get pointers to the constant `1'.
+ Value *One = ConstantSInt::get(Type::IntTy, 1);
+
+ // Get pointers to the integer argument of the add1 function...
+ assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
+ Argument *ArgX = Add1F->arg_begin(); // Get the arg
+ ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
+
+ // Create the add instruction, inserting it into the end of BB.
+ Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB);
+
+ // Create the return instruction and add it to the basic block
+ new ReturnInst(Add, BB);
+
+ // Now, function add1 is ready.
+ return Add1F;
+}
+
+static Function *CreateFibFunction(Module *M)
+{
+ // Create the fib function and insert it into module M. This function is said
+ // to return an int and take an int parameter.
+ Function *FibF = M->getOrInsertFunction("fib", Type::IntTy, Type::IntTy, 0);
+
+ // Add a basic block to the function.
+ BasicBlock *BB = new BasicBlock("EntryBlock", FibF);
+
+ // Get pointers to the constants.
+ Value *One = ConstantSInt::get(Type::IntTy, 1);
+ Value *Two = ConstantSInt::get(Type::IntTy, 2);
+
+ // Get pointer to the integer argument of the add1 function...
+ Argument *ArgX = FibF->arg_begin(); // Get the arg.
+ ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
+
+ // Create the true_block.
+ BasicBlock *RetBB = new BasicBlock("return", FibF);
+ // Create an exit block.
+ BasicBlock* RecurseBB = new BasicBlock("recurse", FibF);
+
+ // Create the "if (arg < 2) goto exitbb"
+ Value *CondInst = BinaryOperator::createSetLE(ArgX, Two, "cond", BB);
+ new BranchInst(RetBB, RecurseBB, CondInst, BB);
+
+ // Create: ret int 1
+ new ReturnInst(One, RetBB);
+
+ // create fib(x-1)
+ Value *Sub = BinaryOperator::createSub(ArgX, One, "arg", RecurseBB);
+ Value *CallFibX1 = new CallInst(FibF, Sub, "fibx1", RecurseBB);
+
+ // create fib(x-2)
+ Sub = BinaryOperator::createSub(ArgX, Two, "arg", RecurseBB);
+ Value *CallFibX2 = new CallInst(FibF, Sub, "fibx2", RecurseBB);
+
+ // fib(x-1)+fib(x-2)
+ Value *Sum =
+ BinaryOperator::createAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
+
+ // Create the return instruction and add it to the basic block
+ new ReturnInst(Sum, RecurseBB);
+
+ return FibF;
+}
+
+struct threadParams {
+ ExecutionEngine* EE;
+ Function* F;
+ int value;
+};
+
+// We block the subthreads just before they begin to execute:
+// we want all of them to call into the JIT at the same time,
+// to verify that the locking is working correctly.
+class WaitForThreads
+{
+public:
+ WaitForThreads()
+ {
+ n = 0;
+ waitFor = 0;
+
+ int result = pthread_cond_init( &condition, NULL );
+ assert( result == 0 );
+
+ result = pthread_mutex_init( &mutex, NULL );
+ assert( result == 0 );
+ }
+
+ ~WaitForThreads()
+ {
+ int result = pthread_cond_destroy( &condition );
+ assert( result == 0 );
+
+ result = pthread_mutex_destroy( &mutex );
+ assert( result == 0 );
+ }
+
+ // All threads will stop here until another thread calls releaseThreads
+ void block()
+ {
+ int result = pthread_mutex_lock( &mutex );
+ assert( result == 0 );
+ n ++;
+ //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
+
+ assert( waitFor == 0 || n <= waitFor );
+ if ( waitFor > 0 && n == waitFor )
+ {
+ // There are enough threads blocked that we can release all of them
+ std::cout << "Unblocking threads from block()" << std::endl;
+ unblockThreads();
+ }
+ else
+ {
+ // We just need to wait until someone unblocks us
+ result = pthread_cond_wait( &condition, &mutex );
+ assert( result == 0 );
+ }
+
+ // unlock the mutex before returning
+ result = pthread_mutex_unlock( &mutex );
+ assert( result == 0 );
+ }
+
+ // If there are num or more threads blocked, it will signal them all
+ // Otherwise, this thread blocks until there are enough OTHER threads
+ // blocked
+ void releaseThreads( size_t num )
+ {
+ int result = pthread_mutex_lock( &mutex );
+ assert( result == 0 );
+
+ if ( n >= num ) {
+ std::cout << "Unblocking threads from releaseThreads()" << std::endl;
+ unblockThreads();
+ }
+ else
+ {
+ waitFor = num;
+ pthread_cond_wait( &condition, &mutex );
+ }
+
+ // unlock the mutex before returning
+ result = pthread_mutex_unlock( &mutex );
+ assert( result == 0 );
+ }
+
+private:
+ void unblockThreads()
+ {
+ // Reset the counters to zero: this way, if any new threads
+ // enter while threads are exiting, they will block instead
+ // of triggering a new release of threads
+ n = 0;
+
+ // Reset waitFor to zero: this way, if waitFor threads enter
+ // while threads are exiting, they will block instead of
+ // triggering a new release of threads
+ waitFor = 0;
+
+ int result = pthread_cond_broadcast( &condition );
+ assert( result == 0 );
+ }
+
+ size_t n;
+ size_t waitFor;
+ pthread_cond_t condition;
+ pthread_mutex_t mutex;
+};
+
+static WaitForThreads synchronize;
+
+void* callFunc( void* param )
+{
+ struct threadParams* p = (struct threadParams*) param;
+
+ // Call the `foo' function with no arguments:
+ std::vector<GenericValue> Args(1);
+ Args[0].IntVal = p->value;
+
+ synchronize.block(); // wait until other threads are at this point
+ GenericValue gv = p->EE->runFunction(p->F, Args);
+
+ return (void*) gv.IntVal;
+}
+
+int main()
+{
+ // Create some module to put our function into it.
+ Module *M = new Module("test");
+
+ Function* add1F = createAdd1( M );
+ Function* fibF = CreateFibFunction( M );
+
+ // Now we create the JIT.
+ ExistingModuleProvider* MP = new ExistingModuleProvider(M);
+ ExecutionEngine* EE = ExecutionEngine::create(MP, false);
+
+ //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
+ //~ std::cout << "\n\nRunning foo: " << std::flush;
+
+ // Create one thread for add1 and two threads for fib
+ struct threadParams add1 = { EE, add1F, 1000 };
+ struct threadParams fib1 = { EE, fibF, 39 };
+ struct threadParams fib2 = { EE, fibF, 42 };
+
+ pthread_t add1Thread;
+ int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
+ if ( result != 0 ) {
+ std::cerr << "Could not create thread" << std::endl;
+ return 1;
+ }
+
+ pthread_t fibThread1;
+ result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
+ if ( result != 0 ) {
+ std::cerr << "Could not create thread" << std::endl;
+ return 1;
+ }
+
+ pthread_t fibThread2;
+ result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
+ if ( result != 0 ) {
+ std::cerr << "Could not create thread" << std::endl;
+ return 1;
+ }
+
+ synchronize.releaseThreads(3); // wait until other threads are at this point
+
+ void* returnValue;
+ result = pthread_join( add1Thread, &returnValue );
+ if ( result != 0 ) {
+ std::cerr << "Could not join thread" << std::endl;
+ return 1;
+ }
+ std::cout << "Add1 returned " << (int) returnValue << std::endl;
+
+ result = pthread_join( fibThread1, &returnValue );
+ if ( result != 0 ) {
+ std::cerr << "Could not join thread" << std::endl;
+ return 1;
+ }
+ std::cout << "Fib1 returned " << (int) returnValue << std::endl;
+
+ result = pthread_join( fibThread2, &returnValue );
+ if ( result != 0 ) {
+ std::cerr << "Could not join thread" << std::endl;
+ return 1;
+ }
+ std::cout << "Fib2 returned " << (int) returnValue << std::endl;
+
+ return 0;
+}