summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile.config.in3
-rw-r--r--autoconf/configure.ac15
-rw-r--r--lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp708
3 files changed, 227 insertions, 499 deletions
diff --git a/Makefile.config.in b/Makefile.config.in
index 90d1a13132..96dab45611 100644
--- a/Makefile.config.in
+++ b/Makefile.config.in
@@ -286,3 +286,6 @@ endif
# Location of the plugin header file for gold.
BINUTILS_INCDIR := @BINUTILS_INCDIR@
+
+# Can we use libFFI for the interpreter?
+HAVE_FFI := @HAVE_FFI@
diff --git a/autoconf/configure.ac b/autoconf/configure.ac
index 680cc1ddd9..83d54681ac 100644
--- a/autoconf/configure.ac
+++ b/autoconf/configure.ac
@@ -735,6 +735,10 @@ AC_SEARCH_LIBS(dlopen,dl,AC_DEFINE([HAVE_DLOPEN],[1],
[Define if dlopen() is available on this platform.]),
AC_MSG_WARN([dlopen() not found - disabling plugin support]))
+dnl libffi is optional; used to call external functions from the interpreter
+AC_CHECK_LIB(ffi,ffi_call,[have_libffi=1],
+ AC_MSG_WARN([libffi not found - disabling external calls from interpreter]))
+
dnl mallinfo is optional; the code can compile (minus features) without it
AC_SEARCH_LIBS(mallinfo,malloc,AC_DEFINE([HAVE_MALLINFO],[1],
[Define if mallinfo() is available on this platform.]))
@@ -791,12 +795,17 @@ AC_CHECK_HEADERS([sys/mman.h sys/param.h sys/resource.h sys/time.h])
AC_CHECK_HEADERS([sys/types.h malloc/malloc.h mach/mach.h])
if test "$ENABLE_THREADS" -eq 1 ; then
AC_CHECK_HEADERS(pthread.h,
- AC_SUBST(HAVE_PTHREAD, 1),
- AC_SUBST(HAVE_PTHREAD, 0))
+ AC_SUBST(HAVE_PTHREAD, 1),
+ AC_SUBST(HAVE_PTHREAD, 0))
else
AC_SUBST(HAVE_PTHREAD, 0)
fi
+dnl Once we know we have libffi, try to find ffi.h.
+if test -n "$have_libffi" ; then
+ AC_CHECK_HEADERS([ffi.h ffi/ffi.h], [AC_SUBST(HAVE_FFI, 1)])
+fi
+
dnl===-----------------------------------------------------------------------===
dnl===
dnl=== SECTION 7: Check for types and structures
@@ -954,7 +963,7 @@ AC_DEFINE_UNQUOTED(LLVM_MANDIR, "$LLVM_MANDIR",
AC_DEFINE_UNQUOTED(LLVM_CONFIGTIME, "$LLVM_CONFIGTIME",
[Time at which LLVM was configured])
AC_DEFINE_UNQUOTED(LLVM_HOSTTRIPLE, "$host",
- [Host triple we were built on])
+ [Host triple we were built on])
# Determine which bindings to build.
if test "$BINDINGS_TO_BUILD" = auto ; then
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
index 66a26cff3c..36de08358a 100644
--- a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
+++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -10,18 +10,19 @@
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
-// External functions in the interpreter are implemented by
-// using the system's dynamic loader to look up the address of the function
-// we want to invoke. If a function is found, then one of the
-// many lle_* wrapper functions in this file will translate its arguments from
-// GenericValues to the types the function is actually expecting, before the
-// function is called.
+// There are currently two mechanisms for handling external functions in the
+// Interpreter. The first is to implement lle_* wrapper functions that are
+// specific to well-known library functions which manually translate the
+// arguments from GenericValues and make the call. If such a wrapper does
+// not exist, and libffi is available, then the Interpreter will attempt to
+// invoke the function using libffi, after finding its address.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
+#include "llvm/Config/config.h" // Detect libffi
#include "llvm/Support/Streams.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
@@ -32,18 +33,28 @@
#include <cmath>
#include <cstring>
-#ifdef __linux__
-#include <cxxabi.h>
+#ifdef HAVE_FFI
+#ifdef HAVE_FFI_H
+#include <ffi.h>
+#elif HAVE_FFI_FFI_H
+#include <ffi/ffi.h>
+#else
+#error "Not sure where configure found ffi.h!"
+#endif
#endif
-
-using std::vector;
using namespace llvm;
-typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
-static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
+typedef GenericValue (*ExFunc)(const FunctionType *,
+ const std::vector<GenericValue> &);
+static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
static std::map<std::string, ExFunc> FuncNames;
+#ifdef HAVE_FFI
+typedef void (*RawFunc)(void);
+static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
+#endif
+
static Interpreter *TheInterpreter;
static char getTypeID(const Type *Ty) {
@@ -89,34 +100,181 @@ static ExFunc lookupFunction(const Function *F) {
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
("lle_X_"+F->getName()).c_str());
- if (FnPtr == 0)
- FnPtr = (ExFunc)(intptr_t)
- sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
if (FnPtr != 0)
- Functions->insert(std::make_pair(F, FnPtr)); // Cache for later
+ ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
return FnPtr;
}
+#ifdef HAVE_FFI
+static ffi_type *ffiTypeFor(const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return &ffi_type_void;
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 8: return &ffi_type_sint8;
+ case 16: return &ffi_type_sint16;
+ case 32: return &ffi_type_sint32;
+ case 64: return &ffi_type_sint64;
+ }
+ case Type::FloatTyID: return &ffi_type_float;
+ case Type::DoubleTyID: return &ffi_type_double;
+ case Type::PointerTyID: return &ffi_type_pointer;
+ default: break;
+ }
+ // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+ cerr << "Type could not be mapped for use with libffi.\n";
+ abort();
+ return NULL;
+}
+
+static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
+ void *ArgDataPtr) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 8: {
+ int8_t *I8Ptr = (int8_t *) ArgDataPtr;
+ *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 16: {
+ int16_t *I16Ptr = (int16_t *) ArgDataPtr;
+ *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 32: {
+ int32_t *I32Ptr = (int32_t *) ArgDataPtr;
+ *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 64: {
+ int64_t *I64Ptr = (int64_t *) ArgDataPtr;
+ *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ }
+ case Type::FloatTyID: {
+ float *FloatPtr = (float *) ArgDataPtr;
+ *FloatPtr = AV.DoubleVal;
+ return ArgDataPtr;
+ }
+ case Type::DoubleTyID: {
+ double *DoublePtr = (double *) ArgDataPtr;
+ *DoublePtr = AV.DoubleVal;
+ return ArgDataPtr;
+ }
+ case Type::PointerTyID: {
+ void **PtrPtr = (void **) ArgDataPtr;
+ *PtrPtr = GVTOP(AV);
+ return ArgDataPtr;
+ }
+ default: break;
+ }
+ // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+ cerr << "Type value could not be mapped for use with libffi.\n";
+ abort();
+ return NULL;
+}
+
+static bool ffiInvoke(RawFunc Fn, Function *F,
+ const std::vector<GenericValue> &ArgVals,
+ const TargetData *TD, GenericValue &Result) {
+ ffi_cif cif;
+ const FunctionType *FTy = F->getFunctionType();
+ const unsigned NumArgs = F->arg_size();
+
+ // TODO: We don't have type information about the remaining arguments, because
+ // this information is never passed into ExecutionEngine::runFunction().
+ if (ArgVals.size() > NumArgs && F->isVarArg()) {
+ cerr << "Calling external var arg function '" << F->getName()
+ << "' is not supported by the Interpreter.\n";
+ abort();
+ }
+
+ unsigned ArgBytes = 0;
+
+ std::vector<ffi_type*> args(NumArgs);
+ for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ const unsigned ArgNo = A->getArgNo();
+ const Type *ArgTy = FTy->getParamType(ArgNo);
+ args[ArgNo] = ffiTypeFor(ArgTy);
+ ArgBytes += TD->getTypeStoreSize(ArgTy);
+ }
+
+ uint8_t *ArgData = (uint8_t*) alloca(ArgBytes);
+ uint8_t *ArgDataPtr = ArgData;
+ std::vector<void*> values(NumArgs);
+ for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ const unsigned ArgNo = A->getArgNo();
+ const Type *ArgTy = FTy->getParamType(ArgNo);
+ values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
+ ArgDataPtr += TD->getTypeStoreSize(ArgTy);
+ }
+
+ const Type *RetTy = FTy->getReturnType();
+ ffi_type *rtype = ffiTypeFor(RetTy);
+
+ if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
+ void *ret = NULL;
+ if (RetTy->getTypeID() != Type::VoidTyID)
+ ret = alloca(TD->getTypeStoreSize(RetTy));
+ ffi_call(&cif, Fn, ret, &values[0]);
+ switch (RetTy->getTypeID()) {
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(RetTy)->getBitWidth()) {
+ case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break;
+ case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break;
+ case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break;
+ case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break;
+ }
+ break;
+ case Type::FloatTyID: Result.FloatVal = *(float *) ret; break;
+ case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break;
+ case Type::PointerTyID: Result.PointerVal = *(void **) ret; break;
+ default: break;
+ }
+ return true;
+ }
+
+ return false;
+}
+#endif // HAVE_FFI
+
GenericValue Interpreter::callExternalFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
TheInterpreter = this;
// Do a lookup to see if the function is in our cache... this should just be a
// deferred annotation!
- std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
- ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
- if (Fn == 0) {
- cerr << "Tried to execute an unknown external function: "
- << F->getType()->getDescription() << " " << F->getName() << "\n";
- if (F->getName() == "__main")
- return GenericValue();
- abort();
+ std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
+ if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
+ : FI->second)
+ return Fn(F->getFunctionType(), ArgVals);
+
+#ifdef HAVE_FFI
+ std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
+ RawFunc RawFn;
+ if (RF == RawFunctions->end()) {
+ RawFn = (RawFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+ if (RawFn != 0)
+ RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
+ } else {
+ RawFn = RF->second;
}
- // TODO: FIXME when types are not const!
- GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
- ArgVals);
- return Result;
+ GenericValue Result;
+ if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
+ return Result;
+#endif // HAVE_FFI
+
+ cerr << "Tried to execute an unknown external function: "
+ << F->getType()->getDescription() << " " << F->getName() << "\n";
+ if (F->getName() != "__main")
+ abort();
+ return GenericValue();
}
@@ -125,24 +283,9 @@ GenericValue Interpreter::callExternalFunction(Function *F,
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
-// void putchar(ubyte)
-GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
- cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
- return Args[0];
-}
-
-// void _IO_putc(int c, FILE* fp)
-GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
-#ifdef __linux__
- _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
-#else
- assert(0 && "Can't call _IO_putc on this platform");
-#endif
- return Args[0];
-}
-
// void atexit(Function*)
-GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_atexit(const FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
assert(Args.size() == 1);
TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
GenericValue GV;
@@ -151,163 +294,23 @@ GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
}
// void exit(int)
-GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_exit(const FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void abort(void)
-GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_abort(const FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
raise (SIGABRT);
return GenericValue();
}
-// void *malloc(uint)
-GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1 && "Malloc expects one argument!");
- assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
- return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
-}
-
-// void *calloc(uint, uint)
-GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2 && "calloc expects two arguments!");
- assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
- return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
- Args[1].IntVal.getZExtValue()));
-}
-
-// void *calloc(uint, uint)
-GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2 && "calloc expects two arguments!");
- assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
- return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
-}
-
-// void free(void *)
-GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- free(GVTOP(Args[0]));
- return GenericValue();
-}
-
-// int atoi(char *)
-GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
- return GV;
-}
-
-// double pow(double, double)
-GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- GenericValue GV;
- GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
- return GV;
-}
-
-// double sin(double)
-GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.DoubleVal = sin(Args[0].DoubleVal);
- return GV;
-}
-
-// double cos(double)
-GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.DoubleVal = cos(Args[0].DoubleVal);
- return GV;
-}
-
-// double exp(double)
-GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.DoubleVal = exp(Args[0].DoubleVal);
- return GV;
-}
-
-// double sqrt(double)
-GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.DoubleVal = sqrt(Args[0].DoubleVal);
- return GV;
-}
-
-// double log(double)
-GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.DoubleVal = log(Args[0].DoubleVal);
- return GV;
-}
-
-// double floor(double)
-GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.DoubleVal = floor(Args[0].DoubleVal);
- return GV;
-}
-
-#ifdef HAVE_RAND48
-
-// double drand48()
-GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.empty());
- GenericValue GV;
- GV.DoubleVal = drand48();
- return GV;
-}
-
-// long lrand48()
-GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.empty());
- GenericValue GV;
- GV.IntVal = APInt(32, lrand48());
- return GV;
-}
-
-// void srand48(long)
-GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- srand48(Args[0].IntVal.getZExtValue());
- return GenericValue();
-}
-
-#endif
-
-// int rand()
-GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.empty());
- GenericValue GV;
- GV.IntVal = APInt(32, rand());
- return GV;
-}
-
-// void srand(uint)
-GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- srand(Args[0].IntVal.getZExtValue());
- return GenericValue();
-}
-
-// int puts(const char*)
-GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
- return GV;
-}
-
-// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
+// int sprintf(char *, const char *, ...) - a very rough implementation to make
// output useful.
-GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_sprintf(const FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
char *OutputBuffer = (char *)GVTOP(Args[0]);
const char *FmtStr = (const char *)GVTOP(Args[1]);
unsigned ArgNo = 2;
@@ -384,10 +387,12 @@ GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
return GV;
}
-// int printf(sbyte *, ...) - a very rough implementation to make output useful.
-GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
+// int printf(const char *, ...) - a very rough implementation to make output
+// useful.
+GenericValue lle_X_printf(const FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
char Buffer[10000];
- vector<GenericValue> NewArgs;
+ std::vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
@@ -472,7 +477,8 @@ static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
}
// int sscanf(const char *format, ...);
-GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
+GenericValue lle_X_sscanf(const FunctionType *FT,
+ const std::vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
char *Args[10];
@@ -488,7 +494,8 @@ GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
}
// int scanf(const char *format, ...);
-GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
+GenericValue lle_X_scanf(const FunctionType *FT,
+ const std::vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
char *Args[10];
@@ -503,324 +510,33 @@ GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
return GV;
}
-
-// int clock(void) - Profiling implementation
-GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
- extern unsigned int clock(void);
- GenericValue GV;
- GV.IntVal = APInt(32, clock());
- return GV;
-}
-
-
-//===----------------------------------------------------------------------===//
-// String Functions...
-//===----------------------------------------------------------------------===//
-
-// int strcmp(const char *S1, const char *S2);
-GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- GenericValue Ret;
- Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
- return Ret;
-}
-
-// char *strcat(char *Dest, const char *src);
-GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
- return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
-}
-
-// char *strcpy(char *Dest, const char *src);
-GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
- return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
-}
-
-static GenericValue size_t_to_GV (size_t n) {
- GenericValue Ret;
- if (sizeof (size_t) == sizeof (uint64_t)) {
- Ret.IntVal = APInt(64, n);
- } else {
- assert (sizeof (size_t) == sizeof (unsigned int));
- Ret.IntVal = APInt(32, n);
- }
- return Ret;
-}
-
-static size_t GV_to_size_t (GenericValue GV) {
- size_t count;
- if (sizeof (size_t) == sizeof (uint64_t)) {
- count = (size_t)GV.IntVal.getZExtValue();
- } else {
- assert (sizeof (size_t) == sizeof (unsigned int));
- count = (size_t)GV.IntVal.getZExtValue();
- }
- return count;
-}
-
-// size_t strlen(const char *src);
-GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
- return size_t_to_GV (strlenResult);
-}
-
-// char *strdup(const char *src);
-GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
- return PTOGV(strdup((char*)GVTOP(Args[0])));
-}
-
-// char *__strdup(const char *src);
-GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
- return PTOGV(strdup((char*)GVTOP(Args[0])));
-}
-
-// void *memset(void *S, int C, size_t N)
-GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 3);
- size_t count = GV_to_size_t (Args[2]);
- assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
- return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
- count));
-}
-
-// void *memcpy(void *Dest, void *src, size_t Size);
-GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 3);
- assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
- size_t count = GV_to_size_t (Args[2]);
- return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
-}
-
-// void *memcpy(void *Dest, void *src, size_t Size);
-GenericValue lle_X_memmove(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 3);
- assert(isa<PointerType>(FT->getReturnType()) && "memmove must return pointer");
- size_t count = GV_to_size_t (Args[2]);
- return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
-}
-
-//===----------------------------------------------------------------------===//
-// IO Functions...
-//===----------------------------------------------------------------------===//
-
-// getFILE - Turn a pointer in the host address space into a legit pointer in
-// the interpreter address space. This is an identity transformation.
-#define getFILE(ptr) ((FILE*)ptr)
-
-// FILE *fopen(const char *filename, const char *mode);
-GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
- return PTOGV(fopen((const char *)GVTOP(Args[0]),
- (const char *)GVTOP(Args[1])));
-}
-
-// int fclose(FILE *F);
-GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
- return GV;
-}
-
-// int feof(FILE *stream);
-GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
-
- GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
- return GV;
-}
-
-// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
-GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 4);
- size_t result;
-
- result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
- GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
- return size_t_to_GV (result);
-}
-
-// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
-GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 4);
- size_t result;
-
- result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
- GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
- return size_t_to_GV (result);
-}
-
-// char *fgets(char *s, int n, FILE *stream);
-GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 3);
- return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
- getFILE(GVTOP(Args[2]))));
-}
-
-// FILE *freopen(const char *path, const char *mode, FILE *stream);
-GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 3);
- assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
- return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
- getFILE(GVTOP(Args[2]))));
-}
-
-// int fflush(FILE *stream);
-GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
- return GV;
-}
-
-// int getc(FILE *stream);
-GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
- return GV;
-}
-
-// int _IO_getc(FILE *stream);
-GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
- return lle_X_getc(F, Args);
-}
-
-// int fputc(int C, FILE *stream);
-GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- GenericValue GV;
- GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
- getFILE(GVTOP(Args[1]))));
- return GV;
-}
-
-// int ungetc(int C, FILE *stream);
-GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 2);
- GenericValue GV;
- GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
- getFILE(GVTOP(Args[1]))));
- return GV;
-}
-
-// int ferror (FILE *stream);
-GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
- GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
- return GV;
-}
-
-// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
-// useful.
-GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
+// output useful.
+GenericValue lle_X_fprintf(const FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
assert(Args.size() >= 2);
char Buffer[10000];
- vector<GenericValue> NewArgs;
+ std::vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV(Buffer));
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
- fputs(Buffer, getFILE(GVTOP(Args[0])));
+ fputs(Buffer, (FILE *) GVTOP(Args[0]));
return GV;
}
-// int __cxa_guard_acquire (__guard *g);
-GenericValue lle_X___cxa_guard_acquire(FunctionType *FT,
- const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
- GenericValue GV;
-#ifdef __linux__
- GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
- (__cxxabiv1::__guard*)GVTOP(Args[0])));
-#else
- assert(0 && "Can't call __cxa_guard_acquire on this platform");
-#endif
- return GV;
-}
-
-// void __cxa_guard_release (__guard *g);
-GenericValue lle_X___cxa_guard_release(FunctionType *FT,
- const vector<GenericValue> &Args) {
- assert(Args.size() == 1);
-#ifdef __linux__
- __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
-#else
- assert(0 && "Can't call __cxa_guard_release on this platform");
-#endif
- return GenericValue();
-}
-
} // End extern "C"
void Interpreter::initializeExternalFunctions() {
- FuncNames["lle_X_putchar"] = lle_X_putchar;
- FuncNames["lle_X__IO_putc"] = lle_X__IO_putc;
+ FuncNames["lle_X_atexit"] = lle_X_atexit;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
- FuncNames["lle_X_malloc"] = lle_X_malloc;
- FuncNames["lle_X_calloc"] = lle_X_calloc;
- FuncNames["lle_X_realloc"] = lle_X_realloc;
- FuncNames["lle_X_free"] = lle_X_free;
- FuncNames["lle_X_atoi"] = lle_X_atoi;
- FuncNames["lle_X_pow"] = lle_X_pow;
- FuncNames["lle_X_sin"] = lle_X_sin;
- FuncNames["lle_X_cos"] = lle_X_cos;
- FuncNames["lle_X_exp"] = lle_X_exp;
- FuncNames["lle_X_log"] = lle_X_log;
- FuncNames["lle_X_floor"] = lle_X_floor;
- FuncNames["lle_X_srand"] = lle_X_srand;
- FuncNames["lle_X_rand"] = lle_X_rand;
-#ifdef HAVE_RAND48
- FuncNames["lle_X_drand48"] = lle_X_drand48;
- FuncNames["lle_X_srand48"] = lle_X_srand48;
- FuncNames["lle_X_lrand48"] = lle_X_lrand48;
-#endif
- FuncNames["lle_X_sqrt"] = lle_X_sqrt;
- FuncNames["lle_X_puts"] = lle_X_puts;
+
FuncNames["lle_X_printf"] = lle_X_printf;
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_X_scanf"] = lle_X_scanf;
- FuncNames["lle_i_clock"] = lle_i_clock;
-
- FuncNames["lle_X_strcmp"] = lle_X_strcmp;
- FuncNames["lle_X_strcat"] = lle_X_strcat;
- FuncNames["lle_X_strcpy"] = lle_X_strcpy;
- FuncNames["lle_X_strlen"] = lle_X_strlen;
- FuncNames["lle_X___strdup"] = lle_X___strdup;
- FuncNames["lle_X_memset"] = lle_X_memset;
- FuncNames["lle_X_memcpy"] = lle_X_memcpy;
- FuncNames["lle_X_memmove"] = lle_X_memmove;
-
- FuncNames["lle_X_fopen"] = lle_X_fopen;
- FuncNames["lle_X_fclose"] = lle_X_fclose;
- FuncNames["lle_X_feof"] = lle_X_feof;
- FuncNames["lle_X_fread"] = lle_X_fread;
- FuncNames["lle_X_fwrite"] = lle_X_fwrite;
- FuncNames["lle_X_fgets"] = lle_X_fgets;
- FuncNames["lle_X_fflush"] = lle_X_fflush;
- FuncNames["lle_X_fgetc"] = lle_X_getc;
- FuncNames["lle_X_getc"] = lle_X_getc;
- FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
- FuncNames["lle_X_fputc"] = lle_X_fputc;
- FuncNames["lle_X_ungetc"] = lle_X_ungetc;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
- FuncNames["lle_X_freopen"] = lle_X_freopen;
-
- FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
- FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
}