summaryrefslogtreecommitdiff
path: root/docs/TestingGuide.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/TestingGuide.html')
-rw-r--r--docs/TestingGuide.html1212
1 files changed, 1212 insertions, 0 deletions
diff --git a/docs/TestingGuide.html b/docs/TestingGuide.html
new file mode 100644
index 0000000000..c39065a282
--- /dev/null
+++ b/docs/TestingGuide.html
@@ -0,0 +1,1212 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <title>LLVM Testing Infrastructure Guide</title>
+ <link rel="stylesheet" href="llvm.css" type="text/css">
+</head>
+<body>
+
+<div class="doc_title">
+ LLVM Testing Infrastructure Guide
+</div>
+
+<ol>
+ <li><a href="#overview">Overview</a></li>
+ <li><a href="#requirements">Requirements</a></li>
+ <li><a href="#org">LLVM testing infrastructure organization</a>
+ <ul>
+ <li><a href="#dejagnu">DejaGNU tests</a></li>
+ <li><a href="#testsuite">Test suite</a></li>
+ </ul>
+ </li>
+ <li><a href="#quick">Quick start</a>
+ <ul>
+ <li><a href="#quickdejagnu">DejaGNU tests</a></li>
+ <li><a href="#quicktestsuite">Test suite</a></li>
+ </ul>
+ </li>
+ <li><a href="#dgstructure">DejaGNU structure</a>
+ <ul>
+ <li><a href="#dgcustom">Writing new DejaGNU tests</a></li>
+ <li><a href="#FileCheck">The FileCheck utility</a></li>
+ <li><a href="#dgvars">Variables and substitutions</a></li>
+ <li><a href="#dgfeatures">Other features</a></li>
+ </ul>
+ </li>
+ <li><a href="#testsuitestructure">Test suite structure</a></li>
+ <li><a href="#testsuiterun">Running the test suite</a>
+ <ul>
+ <li><a href="#testsuiteexternal">Configuring External Tests</a></li>
+ <li><a href="#testsuitetests">Running different tests</a></li>
+ <li><a href="#testsuiteoutput">Generating test output</a></li>
+ <li><a href="#testsuitecustom">Writing custom tests for llvm-test</a></li>
+ </ul>
+ </li>
+ <li><a href="#nightly">Running the nightly tester</a></li>
+</ol>
+
+<div class="doc_author">
+ <p>Written by John T. Criswell, <a
+ href="http://llvm.x10sys.com/rspencer">Reid Spencer</a>, and Tanya Lattner</p>
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="overview">Overview</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+<p>This document is the reference manual for the LLVM testing infrastructure. It documents
+the structure of the LLVM testing infrastructure, the tools needed to use it,
+and how to add and run tests.</p>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="requirements">Requirements</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+<p>In order to use the LLVM testing infrastructure, you will need all of the software
+required to build LLVM, plus the following:</p>
+
+<dl>
+<dt><a href="http://www.gnu.org/software/dejagnu/">DejaGNU</a></dt>
+<dd>The Feature and Regressions tests are organized and run by DejaGNU.</dd>
+<dt><a href="http://expect.nist.gov/">Expect</a></dt>
+<dd>Expect is required by DejaGNU.</dd>
+<dt><a href="http://www.tcl.tk/software/tcltk/">tcl</a></dt>
+<dd>Tcl is required by DejaGNU. </dd>
+</dl>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="org">LLVM testing infrastructure organization</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+<p>The LLVM testing infrastructure contains two major categories of tests: code
+fragments and whole programs. Code fragments are referred to as the "DejaGNU
+tests" and are in the <tt>llvm</tt> module in subversion under the
+<tt>llvm/test</tt> directory. The whole programs tests are referred to as the
+"Test suite" and are in the <tt>test-suite</tt> module in subversion.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="dejagnu">DejaGNU tests</a></div>
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_text">
+
+<p>Code fragments are small pieces of code that test a specific
+feature of LLVM or trigger a specific bug in LLVM. They are usually
+written in LLVM assembly language, but can be written in other
+languages if the test targets a particular language front end (and the
+appropriate <tt>--with-llvmgcc</tt> options were used
+at <tt>configure</tt> time of the <tt>llvm</tt> module). These tests
+are driven by the DejaGNU testing framework, which is hidden behind a
+few simple makefiles.</p>
+
+<p>These code fragments are not complete programs. The code generated
+from them is never executed to determine correct behavior.</p>
+
+<p>These code fragment tests are located in the <tt>llvm/test</tt>
+directory.</p>
+
+<p>Typically when a bug is found in LLVM, a regression test containing
+just enough code to reproduce the problem should be written and placed
+somewhere underneath this directory. In most cases, this will be a small
+piece of LLVM assembly language code, often distilled from an actual
+application or benchmark.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="testsuite">Test suite</a></div>
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_text">
+
+<p>The test suite contains whole programs, which are pieces of
+code which can be compiled and linked into a stand-alone program that can be
+executed. These programs are generally written in high level languages such as
+C or C++, but sometimes they are written straight in LLVM assembly.</p>
+
+<p>These programs are compiled and then executed using several different
+methods (native compiler, LLVM C backend, LLVM JIT, LLVM native code generation,
+etc). The output of these programs is compared to ensure that LLVM is compiling
+the program correctly.</p>
+
+<p>In addition to compiling and executing programs, whole program tests serve as
+a way of benchmarking LLVM performance, both in terms of the efficiency of the
+programs generated as well as the speed with which LLVM compiles, optimizes, and
+generates code.</p>
+
+<p>The test-suite is located in the <tt>test-suite</tt> Subversion module.</p>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="quick">Quick start</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+ <p>The tests are located in two separate Subversion modules. The
+ DejaGNU tests are in the main "llvm" module under the directory
+ <tt>llvm/test</tt> (so you get these tests for free with the main llvm tree).
+ The more comprehensive test suite that includes whole
+programs in C and C++ is in the <tt>test-suite</tt> module. This module should
+be checked out to the <tt>llvm/projects</tt> directory (don't use another name
+then the default "test-suite", for then the test suite will be run every time
+you run <tt>make</tt> in the main <tt>llvm</tt> directory).
+When you <tt>configure</tt> the <tt>llvm</tt> module,
+the <tt>test-suite</tt> directory will be automatically configured.
+Alternatively, you can configure the <tt>test-suite</tt> module manually.</p>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="quickdejagnu">DejaGNU tests</a></div>
+<!-- _______________________________________________________________________ -->
+<p>To run all of the simple tests in LLVM using DejaGNU, use the master Makefile
+ in the <tt>llvm/test</tt> directory:</p>
+
+<div class="doc_code">
+<pre>
+% gmake -C llvm/test
+</pre>
+</div>
+
+<p>or</p>
+
+<div class="doc_code">
+<pre>
+% gmake check
+</pre>
+</div>
+
+<p>To run only a subdirectory of tests in <tt>llvm/test</tt> using DejaGNU (ie.
+Transforms), just set the TESTSUITE variable to the path of the
+subdirectory (relative to <tt>llvm/test</tt>):</p>
+
+<div class="doc_code">
+<pre>
+% gmake TESTSUITE=Transforms check
+</pre>
+</div>
+
+<p><b>Note: If you are running the tests with <tt>objdir != subdir</tt>, you
+must have run the complete testsuite before you can specify a
+subdirectory.</b></p>
+
+<p>To run only a single test, set <tt>TESTONE</tt> to its path (relative to
+<tt>llvm/test</tt>) and make the <tt>check-one</tt> target:</p>
+
+<div class="doc_code">
+<pre>
+% gmake TESTONE=Feature/basictest.ll check-one
+</pre>
+</div>
+
+<p>To run the tests with Valgrind (Memcheck by default), just append
+<tt>VG=1</tt> to the commands above, e.g.:</p>
+
+<div class="doc_code">
+<pre>
+% gmake check VG=1
+</pre>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="quicktestsuite">Test suite</a></div>
+<!-- _______________________________________________________________________ -->
+
+<p>To run the comprehensive test suite (tests that compile and execute whole
+programs), first checkout and setup the <tt>test-suite</tt> module:</p>
+
+<div class="doc_code">
+<pre>
+% cd llvm/projects
+% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
+% cd ..
+% ./configure --with-llvmgccdir=$LLVM_GCC_DIR
+</pre>
+</div>
+
+<p>where <tt>$LLVM_GCC_DIR</tt> is the directory where
+you <em>installed</em> llvm-gcc, not it's src or obj
+dir. The <tt>--with-llvmgccdir</tt> option assumes that
+the <tt>llvm-gcc-4.2</tt> module was configured with
+<tt>--program-prefix=llvm-</tt>, and therefore that the C and C++
+compiler drivers are called <tt>llvm-gcc</tt> and <tt>llvm-g++</tt>
+respectively. If this is not the case,
+use <tt>--with-llvmgcc</tt>/<tt>--with-llvmgxx</tt> to specify each
+executable's location.</p>
+
+<p>Then, run the entire test suite by running make in the <tt>test-suite</tt>
+directory:</p>
+
+<div class="doc_code">
+<pre>
+% cd projects/test-suite
+% gmake
+</pre>
+</div>
+
+<p>Usually, running the "nightly" set of tests is a good idea, and you can also
+let it generate a report by running:</p>
+
+<div class="doc_code">
+<pre>
+% cd projects/test-suite
+% gmake TEST=nightly report report.html
+</pre>
+</div>
+
+<p>Any of the above commands can also be run in a subdirectory of
+<tt>projects/test-suite</tt> to run the specified test only on the programs in
+that subdirectory.</p>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="dgstructure">DejaGNU structure</a></div>
+<!--=========================================================================-->
+<div class="doc_text">
+ <p>The LLVM DejaGNU tests are driven by DejaGNU together with GNU Make and are
+ located in the <tt>llvm/test</tt> directory.
+
+ <p>This directory contains a large array of small tests
+ that exercise various features of LLVM and to ensure that regressions do not
+ occur. The directory is broken into several sub-directories, each focused on
+ a particular area of LLVM. A few of the important ones are:</p>
+
+ <ul>
+ <li><tt>Analysis</tt>: checks Analysis passes.</li>
+ <li><tt>Archive</tt>: checks the Archive library.</li>
+ <li><tt>Assembler</tt>: checks Assembly reader/writer functionality.</li>
+ <li><tt>Bitcode</tt>: checks Bitcode reader/writer functionality.</li>
+ <li><tt>CodeGen</tt>: checks code generation and each target.</li>
+ <li><tt>Features</tt>: checks various features of the LLVM language.</li>
+ <li><tt>Linker</tt>: tests bitcode linking.</li>
+ <li><tt>Transforms</tt>: tests each of the scalar, IPO, and utility
+ transforms to ensure they make the right transformations.</li>
+ <li><tt>Verifier</tt>: tests the IR verifier.</li>
+ </ul>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="dgcustom">Writing new DejaGNU tests</a></div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_text">
+ <p>The DejaGNU structure is very simple, but does require some information to
+ be set. This information is gathered via <tt>configure</tt> and is written
+ to a file, <tt>site.exp</tt> in <tt>llvm/test</tt>. The <tt>llvm/test</tt>
+ Makefile does this work for you.</p>
+
+ <p>In order for DejaGNU to work, each directory of tests must have a
+ <tt>dg.exp</tt> file. DejaGNU looks for this file to determine how to run the
+ tests. This file is just a Tcl script and it can do anything you want, but
+ we've standardized it for the LLVM regression tests. If you're adding a
+ directory of tests, just copy <tt>dg.exp</tt> from another directory to get
+ running. The standard <tt>dg.exp</tt> simply loads a Tcl
+ library (<tt>test/lib/llvm.exp</tt>) and calls the <tt>llvm_runtests</tt>
+ function defined in that library with a list of file names to run. The names
+ are obtained by using Tcl's glob command. Any directory that contains only
+ directories does not need the <tt>dg.exp</tt> file.</p>
+
+ <p>The <tt>llvm-runtests</tt> function lookas at each file that is passed to
+ it and gathers any lines together that match "RUN:". This are the "RUN" lines
+ that specify how the test is to be run. So, each test script must contain
+ RUN lines if it is to do anything. If there are no RUN lines, the
+ <tt>llvm-runtests</tt> function will issue an error and the test will
+ fail.</p>
+
+ <p>RUN lines are specified in the comments of the test program using the
+ keyword <tt>RUN</tt> followed by a colon, and lastly the command (pipeline)
+ to execute. Together, these lines form the "script" that
+ <tt>llvm-runtests</tt> executes to run the test case. The syntax of the
+ RUN lines is similar to a shell's syntax for pipelines including I/O
+ redirection and variable substitution. However, even though these lines
+ may <i>look</i> like a shell script, they are not. RUN lines are interpreted
+ directly by the Tcl <tt>exec</tt> command. They are never executed by a
+ shell. Consequently the syntax differs from normal shell script syntax in a
+ few ways. You can specify as many RUN lines as needed.</p>
+
+ <p>Each RUN line is executed on its own, distinct from other lines unless
+ its last character is <tt>\</tt>. This continuation character causes the RUN
+ line to be concatenated with the next one. In this way you can build up long
+ pipelines of commands without making huge line lengths. The lines ending in
+ <tt>\</tt> are concatenated until a RUN line that doesn't end in <tt>\</tt> is
+ found. This concatenated set of RUN lines then constitutes one execution.
+ Tcl will substitute variables and arrange for the pipeline to be executed. If
+ any process in the pipeline fails, the entire line (and test case) fails too.
+ </p>
+
+ <p> Below is an example of legal RUN lines in a <tt>.ll</tt> file:</p>
+
+<div class="doc_code">
+<pre>
+; RUN: llvm-as &lt; %s | llvm-dis &gt; %t1
+; RUN: llvm-dis &lt; %s.bc-13 &gt; %t2
+; RUN: diff %t1 %t2
+</pre>
+</div>
+
+ <p>As with a Unix shell, the RUN: lines permit pipelines and I/O redirection
+ to be used. However, the usage is slightly different than for Bash. To check
+ what's legal, see the documentation for the
+ <a href="http://www.tcl.tk/man/tcl8.5/TclCmd/exec.htm#M2">Tcl exec</a>
+ command and the
+ <a href="http://www.tcl.tk/man/tcl8.5/tutorial/Tcl26.html">tutorial</a>.
+ The major differences are:</p>
+ <ul>
+ <li>You can't do <tt>2&gt;&amp;1</tt>. That will cause Tcl to write to a
+ file named <tt>&amp;1</tt>. Usually this is done to get stderr to go through
+ a pipe. You can do that in tcl with <tt>|&amp;</tt> so replace this idiom:
+ <tt>... 2&gt;&amp;1 | grep</tt> with <tt>... |&amp; grep</tt></li>
+ <li>You can only redirect to a file, not to another descriptor and not from
+ a here document.</li>
+ <li>tcl supports redirecting to open files with the @ syntax but you
+ shouldn't use that here.</li>
+ </ul>
+
+ <p>There are some quoting rules that you must pay attention to when writing
+ your RUN lines. In general nothing needs to be quoted. Tcl won't strip off any
+ ' or " so they will get passed to the invoked program. For example:</p>
+
+<div class="doc_code">
+<pre>
+... | grep 'find this string'
+</pre>
+</div>
+
+ <p>This will fail because the ' characters are passed to grep. This would
+ instruction grep to look for <tt>'find</tt> in the files <tt>this</tt> and
+ <tt>string'</tt>. To avoid this use curly braces to tell Tcl that it should
+ treat everything enclosed as one value. So our example would become:</p>
+
+<div class="doc_code">
+<pre>
+... | grep {find this string}
+</pre>
+</div>
+
+ <p>Additionally, the characters <tt>[</tt> and <tt>]</tt> are treated
+ specially by Tcl. They tell Tcl to interpret the content as a command to
+ execute. Since these characters are often used in regular expressions this can
+ have disastrous results and cause the entire test run in a directory to fail.
+ For example, a common idiom is to look for some basicblock number:</p>
+
+<div class="doc_code">
+<pre>
+... | grep bb[2-8]
+</pre>
+</div>
+
+ <p>This, however, will cause Tcl to fail because its going to try to execute
+ a program named "2-8". Instead, what you want is this:</p>
+
+<div class="doc_code">
+<pre>
+... | grep {bb\[2-8\]}
+</pre>
+</div>
+
+ <p>Finally, if you need to pass the <tt>\</tt> character down to a program,
+ then it must be doubled. This is another Tcl special character. So, suppose
+ you had:
+
+<div class="doc_code">
+<pre>
+... | grep 'i32\*'
+</pre>
+</div>
+
+ <p>This will fail to match what you want (a pointer to i32). First, the
+ <tt>'</tt> do not get stripped off. Second, the <tt>\</tt> gets stripped off
+ by Tcl so what grep sees is: <tt>'i32*'</tt>. That's not likely to match
+ anything. To resolve this you must use <tt>\\</tt> and the <tt>{}</tt>, like
+ this:</p>
+
+<div class="doc_code">
+<pre>
+... | grep {i32\\*}
+</pre>
+</div>
+
+<p>If your system includes GNU <tt>grep</tt>, make sure
+that <tt>GREP_OPTIONS</tt> is not set in your environment. Otherwise,
+you may get invalid results (both false positives and false
+negatives).</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="FileCheck">The FileCheck utility</a></div>
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_text">
+
+<p>A powerful feature of the RUN: lines is that it allows any arbitrary commands
+ to be executed as part of the test harness. While standard (portable) unix
+ tools like 'grep' work fine on run lines, as you see above, there are a lot
+ of caveats due to interaction with Tcl syntax, and we want to make sure the
+ run lines are portable to a wide range of systems. Another major problem is
+ that grep is not very good at checking to verify that the output of a tools
+ contains a series of different output in a specific order. The FileCheck
+ tool was designed to help with these problems.</p>
+
+<p>FileCheck (whose basic command line arguments are described in <a
+ href="http://llvm.org/cmds/FileCheck.html">the FileCheck man page</a> is
+ designed to read a file to check from standard input, and the set of things
+ to verify from a file specified as a command line argument. A simple example
+ of using FileCheck from a RUN line looks like this:</p>
+
+<div class="doc_code">
+<pre>
+; RUN: llvm-as &lt; %s | llc -march=x86-64 | <b>FileCheck %s</b>
+</pre>
+</div>
+
+<p>This syntax says to pipe the current file ("%s") into llvm-as, pipe that into
+llc, then pipe the output of llc into FileCheck. This means that FileCheck will
+be verifying its standard input (the llc output) against the filename argument
+specified (the original .ll file specified by "%s"). To see how this works,
+lets look at the rest of the .ll file (after the RUN line):</p>
+
+<div class="doc_code">
+<pre>
+define void @sub1(i32* %p, i32 %v) {
+entry:
+; <b>CHECK: sub1:</b>
+; <b>CHECK: subl</b>
+ %0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
+ ret void
+}
+
+define void @inc4(i64* %p) {
+entry:
+; <b>CHECK: inc4:</b>
+; <b>CHECK: incq</b>
+ %0 = tail call i64 @llvm.atomic.load.add.i64.p0i64(i64* %p, i64 1)
+ ret void
+}
+</pre>
+</div>
+
+<p>Here you can see some "CHECK:" lines specified in comments. Now you can see
+how the file is piped into llvm-as, then llc, and the machine code output is
+what we are verifying. FileCheck checks the machine code output to verify that
+it matches what the "CHECK:" lines specify.</p>
+
+<p>The syntax of the CHECK: lines is very simple: they are fixed strings that
+must occur in order. FileCheck defaults to ignoring horizontal whitespace
+differences (e.g. a space is allowed to match a tab) but otherwise, the contents
+of the CHECK: line is required to match some thing in the test file exactly.</p>
+
+<p>One nice thing about FileCheck (compared to grep) is that it allows merging
+test cases together into logical groups. For example, because the test above
+is checking for the "sub1:" and "inc4:" labels, it will not match unless there
+is a "subl" in between those labels. If it existed somewhere else in the file,
+that would not count: "grep subl" matches if subl exists anywhere in the
+file.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a
+name="FileCheck-check-prefix">The FileCheck -check-prefix option</a></div>
+
+<div class="doc_text">
+
+<p>The FileCheck -check-prefix option allows multiple test configurations to be
+driven from one .ll file. This is useful in many circumstances, for example,
+testing different architectural variants with llc. Here's a simple example:</p>
+
+<div class="doc_code">
+<pre>
+; RUN: llvm-as &lt; %s | llc -mtriple=i686-apple-darwin9 -mattr=sse41 \
+; RUN: | <b>FileCheck %s -check-prefix=X32</b>
+; RUN: llvm-as &lt; %s | llc -mtriple=x86_64-apple-darwin9 -mattr=sse41 \
+; RUN: | <b>FileCheck %s -check-prefix=X64</b>
+
+define &lt;4 x i32&gt; @pinsrd_1(i32 %s, &lt;4 x i32&gt; %tmp) nounwind {
+ %tmp1 = insertelement &lt;4 x i32&gt; %tmp, i32 %s, i32 1
+ ret &lt;4 x i32&gt; %tmp1
+; <b>X32:</b> pinsrd_1:
+; <b>X32:</b> pinsrd $1, 4(%esp), %xmm0
+
+; <b>X64:</b> pinsrd_1:
+; <b>X64:</b> pinsrd $1, %edi, %xmm0
+}
+</pre>
+</div>
+
+<p>In this case, we're testing that we get the expected code generation with
+both 32-bit and 64-bit code generation.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a
+name="FileCheck-CHECK-NEXT">The "CHECK-NEXT:" directive</a></div>
+
+<div class="doc_text">
+
+<p>Sometimes you want to match lines and would like to verify that matches
+happen on exactly consequtive lines with no other lines in between them. In
+this case, you can use CHECK: and CHECK-NEXT: directives to specify this. If
+you specified a custom check prefix, just use "&lt;PREFIX&gt;-NEXT:". For
+example, something like this works as you'd expect:</p>
+
+<div class="doc_code">
+<pre>
+define void @t2(&lt;2 x double&gt;* %r, &lt;2 x double&gt;* %A, double %B) {
+ %tmp3 = load &lt;2 x double&gt;* %A, align 16
+ %tmp7 = insertelement &lt;2 x double&gt; undef, double %B, i32 0
+ %tmp9 = shufflevector &lt;2 x double&gt; %tmp3,
+ &lt;2 x double&gt; %tmp7,
+ &lt;2 x i32&gt; &lt; i32 0, i32 2 &gt;
+ store &lt;2 x double&gt; %tmp9, &lt;2 x double&gt;* %r, align 16
+ ret void
+
+; <b>CHECK:</b> t2:
+; <b>CHECK:</b> movl 8(%esp), %eax
+; <b>CHECK-NEXT:</b> movapd (%eax), %xmm0
+; <b>CHECK-NEXT:</b> movhpd 12(%esp), %xmm0
+; <b>CHECK-NEXT:</b> movl 4(%esp), %eax
+; <b>CHECK-NEXT:</b> movapd %xmm0, (%eax)
+; <b>CHECK-NEXT:</b> ret
+}
+</pre>
+</div>
+
+<p>CHECK-NEXT: directives reject the input unless there is exactly one newline
+between it an the previous directive. A CHECK-NEXT cannot be the first
+directive in a file.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a
+name="FileCheck-CHECK-NOT">The "CHECK-NOT:" directive</a></div>
+
+<div class="doc_text">
+
+<p>The CHECK-NOT: directive is used to verify that a string doesn't occur
+between two matches (or the first match and the beginning of the file). For
+example, to verify that a load is removed by a transformation, a test like this
+can be used:</p>
+
+<div class="doc_code">
+<pre>
+define i8 @coerce_offset0(i32 %V, i32* %P) {
+ store i32 %V, i32* %P
+
+ %P2 = bitcast i32* %P to i8*
+ %P3 = getelementptr i8* %P2, i32 2
+
+ %A = load i8* %P3
+ ret i8 %A
+; <b>CHECK:</b> @coerce_offset0
+; <b>CHECK-NOT:</b> load
+; <b>CHECK:</b> ret i8
+}
+</pre>
+</div>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a
+name="FileCheck-Matching">FileCheck Pattern Matching Syntax</a></div>
+
+<div class="doc_text">
+
+<p>The CHECK: and CHECK-NOT: directives both take a pattern to match. For most
+uses of FileCheck, fixed string matching is perfectly sufficient. For some
+things, a more flexible form of matching is desired. To support this, FileCheck
+allows you to specify regular expressions in matching strings, surrounded by
+double braces: <b>{{yourregex}}</b>. Because we want to use fixed string
+matching for a majority of what we do, FileCheck has been designed to support
+mixing and matching fixed string matching with regular expressions. This allows
+you to write things like this:</p>
+
+<div class="doc_code">
+<pre>
+; CHECK: movhpd <b>{{[0-9]+}}</b>(%esp), <b>{{%xmm[0-7]}}</b>
+</pre>
+</div>
+
+<p>In this case, any offset from the ESP register will be allowed, and any xmm
+register will be allowed.</p>
+
+<p>Because regular expressions are enclosed with double braces, they are
+visually distinct, and you don't need to use escape characters within the double
+braces like you would in C. In the rare case that you want to match double
+braces explicitly from the input, you can use something ugly like
+<b>{{[{][{]}}</b> as your pattern.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection"><a
+name="FileCheck-Variables">FileCheck Variables</a></div>
+
+<div class="doc_text">
+
+<p>It is often useful to match a pattern and then verify that it occurs again
+later in the file. For codegen tests, this can be useful to allow any register,
+but verify that that register is used consistently later. To do this, FileCheck
+allows named variables to be defined and substituted into patterns. Here is a
+simple example:</p>
+
+<div class="doc_code">
+<pre>
+; CHECK: test5:
+; CHECK: notw <b>[[REGISTER:%[a-z]+]]</b>
+; CHECK: andw {{.*}}<b>[[REGISTER]]</b>
+</pre>
+</div>
+
+<p>The first check line matches a regex (<tt>%[a-z]+</tt>) and captures it into
+the variables "REGISTER". The second line verifies that whatever is in REGISTER
+occurs later in the file after an "andw". FileCheck variable references are
+always contained in <tt>[[ ]]</tt> pairs, are named, and their names can be
+formed with the regex "<tt>[a-zA-Z][a-zA-Z0-9]*</tt>". If a colon follows the
+name, then it is a definition of the variable, if not, it is a use.</p>
+
+<p>FileCheck variables can be defined multiple times, and uses always get the
+latest value. Note that variables are all read at the start of a "CHECK" line
+and are all defined at the end. This means that if you have something like
+"<tt>CHECK: [[XYZ:.*]]x[[XYZ]]</tt>" that the check line will read the previous
+value of the XYZ variable and define a new one after the match is performed. If
+you need to do something like this you can probably take advantage of the fact
+that FileCheck is not actually line-oriented when it matches, this allows you to
+define two separate CHECK lines that match on the same line.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="dgvars">Variables and
+substitutions</a></div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_text">
+ <p>With a RUN line there are a number of substitutions that are permitted. In
+ general, any Tcl variable that is available in the <tt>substitute</tt>
+ function (in <tt>test/lib/llvm.exp</tt>) can be substituted into a RUN line.
+ To make a substitution just write the variable's name preceded by a $.
+ Additionally, for compatibility reasons with previous versions of the test
+ library, certain names can be accessed with an alternate syntax: a % prefix.
+ These alternates are deprecated and may go away in a future version.
+ </p>
+ <p>Here are the available variable names. The alternate syntax is listed in
+ parentheses.</p>
+
+ <dl style="margin-left: 25px">
+ <dt><b>$test</b> (%s)</dt>
+ <dd>The full path to the test case's source. This is suitable for passing
+ on the command line as the input to an llvm tool.</dd>
+
+ <dt><b>$srcdir</b></dt>
+ <dd>The source directory from where the "<tt>make check</tt>" was run.</dd>
+
+ <dt><b>objdir</b></dt>
+ <dd>The object directory that corresponds to the <tt>$srcdir</tt>.</dd>
+
+ <dt><b>subdir</b></dt>
+ <dd>A partial path from the <tt>test</tt> directory that contains the
+ sub-directory that contains the test source being executed.</dd>
+
+ <dt><b>srcroot</b></dt>
+ <dd>The root directory of the LLVM src tree.</dd>
+
+ <dt><b>objroot</b></dt>
+ <dd>The root directory of the LLVM object tree. This could be the same
+ as the srcroot.</dd>
+
+ <dt><b>path</b><dt>
+ <dd>The path to the directory that contains the test case source. This is
+ for locating any supporting files that are not generated by the test, but
+ used by the test.</dd>
+
+ <dt><b>tmp</b></dt>
+ <dd>The path to a temporary file name that could be used for this test case.
+ The file name won't conflict with other test cases. You can append to it if
+ you need multiple temporaries. This is useful as the destination of some
+ redirected output.</dd>
+
+ <dt><b>llvmlibsdir</b> (%llvmlibsdir)</dt>
+ <dd>The directory where the LLVM libraries are located.</dd>
+
+ <dt><b>target_triplet</b> (%target_triplet)</dt>
+ <dd>The target triplet that corresponds to the current host machine (the one
+ running the test cases). This should probably be called "host".<dd>
+
+ <dt><b>llvmgcc</b> (%llvmgcc)</dt>
+ <dd>The full path to the <tt>llvm-gcc</tt> executable as specified in the
+ configured LLVM environment</dd>
+
+ <dt><b>llvmgxx</b> (%llvmgxx)</dt>
+ <dd>The full path to the <tt>llvm-gxx</tt> executable as specified in the
+ configured LLVM environment</dd>
+
+ <dt><b>gccpath</b></dt>
+ <dd>The full path to the C compiler used to <i>build </i> LLVM. Note that
+ this might not be gcc.</dd>
+
+ <dt><b>gxxpath</b></dt>
+ <dd>The full path to the C++ compiler used to <i>build </i> LLVM. Note that
+ this might not be g++.</dd>
+
+ <dt><b>compile_c</b> (%compile_c)</dt>
+ <dd>The full command line used to compile LLVM C source code. This has all
+ the configured -I, -D and optimization options.</dd>
+
+ <dt><b>compile_cxx</b> (%compile_cxx)</dt>
+ <dd>The full command used to compile LLVM C++ source code. This has
+ all the configured -I, -D and optimization options.</dd>
+
+ <dt><b>link</b> (%link)</dt>
+ <dd>This full link command used to link LLVM executables. This has all the
+ configured -I, -L and -l options.</dd>
+
+ <dt><b>shlibext</b> (%shlibext)</dt>
+ <dd>The suffix for the host platforms share library (dll) files. This
+ includes the period as the first character.</dd>
+ </dl>
+ <p>To add more variables, two things need to be changed. First, add a line in
+ the <tt>test/Makefile</tt> that creates the <tt>site.exp</tt> file. This will
+ "set" the variable as a global in the site.exp file. Second, in the
+ <tt>test/lib/llvm.exp</tt> file, in the substitute proc, add the variable name
+ to the list of "global" declarations at the beginning of the proc. That's it,
+ the variable can then be used in test scripts.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection"><a name="dgfeatures">Other Features</a></div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_text">
+ <p>To make RUN line writing easier, there are several shell scripts located
+ in the <tt>llvm/test/Scripts</tt> directory. This directory is in the PATH
+ when running tests, so you can just call these scripts using their name. For
+ example:</p>
+ <dl>
+ <dt><b>ignore</b></dt>
+ <dd>This script runs its arguments and then always returns 0. This is useful
+ in cases where the test needs to cause a tool to generate an error (e.g. to
+ check the error output). However, any program in a pipeline that returns a
+ non-zero result will cause the test to fail. This script overcomes that
+ issue and nicely documents that the test case is purposefully ignoring the
+ result code of the tool</dd>
+
+ <dt><b>not</b></dt>
+ <dd>This script runs its arguments and then inverts the result code from
+ it. Zero result codes become 1. Non-zero result codes become 0. This is
+ useful to invert the result of a grep. For example "not grep X" means
+ succeed only if you don't find X in the input.</dd>
+ </dl>
+
+ <p>Sometimes it is necessary to mark a test case as "expected fail" or XFAIL.
+ You can easily mark a test as XFAIL just by including <tt>XFAIL: </tt> on a
+ line near the top of the file. This signals that the test case should succeed
+ if the test fails. Such test cases are counted separately by DejaGnu. To
+ specify an expected fail, use the XFAIL keyword in the comments of the test
+ program followed by a colon and one or more regular expressions (separated by
+ a comma). The regular expressions allow you to XFAIL the test conditionally by
+ host platform. The regular expressions following the : are matched against the
+ target triplet for the host machine. If there is a match, the test is expected
+ to fail. If not, the test is expected to succeed. To XFAIL everywhere just
+ specify <tt>XFAIL: *</tt>. Here is an example of an <tt>XFAIL</tt> line:</p>
+
+<div class="doc_code">
+<pre>
+; XFAIL: darwin,sun
+</pre>
+</div>
+
+ <p>To make the output more useful, the <tt>llvm_runtest</tt> function wil
+ scan the lines of the test case for ones that contain a pattern that matches
+ PR[0-9]+. This is the syntax for specifying a PR (Problem Report) number that
+ is related to the test case. The number after "PR" specifies the LLVM bugzilla
+ number. When a PR number is specified, it will be used in the pass/fail
+ reporting. This is useful to quickly get some context when a test fails.</p>
+
+ <p>Finally, any line that contains "END." will cause the special
+ interpretation of lines to terminate. This is generally done right after the
+ last RUN: line. This has two side effects: (a) it prevents special
+ interpretation of lines that are part of the test program, not the
+ instructions to the test case, and (b) it speeds things up for really big test
+ cases by avoiding interpretation of the remainder of the file.</p>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="testsuitestructure">Test suite
+Structure</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+<p>The <tt>test-suite</tt> module contains a number of programs that can be compiled
+with LLVM and executed. These programs are compiled using the native compiler
+and various LLVM backends. The output from the program compiled with the
+native compiler is assumed correct; the results from the other programs are
+compared to the native program output and pass if they match.</p>
+
+<p>When executing tests, it is usually a good idea to start out with a subset of
+the available tests or programs. This makes test run times smaller at first and
+later on this is useful to investigate individual test failures. To run some
+test only on a subset of programs, simply change directory to the programs you
+want tested and run <tt>gmake</tt> there. Alternatively, you can run a different
+test using the <tt>TEST</tt> variable to change what tests or run on the
+selected programs (see below for more info).</p>
+
+<p>In addition for testing correctness, the <tt>llvm-test</tt> directory also
+performs timing tests of various LLVM optimizations. It also records
+compilation times for the compilers and the JIT. This information can be
+used to compare the effectiveness of LLVM's optimizations and code
+generation.</p>
+
+<p><tt>llvm-test</tt> tests are divided into three types of tests: MultiSource,
+SingleSource, and External.</p>
+
+<ul>
+<li><tt>llvm-test/SingleSource</tt>
+<p>The SingleSource directory contains test programs that are only a single
+source file in size. These are usually small benchmark programs or small
+programs that calculate a particular value. Several such programs are grouped
+together in each directory.</p></li>
+
+<li><tt>llvm-test/MultiSource</tt>
+<p>The MultiSource directory contains subdirectories which contain entire
+programs with multiple source files. Large benchmarks and whole applications
+go here.</p></li>
+
+<li><tt>llvm-test/External</tt>
+<p>The External directory contains Makefiles for building code that is external
+to (i.e., not distributed with) LLVM. The most prominent members of this
+directory are the SPEC 95 and SPEC 2000 benchmark suites. The <tt>External</tt>
+directory does not contain these actual tests, but only the Makefiles that know
+how to properly compile these programs from somewhere else. The presence and
+location of these external programs is configured by the llvm-test
+<tt>configure</tt> script.</p></li>
+</ul>
+
+<p>Each tree is then subdivided into several categories, including applications,
+benchmarks, regression tests, code that is strange grammatically, etc. These
+organizations should be relatively self explanatory.</p>
+
+<p>Some tests are known to fail. Some are bugs that we have not fixed yet;
+others are features that we haven't added yet (or may never add). In DejaGNU,
+the result for such tests will be XFAIL (eXpected FAILure). In this way, you
+can tell the difference between an expected and unexpected failure.</p>
+
+<p>The tests in the test suite have no such feature at this time. If the
+test passes, only warnings and other miscellaneous output will be generated. If
+a test fails, a large &lt;program&gt; FAILED message will be displayed. This
+will help you separate benign warnings from actual test failures.</p>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="testsuiterun">Running the test suite</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+<p>First, all tests are executed within the LLVM object directory tree. They
+<i>are not</i> executed inside of the LLVM source tree. This is because the
+test suite creates temporary files during execution.</p>
+
+<p>To run the test suite, you need to use the following steps:</p>
+
+<ol>
+ <li><tt>cd</tt> into the <tt>llvm/projects</tt> directory in your source tree.
+ </li>
+
+ <li><p>Check out the <tt>test-suite</tt> module with:</p>
+
+<div class="doc_code">
+<pre>
+% svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
+</pre>
+</div>
+ <p>This will get the test suite into <tt>llvm/projects/test-suite</tt>.</p>
+ </li>
+ <li><p>Configure and build <tt>llvm</tt>.</p></li>
+ <li><p>Configure and build <tt>llvm-gcc</tt>.</p></li>
+ <li><p>Install <tt>llvm-gcc</tt> somewhere.</p></li>
+ <li><p><em>Re-configure</em> <tt>llvm</tt> from the top level of
+ each build tree (LLVM object directory tree) in which you want
+ to run the test suite, just as you do before building LLVM.</p>
+ <p>During the <em>re-configuration</em>, you must either: (1)
+ have <tt>llvm-gcc</tt> you just built in your path, or (2)
+ specify the directory where your just-built <tt>llvm-gcc</tt> is
+ installed using <tt>--with-llvmgccdir=$LLVM_GCC_DIR</tt>.</p>
+ <p>You must also tell the configure machinery that the test suite
+ is available so it can be configured for your build tree:</p>
+<div class="doc_code">
+<pre>
+% cd $LLVM_OBJ_ROOT ; $LLVM_SRC_ROOT/configure [--with-llvmgccdir=$LLVM_GCC_DIR]
+</pre>
+</div>
+ <p>[Remember that <tt>$LLVM_GCC_DIR</tt> is the directory where you
+ <em>installed</em> llvm-gcc, not its src or obj directory.]</p>
+ </li>
+
+ <li><p>You can now run the test suite from your build tree as follows:</p>
+<div class="doc_code">
+<pre>
+% cd $LLVM_OBJ_ROOT/projects/test-suite
+% make
+</pre>
+</div>
+ </li>
+</ol>
+<p>Note that the second and third steps only need to be done once. After you
+have the suite checked out and configured, you don't need to do it again (unless
+the test code or configure script changes).</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection">
+<a name="testsuiteexternal">Configuring External Tests</a></div>
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_text">
+<p>In order to run the External tests in the <tt>test-suite</tt>
+ module, you must specify <i>--with-externals</i>. This
+ must be done during the <em>re-configuration</em> step (see above),
+ and the <tt>llvm</tt> re-configuration must recognize the
+ previously-built <tt>llvm-gcc</tt>. If any of these is missing or
+ neglected, the External tests won't work.</p>
+<dl>
+<dt><i>--with-externals</i></dt>
+<dt><i>--with-externals=&lt;<tt>directory</tt>&gt;</i></dt>
+</dl>
+ This tells LLVM where to find any external tests. They are expected to be
+ in specifically named subdirectories of &lt;<tt>directory</tt>&gt;.
+ If <tt>directory</tt> is left unspecified,
+ <tt>configure</tt> uses the default value
+ <tt>/home/vadve/shared/benchmarks/speccpu2000/benchspec</tt>.
+ Subdirectory names known to LLVM include:
+ <dl>
+ <dt>spec95</dt>
+ <dt>speccpu2000</dt>
+ <dt>speccpu2006</dt>
+ <dt>povray31</dt>
+ </dl>
+ Others are added from time to time, and can be determined from
+ <tt>configure</tt>.
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection">
+<a name="testsuitetests">Running different tests</a></div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_text">
+<p>In addition to the regular "whole program" tests, the <tt>test-suite</tt>
+module also provides a mechanism for compiling the programs in different ways.
+If the variable TEST is defined on the <tt>gmake</tt> command line, the test system will
+include a Makefile named <tt>TEST.&lt;value of TEST variable&gt;.Makefile</tt>.
+This Makefile can modify build rules to yield different results.</p>
+
+<p>For example, the LLVM nightly tester uses <tt>TEST.nightly.Makefile</tt> to
+create the nightly test reports. To run the nightly tests, run <tt>gmake
+TEST=nightly</tt>.</p>
+
+<p>There are several TEST Makefiles available in the tree. Some of them are
+designed for internal LLVM research and will not work outside of the LLVM
+research group. They may still be valuable, however, as a guide to writing your
+own TEST Makefile for any optimization or analysis passes that you develop with
+LLVM.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection">
+<a name="testsuiteoutput">Generating test output</a></div>
+<!-- _______________________________________________________________________ -->
+<div class="doc_text">
+ <p>There are a number of ways to run the tests and generate output. The most
+ simple one is simply running <tt>gmake</tt> with no arguments. This will
+ compile and run all programs in the tree using a number of different methods
+ and compare results. Any failures are reported in the output, but are likely
+ drowned in the other output. Passes are not reported explicitely.</p>
+
+ <p>Somewhat better is running <tt>gmake TEST=sometest test</tt>, which runs
+ the specified test and usually adds per-program summaries to the output
+ (depending on which sometest you use). For example, the <tt>nightly</tt> test
+ explicitely outputs TEST-PASS or TEST-FAIL for every test after each program.
+ Though these lines are still drowned in the output, it's easy to grep the
+ output logs in the Output directories.</p>
+
+ <p>Even better are the <tt>report</tt> and <tt>report.format</tt> targets
+ (where <tt>format</tt> is one of <tt>html</tt>, <tt>csv</tt>, <tt>text</tt> or
+ <tt>graphs</tt>). The exact contents of the report are dependent on which
+ <tt>TEST</tt> you are running, but the text results are always shown at the
+ end of the run and the results are always stored in the
+ <tt>report.&lt;type&gt;.format</tt> file (when running with
+ <tt>TEST=&lt;type&gt;</tt>).
+
+ The <tt>report</tt> also generate a file called
+ <tt>report.&lt;type&gt;.raw.out</tt> containing the output of the entire test
+ run.
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsection">
+<a name="testsuitecustom">Writing custom tests for the test suite</a></div>
+<!-- _______________________________________________________________________ -->
+
+<div class="doc_text">
+
+<p>Assuming you can run the test suite, (e.g. "<tt>gmake TEST=nightly report</tt>"
+should work), it is really easy to run optimizations or code generator
+components against every program in the tree, collecting statistics or running
+custom checks for correctness. At base, this is how the nightly tester works,
+it's just one example of a general framework.</p>
+
+<p>Lets say that you have an LLVM optimization pass, and you want to see how
+many times it triggers. First thing you should do is add an LLVM
+<a href="ProgrammersManual.html#Statistic">statistic</a> to your pass, which
+will tally counts of things you care about.</p>
+
+<p>Following this, you can set up a test and a report that collects these and
+formats them for easy viewing. This consists of two files, an
+"<tt>test-suite/TEST.XXX.Makefile</tt>" fragment (where XXX is the name of your
+test) and an "<tt>llvm-test/TEST.XXX.report</tt>" file that indicates how to
+format the output into a table. There are many example reports of various
+levels of sophistication included with the test suite, and the framework is very
+general.</p>
+
+<p>If you are interested in testing an optimization pass, check out the
+"libcalls" test as an example. It can be run like this:<p>
+
+<div class="doc_code">
+<pre>
+% cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
+% make TEST=libcalls report
+</pre>
+</div>
+
+<p>This will do a bunch of stuff, then eventually print a table like this:</p>
+
+<div class="doc_code">
+<pre>
+Name | total | #exit |
+...
+FreeBench/analyzer/analyzer | 51 | 6 |
+FreeBench/fourinarow/fourinarow | 1 | 1 |
+FreeBench/neural/neural | 19 | 9 |
+FreeBench/pifft/pifft | 5 | 3 |
+MallocBench/cfrac/cfrac | 1 | * |
+MallocBench/espresso/espresso | 52 | 12 |
+MallocBench/gs/gs | 4 | * |
+Prolangs-C/TimberWolfMC/timberwolfmc | 302 | * |
+Prolangs-C/agrep/agrep | 33 | 12 |
+Prolangs-C/allroots/allroots | * | * |
+Prolangs-C/assembler/assembler | 47 | * |
+Prolangs-C/bison/mybison | 74 | * |
+...
+</pre>
+</div>
+
+<p>This basically is grepping the -stats output and displaying it in a table.
+You can also use the "TEST=libcalls report.html" target to get the table in HTML
+form, similarly for report.csv and report.tex.</p>
+
+<p>The source for this is in test-suite/TEST.libcalls.*. The format is pretty
+simple: the Makefile indicates how to run the test (in this case,
+"<tt>opt -simplify-libcalls -stats</tt>"), and the report contains one line for
+each column of the output. The first value is the header for the column and the
+second is the regex to grep the output of the command for. There are lots of
+example reports that can do fancy stuff.</p>
+
+</div>
+
+<!--=========================================================================-->
+<div class="doc_section"><a name="nightly">Running the nightly tester</a></div>
+<!--=========================================================================-->
+
+<div class="doc_text">
+
+<p>
+The <a href="http://llvm.org/nightlytest/">LLVM Nightly Testers</a>
+automatically check out an LLVM tree, build it, run the "nightly"
+program test (described above), run all of the DejaGNU tests,
+delete the checked out tree, and then submit the results to
+<a href="http://llvm.org/nightlytest/">http://llvm.org/nightlytest/</a>.
+After test results are submitted to
+<a href="http://llvm.org/nightlytest/">http://llvm.org/nightlytest/</a>,
+they are processed and displayed on the tests page. An email to
+<a href="http://lists.cs.uiuc.edu/pipermail/llvm-testresults/">
+llvm-testresults@cs.uiuc.edu</a> summarizing the results is also generated.
+This testing scheme is designed to ensure that programs don't break as well
+as keep track of LLVM's progress over time.</p>
+
+<p>If you'd like to set up an instance of the nightly tester to run on your
+machine, take a look at the comments at the top of the
+<tt>utils/NewNightlyTest.pl</tt> file. If you decide to set up a nightly tester
+please choose a unique nickname and invoke <tt>utils/NewNightlyTest.pl</tt>
+with the "-nickname [yournickname]" command line option.
+
+<p>You can create a shell script to encapsulate the running of the script.
+The optimized x86 Linux nightly test is run from just such a script:</p>
+
+<div class="doc_code">
+<pre>
+#!/bin/bash
+BASE=/proj/work/llvm/nightlytest
+export BUILDDIR=$BASE/build
+export WEBDIR=$BASE/testresults
+export LLVMGCCDIR=/proj/work/llvm/cfrontend/install
+export PATH=/proj/install/bin:$LLVMGCCDIR/bin:$PATH
+export LD_LIBRARY_PATH=/proj/install/lib
+cd $BASE
+cp /proj/work/llvm/llvm/utils/NewNightlyTest.pl .
+nice ./NewNightlyTest.pl -nice -release -verbose -parallel -enable-linscan \
+ -nickname NightlyTester -noexternals &gt; output.log 2&gt;&amp;1
+</pre>
+</div>
+
+<p>It is also possible to specify the the location your nightly test results
+are submitted. You can do this by passing the command line option
+"-submit-server [server_address]" and "-submit-script [script_on_server]" to
+<tt>utils/NewNightlyTest.pl</tt>. For example, to submit to the llvm.org
+nightly test results page, you would invoke the nightly test script with
+"-submit-server llvm.org -submit-script /nightlytest/NightlyTestAccept.cgi".
+If these options are not specified, the nightly test script sends the results
+to the llvm.org nightly test results page.</p>
+
+<p>Take a look at the <tt>NewNightlyTest.pl</tt> file to see what all of the
+flags and strings do. If you start running the nightly tests, please let us
+know. Thanks!</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+
+<hr>
+<address>
+ <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+ src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
+ <a href="http://validator.w3.org/check/referer"><img
+ src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
+
+ John T. Criswell, Reid Spencer, and Tanya Lattner<br>
+ <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+ Last modified: $Date$
+</address>
+</body>
+</html>